1#![allow(dead_code)]
7
8use std::collections::HashMap;
9use std::sync::{Arc, Mutex};
10use std::time::Duration;
11
12use scirs2_core::gpu::{GpuBackend, GpuContext, GpuError};
13
14#[derive(Default, Clone, Debug)]
16pub struct GpuPerformanceMetrics {
17 pub kernel_times: HashMap<String, Vec<Duration>>,
19 pub transfer_times: HashMap<String, Vec<Duration>>,
21 pub device_utilization: f64,
23 pub memory_bandwidth_util: f64,
25 pub compute_throughput: f64,
27 pub energy_efficiency: f64,
29 pub queue_depth: usize,
31 pub cache_hit_rate: f64,
33}
34
35pub struct GpuProfiler {
37 metrics: Arc<Mutex<GpuPerformanceMetrics>>,
39 context: Arc<GpuContext>,
41 backend: GpuBackend,
43 enabled: bool,
45}
46
47impl Default for GpuProfiler {
48 fn default() -> Self {
49 Self::new()
50 }
51}
52
53impl GpuProfiler {
54 pub fn new() -> Self {
56 let backend = GpuBackend::Cpu;
58 let context = GpuContext::new(backend).unwrap_or_else(|_| {
59 panic!("Failed to create CPU context")
61 });
62
63 Self {
64 metrics: Arc::new(Mutex::new(GpuPerformanceMetrics::default())),
65 context: Arc::new(context),
66 backend,
67 enabled: true,
68 }
69 }
70
71 pub fn with_context(ctx: GpuContext) -> Self {
73 let backend = ctx.backend();
74 Self {
75 metrics: Arc::new(Mutex::new(GpuPerformanceMetrics::default())),
76 context: Arc::new(ctx),
77 backend,
78 enabled: true,
79 }
80 }
81
82 pub const fn set_enabled(&mut self, enabled: bool) {
84 self.enabled = enabled;
85 }
86
87 pub fn record_kernel_time(&self, kernel_name: &str, duration: Duration) {
89 if !self.enabled {
90 return;
91 }
92
93 if let Ok(ref mut metrics) = self.metrics.lock() {
94 metrics
95 .kernel_times
96 .entry(kernel_name.to_string())
97 .or_default()
98 .push(duration);
99 }
100 }
101
102 pub fn record_transfer_time(&self, operation: &str, duration: Duration) {
104 if !self.enabled {
105 return;
106 }
107
108 if let Ok(ref mut metrics) = self.metrics.lock() {
109 metrics
110 .transfer_times
111 .entry(operation.to_string())
112 .or_default()
113 .push(duration);
114 }
115 }
116
117 pub fn update_utilization(&self, utilization: f64) {
119 if !self.enabled {
120 return;
121 }
122
123 if let Ok(ref mut metrics) = self.metrics.lock() {
124 metrics.device_utilization = utilization;
125 }
126 }
127
128 pub fn update_throughput(&self, operations: usize, duration: Duration) {
130 if !self.enabled {
131 return;
132 }
133
134 if let Ok(ref mut metrics) = self.metrics.lock() {
135 let seconds = duration.as_secs_f64();
136 metrics.compute_throughput = (operations as f64) / seconds / 1e9; }
138 }
139
140 pub fn get_report(&self) -> PerformanceReport {
142 let metrics = self
143 .metrics
144 .lock()
145 .expect("metrics mutex should not be poisoned");
146
147 let mut kernel_stats = HashMap::new();
149 for (name, times) in &metrics.kernel_times {
150 let stats = calculate_stats(times);
151 kernel_stats.insert(name.clone(), stats);
152 }
153
154 let mut transfer_stats = HashMap::new();
156 for (name, times) in &metrics.transfer_times {
157 let stats = calculate_stats(times);
158 transfer_stats.insert(name.clone(), stats);
159 }
160
161 PerformanceReport {
162 kernel_stats,
163 transfer_stats,
164 device_utilization: metrics.device_utilization,
165 memory_bandwidth_util: metrics.memory_bandwidth_util,
166 compute_throughput: metrics.compute_throughput,
167 energy_efficiency: metrics.energy_efficiency,
168 recommendations: self.generate_recommendations(&metrics),
169 }
170 }
171
172 fn generate_recommendations(&self, metrics: &GpuPerformanceMetrics) -> Vec<String> {
174 let mut recommendations = Vec::new();
175
176 if metrics.device_utilization < 0.7 {
178 recommendations.push(
179 "Low GPU utilization detected. Consider increasing batch size or workload."
180 .to_string(),
181 );
182 }
183
184 if metrics.memory_bandwidth_util > 0.9 {
186 recommendations.push(
187 "High memory bandwidth usage. Consider memory access optimization or compression."
188 .to_string(),
189 );
190 }
191
192 for (kernel, times) in &metrics.kernel_times {
194 if !times.is_empty() {
195 let avg_time = times.iter().sum::<Duration>() / times.len() as u32;
196 if avg_time > Duration::from_millis(100) {
197 recommendations.push(format!(
198 "Kernel '{kernel}' has high execution time. Consider optimization or splitting."
199 ));
200 }
201 }
202 }
203
204 if metrics.cache_hit_rate < 0.8 {
206 recommendations
207 .push("Low cache hit rate. Consider data locality optimizations.".to_string());
208 }
209
210 recommendations
211 }
212}
213
214#[derive(Clone, Debug)]
216pub struct PerformanceStats {
217 pub mean: Duration,
218 pub min: Duration,
219 pub max: Duration,
220 pub std_dev: Duration,
221 pub percentile_95: Duration,
222}
223
224#[derive(Debug)]
226pub struct PerformanceReport {
227 pub kernel_stats: HashMap<String, PerformanceStats>,
228 pub transfer_stats: HashMap<String, PerformanceStats>,
229 pub device_utilization: f64,
230 pub memory_bandwidth_util: f64,
231 pub compute_throughput: f64,
232 pub energy_efficiency: f64,
233 pub recommendations: Vec<String>,
234}
235
236pub struct MemoryAccessAnalyzer {
238 patterns: Vec<AccessPattern>,
240 coalescing_efficiency: f64,
242 bank_conflicts: usize,
244}
245
246#[derive(Clone)]
247struct AccessPattern {
248 access_type: AccessType,
250 stride: usize,
252 size: usize,
254 frequency: usize,
256}
257
258#[derive(Clone, Copy)]
259pub enum AccessType {
260 Read,
261 Write,
262 ReadWrite,
263}
264
265impl Default for MemoryAccessAnalyzer {
266 fn default() -> Self {
267 Self::new()
268 }
269}
270
271impl MemoryAccessAnalyzer {
272 pub const fn new() -> Self {
274 Self {
275 patterns: Vec::new(),
276 coalescing_efficiency: 1.0,
277 bank_conflicts: 0,
278 }
279 }
280
281 pub fn analyze_pattern(&mut self, addresses: &[usize], access_type: AccessType) {
283 if addresses.len() < 2 {
284 return;
285 }
286
287 let mut strides = Vec::new();
289 for i in 1..addresses.len() {
290 strides.push(addresses[i].saturating_sub(addresses[i - 1]));
291 }
292
293 let mut stride_counts = HashMap::new();
295 for &stride in &strides {
296 *stride_counts.entry(stride).or_insert(0) += 1;
297 }
298
299 let (common_stride, frequency) = stride_counts
300 .iter()
301 .max_by_key(|(_, &count)| count)
302 .map_or((0, 0), |(&stride, &count)| (stride, count));
303
304 self.patterns.push(AccessPattern {
305 access_type,
306 stride: common_stride,
307 size: addresses.len(),
308 frequency,
309 });
310
311 self.update_coalescing_efficiency();
313 }
314
315 fn update_coalescing_efficiency(&mut self) {
317 let mut total_accesses = 0;
318 let mut coalesced_accesses = 0;
319
320 for pattern in &self.patterns {
321 total_accesses += pattern.size;
322
323 match pattern.stride {
327 1 => coalesced_accesses += pattern.size,
328 4 | 8 => coalesced_accesses += pattern.size * 3 / 4,
329 s if s < 32 => coalesced_accesses += pattern.size / 2,
330 _ => {} }
332 }
333
334 self.coalescing_efficiency = if total_accesses > 0 {
335 coalesced_accesses as f64 / total_accesses as f64
336 } else {
337 1.0
338 };
339 }
340
341 pub fn get_suggestions(&self) -> Vec<String> {
343 let mut suggestions = Vec::new();
344
345 if self.coalescing_efficiency < 0.8 {
346 suggestions.push(
347 "Poor memory coalescing detected. Consider restructuring data layout.".to_string(),
348 );
349 }
350
351 for pattern in &self.patterns {
353 if pattern.stride > 32 && pattern.frequency > pattern.size / 2 {
354 suggestions.push(format!(
355 "Large stride pattern detected ({}). Consider data transposition.",
356 pattern.stride
357 ));
358 }
359 }
360
361 if self.bank_conflicts > 0 {
362 suggestions.push(format!(
363 "Detected {} bank conflicts. Consider padding shared memory.",
364 self.bank_conflicts
365 ));
366 }
367
368 suggestions
369 }
370}
371
372pub struct KernelFusionOptimizer {
374 dependencies: HashMap<String, Vec<String>>,
376 kernel_info: HashMap<String, KernelInfo>,
378}
379
380struct KernelInfo {
381 compute_intensity: f64,
383 memory_required: usize,
385 fusable: bool,
387}
388
389impl Default for KernelFusionOptimizer {
390 fn default() -> Self {
391 Self::new()
392 }
393}
394
395impl KernelFusionOptimizer {
396 pub fn new() -> Self {
398 Self {
399 dependencies: HashMap::new(),
400 kernel_info: HashMap::new(),
401 }
402 }
403
404 pub fn add_kernel(
406 &mut self,
407 name: &str,
408 compute_intensity: f64,
409 memory_required: usize,
410 dependencies: Vec<String>,
411 ) {
412 self.dependencies.insert(name.to_string(), dependencies);
413 self.kernel_info.insert(
414 name.to_string(),
415 KernelInfo {
416 compute_intensity,
417 memory_required,
418 fusable: true,
419 },
420 );
421 }
422
423 pub fn find_fusion_opportunities(&self) -> Vec<FusionOpportunity> {
425 let mut opportunities = Vec::new();
426
427 for (kernel1, deps1) in &self.dependencies {
429 for (kernel2, deps2) in &self.dependencies {
430 if kernel1 >= kernel2 {
431 continue;
432 }
433
434 if self.can_fuse(kernel1, kernel2, deps1, deps2) {
436 let benefit = self.calculate_fusion_benefit(kernel1, kernel2);
437
438 opportunities.push(FusionOpportunity {
439 kernels: vec![kernel1.clone(), kernel2.clone()],
440 benefit_score: benefit,
441 memory_saved: self.estimate_memory_saved(kernel1, kernel2),
442 });
443 }
444 }
445 }
446
447 opportunities.sort_by(|a, b| {
449 b.benefit_score
450 .partial_cmp(&a.benefit_score)
451 .unwrap_or(std::cmp::Ordering::Equal)
452 });
453
454 opportunities
455 }
456
457 fn can_fuse(&self, kernel1: &str, kernel2: &str, deps1: &[String], deps2: &[String]) -> bool {
459 let direct_dep =
461 deps2.contains(&kernel1.to_string()) || deps1.contains(&kernel2.to_string());
462
463 let both_fusable = self.kernel_info.get(kernel1).is_some_and(|k| k.fusable)
465 && self.kernel_info.get(kernel2).is_some_and(|k| k.fusable);
466
467 direct_dep && both_fusable
468 }
469
470 fn calculate_fusion_benefit(&self, kernel1: &str, kernel2: &str) -> f64 {
472 let info1 = &self.kernel_info[kernel1];
473 let info2 = &self.kernel_info[kernel2];
474
475 let memory_benefit = (info1.memory_required + info2.memory_required) as f64 * 0.001;
477 let launch_benefit = 1.0; let intensity_benefit = (info1.compute_intensity + info2.compute_intensity) * 0.1;
479
480 memory_benefit + launch_benefit + intensity_benefit
481 }
482
483 fn estimate_memory_saved(&self, kernel1: &str, kernel2: &str) -> usize {
485 let info1 = &self.kernel_info[kernel1];
486 let info2 = &self.kernel_info[kernel2];
487
488 (info1.memory_required + info2.memory_required) / 4
490 }
491}
492
493#[derive(Debug)]
495pub struct FusionOpportunity {
496 pub kernels: Vec<String>,
497 pub benefit_score: f64,
498 pub memory_saved: usize,
499}
500
501fn calculate_stats(times: &[Duration]) -> PerformanceStats {
503 if times.is_empty() {
504 return PerformanceStats {
505 mean: Duration::ZERO,
506 min: Duration::ZERO,
507 max: Duration::ZERO,
508 std_dev: Duration::ZERO,
509 percentile_95: Duration::ZERO,
510 };
511 }
512
513 let mut sorted_times = times.to_vec();
514 sorted_times.sort();
515
516 let sum: Duration = times.iter().sum();
517 let mean = sum / times.len() as u32;
518
519 let variance = times
520 .iter()
521 .map(|&t| {
522 let diff = if t > mean {
523 t.checked_sub(mean).unwrap_or(Duration::ZERO).as_secs_f64()
524 } else {
525 mean.checked_sub(t).unwrap_or(Duration::ZERO).as_secs_f64()
526 };
527 diff * diff
528 })
529 .sum::<f64>()
530 / times.len() as f64;
531
532 let std_dev = Duration::from_secs_f64(variance.sqrt());
533
534 let percentile_95_idx = (times.len() as f64 * 0.95) as usize;
535 let percentile_95 = sorted_times[percentile_95_idx.min(sorted_times.len() - 1)];
536
537 PerformanceStats {
538 mean,
539 min: sorted_times[0],
540 max: sorted_times[sorted_times.len() - 1],
541 std_dev,
542 percentile_95,
543 }
544}
545
546#[cfg(test)]
547mod tests {
548 use super::*;
549
550 #[test]
551 fn test_memory_access_analyzer() {
552 let mut analyzer = MemoryAccessAnalyzer::new();
553
554 let addresses: Vec<usize> = (0..32).map(|i| i * 4).collect();
556 analyzer.analyze_pattern(&addresses, AccessType::Read);
557
558 assert!(analyzer.coalescing_efficiency > 0.7);
560
561 let strided: Vec<usize> = (0..32).map(|i| i * 128).collect();
563 analyzer.analyze_pattern(&strided, AccessType::Read);
564
565 let suggestions = analyzer.get_suggestions();
566 assert!(!suggestions.is_empty());
567 }
568
569 #[test]
570 fn test_kernel_fusion_optimizer() {
571 let mut optimizer = KernelFusionOptimizer::new();
572
573 optimizer.add_kernel("kernel_a", 10.0, 1024, vec![]);
575 optimizer.add_kernel("kernel_b", 5.0, 2048, vec!["kernel_a".to_string()]);
576 optimizer.add_kernel("kernel_c", 8.0, 512, vec!["kernel_b".to_string()]);
577
578 let opportunities = optimizer.find_fusion_opportunities();
579 assert!(!opportunities.is_empty());
580
581 let first = &opportunities[0];
583 assert!(first.benefit_score > 0.0);
584 assert!(first.memory_saved > 0);
585 }
586}