quantrs2_tytan/
quantum_optimization_extensions.rs

1//! Extended quantum optimization algorithms.
2//!
3//! This module provides advanced implementations of quantum optimization algorithms
4//! including QAOA extensions, ADAPT-QAOA, and other variants.
5
6#![allow(dead_code)]
7
8use crate::hybrid_algorithms::{ClassicalOptimizer, Hamiltonian};
9use scirs2_core::random::prelude::*;
10use scirs2_core::random::prelude::*;
11use std::collections::HashMap;
12use std::f64::consts::PI;
13
14/// ADAPT-QAOA: Adaptive QAOA with dynamic circuit construction
15pub struct AdaptQAOA {
16    /// Maximum circuit depth
17    max_depth: usize,
18    /// Pool of operators to choose from
19    operator_pool: OperatorPool,
20    /// Gradient threshold for adding operators
21    gradient_threshold: f64,
22    /// Classical optimizer
23    optimizer: ClassicalOptimizer,
24    /// Use commutator screening
25    use_commutator_screening: bool,
26}
27
28#[derive(Debug, Clone)]
29pub struct OperatorPool {
30    /// Single-qubit operators
31    single_qubit_ops: Vec<PauliOperator>,
32    /// Two-qubit operators
33    two_qubit_ops: Vec<PauliOperator>,
34    /// Problem-specific operators
35    custom_ops: Vec<PauliOperator>,
36}
37
38#[derive(Debug, Clone)]
39pub struct PauliOperator {
40    /// Pauli string
41    pauli_string: Vec<char>,
42    /// Coefficient
43    coefficient: f64,
44    /// Name/label
45    label: String,
46}
47
48impl AdaptQAOA {
49    /// Create new ADAPT-QAOA solver
50    pub fn new(max_depth: usize, optimizer: ClassicalOptimizer) -> Self {
51        Self {
52            max_depth,
53            operator_pool: OperatorPool::default_pool(),
54            gradient_threshold: 1e-3,
55            optimizer,
56            use_commutator_screening: true,
57        }
58    }
59
60    /// Set gradient threshold
61    pub const fn with_gradient_threshold(mut self, threshold: f64) -> Self {
62        self.gradient_threshold = threshold;
63        self
64    }
65
66    /// Set operator pool
67    pub fn with_operator_pool(mut self, pool: OperatorPool) -> Self {
68        self.operator_pool = pool;
69        self
70    }
71
72    /// Enable/disable commutator screening
73    pub const fn with_commutator_screening(mut self, use_screening: bool) -> Self {
74        self.use_commutator_screening = use_screening;
75        self
76    }
77
78    /// Adaptively construct circuit
79    pub fn adapt_circuit(&mut self, hamiltonian: &Hamiltonian) -> Result<AdaptCircuit, String> {
80        let mut circuit = AdaptCircuit::new();
81        let mut converged = false;
82
83        while circuit.depth() < self.max_depth && !converged {
84            // Compute gradients for all operators in pool
85            let gradients = self.compute_operator_gradients(&circuit, hamiltonian)?;
86
87            // Find operator with largest gradient
88            let (best_op_idx, max_gradient) = gradients
89                .iter()
90                .enumerate()
91                .max_by(|(_, a), (_, b)| {
92                    a.abs()
93                        .partial_cmp(&b.abs())
94                        .unwrap_or(std::cmp::Ordering::Equal)
95                })
96                .ok_or("No operators in pool")?;
97
98            if max_gradient.abs() < self.gradient_threshold {
99                #[allow(unused_assignments)]
100                {
101                    converged = true;
102                }
103                break;
104            }
105
106            // Add operator to circuit
107            let operator = self.operator_pool.get_operator(best_op_idx)?;
108            circuit.add_operator(operator.clone(), 0.0); // Initial parameter
109
110            // Optimize parameters
111            self.optimize_circuit_parameters(&mut circuit, hamiltonian)?;
112
113            // Optional: remove operator from pool to avoid repetition
114            if circuit.depth() < self.max_depth / 2 {
115                // Keep all operators available in early stages
116            } else {
117                // Start removing used operators
118                self.operator_pool.remove_operator(best_op_idx);
119            }
120        }
121
122        Ok(circuit)
123    }
124
125    /// Compute gradients for all operators
126    fn compute_operator_gradients(
127        &self,
128        circuit: &AdaptCircuit,
129        hamiltonian: &Hamiltonian,
130    ) -> Result<Vec<f64>, String> {
131        let mut gradients = Vec::new();
132
133        for op in self.operator_pool.iter() {
134            // Use commutator screening if enabled
135            if self.use_commutator_screening {
136                let commutator_norm = self.estimate_commutator_norm(op, hamiltonian)?;
137                if commutator_norm < 1e-10 {
138                    gradients.push(0.0);
139                    continue;
140                }
141            }
142
143            // Compute gradient using parameter shift rule
144            let gradient = self.compute_single_gradient(circuit, op, hamiltonian)?;
145            gradients.push(gradient);
146        }
147
148        Ok(gradients)
149    }
150
151    /// Estimate commutator norm for screening
152    fn estimate_commutator_norm(
153        &self,
154        operator: &PauliOperator,
155        hamiltonian: &Hamiltonian,
156    ) -> Result<f64, String> {
157        // Simplified: check if operator commutes with Hamiltonian terms
158        let mut norm = 0.0;
159
160        for h_term in &hamiltonian.terms {
161            let commutes = self.pauli_strings_commute(&operator.pauli_string, &h_term.pauli_string);
162
163            if !commutes {
164                norm += h_term.coefficient.abs() * operator.coefficient.abs();
165            }
166        }
167
168        Ok(norm)
169    }
170
171    /// Check if two Pauli strings commute
172    fn pauli_strings_commute(&self, p1: &[char], p2: &[char]) -> bool {
173        if p1.len() != p2.len() {
174            return false;
175        }
176
177        let mut anticommuting_count = 0;
178
179        for (a, b) in p1.iter().zip(p2.iter()) {
180            if *a != 'I' && *b != 'I' && *a != *b {
181                anticommuting_count += 1;
182            }
183        }
184
185        anticommuting_count % 2 == 0
186    }
187
188    /// Compute gradient for single operator
189    fn compute_single_gradient(
190        &self,
191        _circuit: &AdaptCircuit,
192        operator: &PauliOperator,
193        _hamiltonian: &Hamiltonian,
194    ) -> Result<f64, String> {
195        // Simplified gradient computation
196        // In practice, would evaluate expectation values
197        let random_gradient = thread_rng().gen_range(-1.0..1.0);
198        Ok(random_gradient * operator.coefficient)
199    }
200
201    /// Optimize circuit parameters
202    fn optimize_circuit_parameters(
203        &self,
204        circuit: &mut AdaptCircuit,
205        _hamiltonian: &Hamiltonian,
206    ) -> Result<(), String> {
207        // Simplified: random parameter updates
208        let mut rng = thread_rng();
209
210        for param in circuit.parameters_mut() {
211            *param += rng.gen_range(-0.1..0.1);
212        }
213
214        Ok(())
215    }
216}
217
218/// Adaptive circuit for ADAPT-QAOA
219#[derive(Debug, Clone)]
220pub struct AdaptCircuit {
221    /// Operators in circuit
222    operators: Vec<PauliOperator>,
223    /// Parameters for each operator
224    parameters: Vec<f64>,
225}
226
227impl AdaptCircuit {
228    const fn new() -> Self {
229        Self {
230            operators: Vec::new(),
231            parameters: Vec::new(),
232        }
233    }
234
235    fn depth(&self) -> usize {
236        self.operators.len()
237    }
238
239    fn add_operator(&mut self, operator: PauliOperator, parameter: f64) {
240        self.operators.push(operator);
241        self.parameters.push(parameter);
242    }
243
244    fn parameters_mut(&mut self) -> &mut [f64] {
245        &mut self.parameters
246    }
247}
248
249impl OperatorPool {
250    /// Create default operator pool
251    fn default_pool() -> Self {
252        let mut single_qubit_ops = Vec::new();
253        let mut two_qubit_ops = Vec::new();
254
255        // Standard single-qubit rotations
256        for pauli in ['X', 'Y', 'Z'] {
257            single_qubit_ops.push(PauliOperator {
258                pauli_string: vec![pauli],
259                coefficient: 1.0,
260                label: format!("R{pauli}"),
261            });
262        }
263
264        // Two-qubit entangling operators
265        for (p1, p2) in [('X', 'X'), ('Y', 'Y'), ('Z', 'Z'), ('X', 'Y'), ('Y', 'Z')] {
266            two_qubit_ops.push(PauliOperator {
267                pauli_string: vec![p1, p2],
268                coefficient: 1.0,
269                label: format!("{p1}{p2}"),
270            });
271        }
272
273        Self {
274            single_qubit_ops,
275            two_qubit_ops,
276            custom_ops: Vec::new(),
277        }
278    }
279
280    fn get_operator(&self, idx: usize) -> Result<&PauliOperator, String> {
281        let total_ops =
282            self.single_qubit_ops.len() + self.two_qubit_ops.len() + self.custom_ops.len();
283
284        if idx >= total_ops {
285            return Err("Operator index out of range".to_string());
286        }
287
288        if idx < self.single_qubit_ops.len() {
289            Ok(&self.single_qubit_ops[idx])
290        } else if idx < self.single_qubit_ops.len() + self.two_qubit_ops.len() {
291            Ok(&self.two_qubit_ops[idx - self.single_qubit_ops.len()])
292        } else {
293            Ok(&self.custom_ops[idx - self.single_qubit_ops.len() - self.two_qubit_ops.len()])
294        }
295    }
296
297    const fn remove_operator(&self, _idx: usize) {
298        // Mark operator as used (simplified)
299    }
300
301    fn iter(&self) -> impl Iterator<Item = &PauliOperator> {
302        self.single_qubit_ops
303            .iter()
304            .chain(self.two_qubit_ops.iter())
305            .chain(self.custom_ops.iter())
306    }
307}
308
309/// Quantum Alternating Operator Ansatz (QAOA+)
310pub struct QAOAPlus {
311    /// Number of layers
312    p: usize,
313    /// Mixing operators
314    mixers: Vec<MixerOperator>,
315    /// Initial state preparation
316    initial_state: InitialStatePrep,
317    /// Constraint handling
318    constraints: ConstraintStrategy,
319    /// Classical optimizer
320    optimizer: ClassicalOptimizer,
321}
322
323#[derive(Debug, Clone)]
324pub enum MixerOperator {
325    /// Standard X-rotation mixer
326    StandardX,
327    /// XY-mixer for hard constraints
328    XYMixer { coupling_strength: f64 },
329    /// Grover-style mixer
330    GroverMixer { marked_states: Vec<Vec<bool>> },
331    /// Custom mixer
332    Custom { operator: PauliOperator },
333}
334
335#[derive(Debug, Clone)]
336pub enum InitialStatePrep {
337    /// Equal superposition
338    EqualSuperposition,
339    /// Warm start from classical solution
340    WarmStart { solution: Vec<bool> },
341    /// Dicke state
342    DickeState { hamming_weight: usize },
343    /// Custom state
344    Custom { amplitudes: Vec<f64> },
345}
346
347#[derive(Debug, Clone)]
348pub enum ConstraintStrategy {
349    /// No constraints
350    None,
351    /// Penalty method
352    Penalty { strength: f64 },
353    /// Constrained mixer
354    ConstrainedMixer,
355    /// Quantum Zeno dynamics
356    QuantumZeno { measurement_rate: f64 },
357}
358
359impl QAOAPlus {
360    /// Create new QAOA+ solver
361    pub fn new(p: usize, optimizer: ClassicalOptimizer) -> Self {
362        Self {
363            p,
364            mixers: vec![MixerOperator::StandardX; p],
365            initial_state: InitialStatePrep::EqualSuperposition,
366            constraints: ConstraintStrategy::None,
367            optimizer,
368        }
369    }
370
371    /// Set mixer operators
372    pub fn with_mixers(mut self, mixers: Vec<MixerOperator>) -> Self {
373        self.mixers = mixers;
374        self
375    }
376
377    /// Set initial state
378    pub fn with_initial_state(mut self, state: InitialStatePrep) -> Self {
379        self.initial_state = state;
380        self
381    }
382
383    /// Set constraint strategy
384    pub const fn with_constraints(mut self, constraints: ConstraintStrategy) -> Self {
385        self.constraints = constraints;
386        self
387    }
388
389    /// Apply mixer operator
390    fn apply_mixer(&self, layer: usize, _beta: f64) -> Result<(), String> {
391        match &self.mixers[layer % self.mixers.len()] {
392            MixerOperator::StandardX => {
393                // Apply X-rotation to all qubits
394                Ok(())
395            }
396            MixerOperator::XYMixer {
397                coupling_strength: _,
398            } => {
399                // Apply XY interactions
400                Ok(())
401            }
402            MixerOperator::GroverMixer { marked_states: _ } => {
403                // Apply Grover diffusion operator
404                Ok(())
405            }
406            MixerOperator::Custom { operator: _ } => {
407                // Apply custom operator
408                Ok(())
409            }
410        }
411    }
412}
413
414/// Recursive QAOA for hierarchical optimization
415pub struct RecursiveQAOA {
416    /// Base QAOA depth
417    base_depth: usize,
418    /// Recursion depth
419    recursion_depth: usize,
420    /// Problem decomposition strategy
421    decomposition: DecompositionStrategy,
422    /// Aggregation method
423    aggregation: AggregationMethod,
424}
425
426#[derive(Debug, Clone)]
427pub enum DecompositionStrategy {
428    /// Graph partitioning
429    GraphPartitioning { num_partitions: usize },
430    /// Variable clustering
431    VariableClustering { cluster_size: usize },
432    /// Spectral decomposition
433    SpectralDecomposition { num_components: usize },
434    /// Community detection
435    CommunityDetection { resolution: f64 },
436}
437
438#[derive(Debug, Clone)]
439pub enum AggregationMethod {
440    /// Simple merging
441    SimpleMerge,
442    /// Weighted combination
443    WeightedCombination { weights: Vec<f64> },
444    /// Consensus voting
445    ConsensusVoting,
446    /// Bayesian aggregation
447    BayesianAggregation,
448}
449
450impl RecursiveQAOA {
451    /// Create new recursive QAOA
452    pub const fn new(
453        base_depth: usize,
454        recursion_depth: usize,
455        decomposition: DecompositionStrategy,
456    ) -> Self {
457        Self {
458            base_depth,
459            recursion_depth,
460            decomposition,
461            aggregation: AggregationMethod::SimpleMerge,
462        }
463    }
464
465    /// Set aggregation method
466    pub fn with_aggregation(mut self, method: AggregationMethod) -> Self {
467        self.aggregation = method;
468        self
469    }
470
471    /// Solve problem recursively
472    pub fn solve_recursive(
473        &self,
474        problem: &Hamiltonian,
475        level: usize,
476    ) -> Result<RecursiveSolution, String> {
477        if level >= self.recursion_depth {
478            // Base case: solve with standard QAOA
479            return self.solve_base_case(problem);
480        }
481
482        // Decompose problem
483        let subproblems = self.decompose_problem(problem)?;
484
485        // Solve subproblems recursively
486        let mut subsolutions = Vec::new();
487        for subproblem in subproblems {
488            let solution = self.solve_recursive(&subproblem, level + 1)?;
489            subsolutions.push(solution);
490        }
491
492        // Aggregate solutions
493        self.aggregate_solutions(subsolutions, problem)
494    }
495
496    /// Decompose problem into subproblems
497    fn decompose_problem(&self, problem: &Hamiltonian) -> Result<Vec<Hamiltonian>, String> {
498        match &self.decomposition {
499            DecompositionStrategy::GraphPartitioning { num_partitions } => {
500                // Partition interaction graph
501                Ok(vec![problem.clone(); *num_partitions]) // Simplified
502            }
503            DecompositionStrategy::VariableClustering { cluster_size: _ } => {
504                // Cluster variables
505                Ok(vec![problem.clone(); 2]) // Simplified
506            }
507            _ => Ok(vec![problem.clone()]),
508        }
509    }
510
511    /// Solve base case
512    fn solve_base_case(&self, _problem: &Hamiltonian) -> Result<RecursiveSolution, String> {
513        // Use standard QAOA
514        Ok(RecursiveSolution {
515            energy: 0.0,
516            state: vec![false; 10], // Placeholder
517            metadata: HashMap::new(),
518        })
519    }
520
521    /// Aggregate subsolutions
522    fn aggregate_solutions(
523        &self,
524        subsolutions: Vec<RecursiveSolution>,
525        _original_problem: &Hamiltonian,
526    ) -> Result<RecursiveSolution, String> {
527        match &self.aggregation {
528            AggregationMethod::SimpleMerge => {
529                // Concatenate solutions
530                let mut merged_state = Vec::new();
531                for sol in &subsolutions {
532                    merged_state.extend(&sol.state);
533                }
534
535                Ok(RecursiveSolution {
536                    energy: subsolutions.iter().map(|s| s.energy).sum(),
537                    state: merged_state,
538                    metadata: HashMap::new(),
539                })
540            }
541            _ => {
542                // Other aggregation methods
543                subsolutions
544                    .into_iter()
545                    .next()
546                    .ok_or_else(|| "No subsolutions available for aggregation".to_string())
547            }
548        }
549    }
550}
551
552#[derive(Debug, Clone)]
553pub struct RecursiveSolution {
554    pub energy: f64,
555    pub state: Vec<bool>,
556    pub metadata: HashMap<String, f64>,
557}
558
559/// Multi-angle QAOA with parameterized gates
560pub struct MultiAngleQAOA {
561    /// Number of layers
562    p: usize,
563    /// Angle parameterization
564    parameterization: AngleParameterization,
565    /// Gate decomposition
566    gate_decomposition: GateDecomposition,
567    /// Symmetry exploitation
568    symmetries: Vec<SymmetryType>,
569}
570
571#[derive(Debug, Clone)]
572pub enum AngleParameterization {
573    /// Independent angles for each qubit
574    FullyParameterized,
575    /// Linear interpolation
576    LinearInterpolation { num_params: usize },
577    /// Fourier series
578    FourierSeries { num_frequencies: usize },
579    /// Polynomial
580    Polynomial { degree: usize },
581}
582
583#[derive(Debug, Clone)]
584pub enum GateDecomposition {
585    /// Standard decomposition
586    Standard,
587    /// Efficient for connectivity
588    ConnectivityAware { topology: String },
589    /// Approximate decomposition
590    Approximate { fidelity: f64 },
591}
592
593#[derive(Debug, Clone)]
594pub enum SymmetryType {
595    /// Permutation symmetry
596    Permutation { group: Vec<Vec<usize>> },
597    /// Time reversal
598    TimeReversal,
599    /// Parity
600    Parity,
601    /// Custom symmetry
602    Custom { name: String },
603}
604
605impl MultiAngleQAOA {
606    /// Create new multi-angle QAOA
607    pub const fn new(p: usize) -> Self {
608        Self {
609            p,
610            parameterization: AngleParameterization::FullyParameterized,
611            gate_decomposition: GateDecomposition::Standard,
612            symmetries: Vec::new(),
613        }
614    }
615
616    /// Set angle parameterization
617    pub const fn with_parameterization(mut self, param: AngleParameterization) -> Self {
618        self.parameterization = param;
619        self
620    }
621
622    /// Add symmetry
623    pub fn with_symmetry(mut self, symmetry: SymmetryType) -> Self {
624        self.symmetries.push(symmetry);
625        self
626    }
627
628    /// Generate angle parameters
629    fn generate_angles(&self, base_params: &[f64]) -> Vec<Vec<f64>> {
630        match &self.parameterization {
631            AngleParameterization::FullyParameterized => {
632                // Each qubit has independent angles
633                vec![base_params.to_vec(); self.p]
634            }
635            AngleParameterization::LinearInterpolation { num_params } => {
636                // Interpolate between control points
637                self.linear_interpolation(base_params, *num_params)
638            }
639            AngleParameterization::FourierSeries { num_frequencies } => {
640                // Fourier series representation
641                self.fourier_series(base_params, *num_frequencies)
642            }
643            AngleParameterization::Polynomial { degree } => {
644                // Polynomial parameterization
645                self.polynomial_angles(base_params, *degree)
646            }
647        }
648    }
649
650    /// Linear interpolation of angles
651    fn linear_interpolation(&self, control_points: &[f64], num_qubits: usize) -> Vec<Vec<f64>> {
652        let mut angles = vec![vec![0.0; num_qubits]; self.p];
653
654        for layer in 0..self.p {
655            for qubit in 0..num_qubits {
656                // Interpolate between control points
657                let t = qubit as f64 / (num_qubits - 1) as f64;
658                let idx = (t * (control_points.len() - 1) as f64) as usize;
659                let frac = t * (control_points.len() - 1) as f64 - idx as f64;
660
661                if idx + 1 < control_points.len() {
662                    angles[layer][qubit] =
663                        control_points[idx].mul_add(1.0 - frac, control_points[idx + 1] * frac);
664                } else {
665                    angles[layer][qubit] = control_points[idx];
666                }
667            }
668        }
669
670        angles
671    }
672
673    /// Fourier series representation
674    fn fourier_series(&self, coeffs: &[f64], num_qubits: usize) -> Vec<Vec<f64>> {
675        let mut angles = vec![vec![0.0; num_qubits]; self.p];
676
677        for layer in 0..self.p {
678            for qubit in 0..num_qubits {
679                let x = 2.0 * PI * qubit as f64 / num_qubits as f64;
680
681                for (k, &coeff) in coeffs.iter().enumerate() {
682                    angles[layer][qubit] += coeff * (k as f64 * x).cos();
683                }
684            }
685        }
686
687        angles
688    }
689
690    /// Polynomial angle parameterization
691    fn polynomial_angles(&self, coeffs: &[f64], degree: usize) -> Vec<Vec<f64>> {
692        let mut angles = vec![vec![0.0; 10]; self.p]; // Placeholder
693
694        for layer in 0..self.p {
695            for (i, angle) in angles[layer].iter_mut().enumerate() {
696                let x = i as f64 / 10.0; // Normalized position
697
698                for (power, &coeff) in coeffs.iter().enumerate().take(degree + 1) {
699                    *angle += coeff * x.powi(power as i32);
700                }
701            }
702        }
703
704        angles
705    }
706}
707
708#[cfg(test)]
709mod tests {
710    use super::*;
711
712    #[test]
713    fn test_adapt_qaoa() {
714        let optimizer = ClassicalOptimizer::GradientDescent {
715            learning_rate: 0.1,
716            momentum: 0.9,
717        };
718
719        let adapt = AdaptQAOA::new(10, optimizer).with_gradient_threshold(1e-4);
720
721        assert_eq!(adapt.max_depth, 10);
722    }
723
724    #[test]
725    fn test_qaoa_plus() {
726        let optimizer = ClassicalOptimizer::SPSA {
727            a: 0.1,
728            c: 0.1,
729            alpha: 0.602,
730            gamma: 0.101,
731        };
732
733        let qaoa_plus = QAOAPlus::new(3, optimizer).with_mixers(vec![
734            MixerOperator::StandardX,
735            MixerOperator::XYMixer {
736                coupling_strength: 0.5,
737            },
738            MixerOperator::StandardX,
739        ]);
740
741        assert_eq!(qaoa_plus.p, 3);
742        assert_eq!(qaoa_plus.mixers.len(), 3);
743    }
744
745    #[test]
746    fn test_recursive_qaoa() {
747        let recursive = RecursiveQAOA::new(
748            2,
749            3,
750            DecompositionStrategy::GraphPartitioning { num_partitions: 4 },
751        );
752
753        assert_eq!(recursive.recursion_depth, 3);
754    }
755
756    #[test]
757    fn test_multi_angle_qaoa() {
758        let multi = MultiAngleQAOA::new(5)
759            .with_parameterization(AngleParameterization::FourierSeries { num_frequencies: 3 });
760
761        let mut coeffs = vec![1.0, 0.5, 0.25];
762        let angles = multi.fourier_series(&coeffs, 10);
763
764        assert_eq!(angles.len(), 5); // p layers
765        assert_eq!(angles[0].len(), 10); // num qubits
766    }
767}