quantrs2_tytan/
gpu_performance.rs

1//! GPU performance optimization and profiling.
2//!
3//! This module provides tools for optimizing GPU performance including
4//! memory access patterns, kernel fusion, and performance profiling.
5
6#![allow(dead_code)]
7
8use std::collections::HashMap;
9use std::sync::{Arc, Mutex};
10use std::time::Duration;
11
12use scirs2_core::gpu::{GpuBackend, GpuContext, GpuError};
13
14/// Performance metrics for GPU operations
15#[derive(Default, Clone, Debug)]
16pub struct GpuPerformanceMetrics {
17    /// Kernel execution times
18    pub kernel_times: HashMap<String, Vec<Duration>>,
19    /// Memory transfer times
20    pub transfer_times: HashMap<String, Vec<Duration>>,
21    /// Device utilization percentage
22    pub device_utilization: f64,
23    /// Memory bandwidth utilization
24    pub memory_bandwidth_util: f64,
25    /// Compute throughput (GFLOPS)
26    pub compute_throughput: f64,
27    /// Energy efficiency (solutions per watt)
28    pub energy_efficiency: f64,
29    /// Queue depth
30    pub queue_depth: usize,
31    /// Cache hit rate
32    pub cache_hit_rate: f64,
33}
34
35/// GPU performance profiler using SciRS2 GPU abstractions
36pub struct GpuProfiler {
37    /// Current metrics
38    metrics: Arc<Mutex<GpuPerformanceMetrics>>,
39    /// GPU context handle
40    context: Arc<GpuContext>,
41    /// GPU backend type
42    backend: GpuBackend,
43    /// Profiling enabled
44    enabled: bool,
45}
46
47impl Default for GpuProfiler {
48    fn default() -> Self {
49        Self::new()
50    }
51}
52
53impl GpuProfiler {
54    /// Create new profiler
55    pub fn new() -> Self {
56        // Use CPU backend as default fallback
57        let backend = GpuBackend::Cpu;
58        let context = GpuContext::new(backend).unwrap_or_else(|_| {
59            // This should never fail for CPU backend
60            panic!("Failed to create CPU context")
61        });
62
63        Self {
64            metrics: Arc::new(Mutex::new(GpuPerformanceMetrics::default())),
65            context: Arc::new(context),
66            backend,
67            enabled: true,
68        }
69    }
70
71    /// Initialize with device context
72    pub fn with_context(ctx: GpuContext) -> Self {
73        let backend = ctx.backend();
74        Self {
75            metrics: Arc::new(Mutex::new(GpuPerformanceMetrics::default())),
76            context: Arc::new(ctx),
77            backend,
78            enabled: true,
79        }
80    }
81
82    /// Enable/disable profiling
83    pub const fn set_enabled(&mut self, enabled: bool) {
84        self.enabled = enabled;
85    }
86
87    /// Record kernel execution time
88    pub fn record_kernel_time(&self, kernel_name: &str, duration: Duration) {
89        if !self.enabled {
90            return;
91        }
92
93        if let Ok(ref mut metrics) = self.metrics.lock() {
94            metrics
95                .kernel_times
96                .entry(kernel_name.to_string())
97                .or_default()
98                .push(duration);
99        }
100    }
101
102    /// Record memory transfer time
103    pub fn record_transfer_time(&self, operation: &str, duration: Duration) {
104        if !self.enabled {
105            return;
106        }
107
108        if let Ok(ref mut metrics) = self.metrics.lock() {
109            metrics
110                .transfer_times
111                .entry(operation.to_string())
112                .or_default()
113                .push(duration);
114        }
115    }
116
117    /// Update device utilization
118    pub fn update_utilization(&self, utilization: f64) {
119        if !self.enabled {
120            return;
121        }
122
123        if let Ok(ref mut metrics) = self.metrics.lock() {
124            metrics.device_utilization = utilization;
125        }
126    }
127
128    /// Calculate and update throughput metrics
129    pub fn update_throughput(&self, operations: usize, duration: Duration) {
130        if !self.enabled {
131            return;
132        }
133
134        if let Ok(ref mut metrics) = self.metrics.lock() {
135            let seconds = duration.as_secs_f64();
136            metrics.compute_throughput = (operations as f64) / seconds / 1e9; // GFLOPS
137        }
138    }
139
140    /// Get performance report
141    pub fn get_report(&self) -> PerformanceReport {
142        let metrics = self
143            .metrics
144            .lock()
145            .expect("metrics mutex should not be poisoned");
146
147        // Calculate kernel statistics
148        let mut kernel_stats = HashMap::new();
149        for (name, times) in &metrics.kernel_times {
150            let stats = calculate_stats(times);
151            kernel_stats.insert(name.clone(), stats);
152        }
153
154        // Calculate transfer statistics
155        let mut transfer_stats = HashMap::new();
156        for (name, times) in &metrics.transfer_times {
157            let stats = calculate_stats(times);
158            transfer_stats.insert(name.clone(), stats);
159        }
160
161        PerformanceReport {
162            kernel_stats,
163            transfer_stats,
164            device_utilization: metrics.device_utilization,
165            memory_bandwidth_util: metrics.memory_bandwidth_util,
166            compute_throughput: metrics.compute_throughput,
167            energy_efficiency: metrics.energy_efficiency,
168            recommendations: self.generate_recommendations(&metrics),
169        }
170    }
171
172    /// Generate optimization recommendations
173    fn generate_recommendations(&self, metrics: &GpuPerformanceMetrics) -> Vec<String> {
174        let mut recommendations = Vec::new();
175
176        // Check device utilization
177        if metrics.device_utilization < 0.7 {
178            recommendations.push(
179                "Low GPU utilization detected. Consider increasing batch size or workload."
180                    .to_string(),
181            );
182        }
183
184        // Check memory bandwidth
185        if metrics.memory_bandwidth_util > 0.9 {
186            recommendations.push(
187                "High memory bandwidth usage. Consider memory access optimization or compression."
188                    .to_string(),
189            );
190        }
191
192        // Check kernel performance
193        for (kernel, times) in &metrics.kernel_times {
194            if !times.is_empty() {
195                let avg_time = times.iter().sum::<Duration>() / times.len() as u32;
196                if avg_time > Duration::from_millis(100) {
197                    recommendations.push(format!(
198                        "Kernel '{kernel}' has high execution time. Consider optimization or splitting."
199                    ));
200                }
201            }
202        }
203
204        // Cache efficiency
205        if metrics.cache_hit_rate < 0.8 {
206            recommendations
207                .push("Low cache hit rate. Consider data locality optimizations.".to_string());
208        }
209
210        recommendations
211    }
212}
213
214/// Performance statistics
215#[derive(Clone, Debug)]
216pub struct PerformanceStats {
217    pub mean: Duration,
218    pub min: Duration,
219    pub max: Duration,
220    pub std_dev: Duration,
221    pub percentile_95: Duration,
222}
223
224/// Performance report
225#[derive(Debug)]
226pub struct PerformanceReport {
227    pub kernel_stats: HashMap<String, PerformanceStats>,
228    pub transfer_stats: HashMap<String, PerformanceStats>,
229    pub device_utilization: f64,
230    pub memory_bandwidth_util: f64,
231    pub compute_throughput: f64,
232    pub energy_efficiency: f64,
233    pub recommendations: Vec<String>,
234}
235
236/// Memory access pattern analyzer
237pub struct MemoryAccessAnalyzer {
238    /// Access patterns
239    patterns: Vec<AccessPattern>,
240    /// Coalescing efficiency
241    coalescing_efficiency: f64,
242    /// Bank conflicts
243    bank_conflicts: usize,
244}
245
246#[derive(Clone)]
247struct AccessPattern {
248    /// Access type (read/write)
249    access_type: AccessType,
250    /// Stride between accesses
251    stride: usize,
252    /// Access size
253    size: usize,
254    /// Frequency
255    frequency: usize,
256}
257
258#[derive(Clone, Copy)]
259pub enum AccessType {
260    Read,
261    Write,
262    ReadWrite,
263}
264
265impl Default for MemoryAccessAnalyzer {
266    fn default() -> Self {
267        Self::new()
268    }
269}
270
271impl MemoryAccessAnalyzer {
272    /// Create new analyzer
273    pub const fn new() -> Self {
274        Self {
275            patterns: Vec::new(),
276            coalescing_efficiency: 1.0,
277            bank_conflicts: 0,
278        }
279    }
280
281    /// Analyze memory access pattern
282    pub fn analyze_pattern(&mut self, addresses: &[usize], access_type: AccessType) {
283        if addresses.len() < 2 {
284            return;
285        }
286
287        // Calculate stride pattern
288        let mut strides = Vec::new();
289        for i in 1..addresses.len() {
290            strides.push(addresses[i].saturating_sub(addresses[i - 1]));
291        }
292
293        // Find most common stride
294        let mut stride_counts = HashMap::new();
295        for &stride in &strides {
296            *stride_counts.entry(stride).or_insert(0) += 1;
297        }
298
299        let (common_stride, frequency) = stride_counts
300            .iter()
301            .max_by_key(|(_, &count)| count)
302            .map_or((0, 0), |(&stride, &count)| (stride, count));
303
304        self.patterns.push(AccessPattern {
305            access_type,
306            stride: common_stride,
307            size: addresses.len(),
308            frequency,
309        });
310
311        // Update coalescing efficiency
312        self.update_coalescing_efficiency();
313    }
314
315    /// Update coalescing efficiency based on patterns
316    fn update_coalescing_efficiency(&mut self) {
317        let mut total_accesses = 0;
318        let mut coalesced_accesses = 0;
319
320        for pattern in &self.patterns {
321            total_accesses += pattern.size;
322
323            // Perfect coalescing: stride of 1 (consecutive)
324            // Good coalescing: stride of 4/8 (word-aligned)
325            // Poor coalescing: random or large strides
326            match pattern.stride {
327                1 => coalesced_accesses += pattern.size,
328                4 | 8 => coalesced_accesses += pattern.size * 3 / 4,
329                s if s < 32 => coalesced_accesses += pattern.size / 2,
330                _ => {} // No coalescing
331            }
332        }
333
334        self.coalescing_efficiency = if total_accesses > 0 {
335            coalesced_accesses as f64 / total_accesses as f64
336        } else {
337            1.0
338        };
339    }
340
341    /// Get optimization suggestions
342    pub fn get_suggestions(&self) -> Vec<String> {
343        let mut suggestions = Vec::new();
344
345        if self.coalescing_efficiency < 0.8 {
346            suggestions.push(
347                "Poor memory coalescing detected. Consider restructuring data layout.".to_string(),
348            );
349        }
350
351        // Check for strided patterns
352        for pattern in &self.patterns {
353            if pattern.stride > 32 && pattern.frequency > pattern.size / 2 {
354                suggestions.push(format!(
355                    "Large stride pattern detected ({}). Consider data transposition.",
356                    pattern.stride
357                ));
358            }
359        }
360
361        if self.bank_conflicts > 0 {
362            suggestions.push(format!(
363                "Detected {} bank conflicts. Consider padding shared memory.",
364                self.bank_conflicts
365            ));
366        }
367
368        suggestions
369    }
370}
371
372/// Kernel fusion optimizer
373pub struct KernelFusionOptimizer {
374    /// Kernel dependency graph
375    dependencies: HashMap<String, Vec<String>>,
376    /// Kernel characteristics
377    kernel_info: HashMap<String, KernelInfo>,
378}
379
380struct KernelInfo {
381    /// Compute intensity (FLOPS/byte)
382    compute_intensity: f64,
383    /// Memory requirements
384    memory_required: usize,
385    /// Can be fused
386    fusable: bool,
387}
388
389impl Default for KernelFusionOptimizer {
390    fn default() -> Self {
391        Self::new()
392    }
393}
394
395impl KernelFusionOptimizer {
396    /// Create new optimizer
397    pub fn new() -> Self {
398        Self {
399            dependencies: HashMap::new(),
400            kernel_info: HashMap::new(),
401        }
402    }
403
404    /// Add kernel information
405    pub fn add_kernel(
406        &mut self,
407        name: &str,
408        compute_intensity: f64,
409        memory_required: usize,
410        dependencies: Vec<String>,
411    ) {
412        self.dependencies.insert(name.to_string(), dependencies);
413        self.kernel_info.insert(
414            name.to_string(),
415            KernelInfo {
416                compute_intensity,
417                memory_required,
418                fusable: true,
419            },
420        );
421    }
422
423    /// Find fusion opportunities
424    pub fn find_fusion_opportunities(&self) -> Vec<FusionOpportunity> {
425        let mut opportunities = Vec::new();
426
427        // Check pairs of kernels
428        for (kernel1, deps1) in &self.dependencies {
429            for (kernel2, deps2) in &self.dependencies {
430                if kernel1 >= kernel2 {
431                    continue;
432                }
433
434                // Check if kernels can be fused
435                if self.can_fuse(kernel1, kernel2, deps1, deps2) {
436                    let benefit = self.calculate_fusion_benefit(kernel1, kernel2);
437
438                    opportunities.push(FusionOpportunity {
439                        kernels: vec![kernel1.clone(), kernel2.clone()],
440                        benefit_score: benefit,
441                        memory_saved: self.estimate_memory_saved(kernel1, kernel2),
442                    });
443                }
444            }
445        }
446
447        // Sort by benefit (use Equal ordering for NaN values)
448        opportunities.sort_by(|a, b| {
449            b.benefit_score
450                .partial_cmp(&a.benefit_score)
451                .unwrap_or(std::cmp::Ordering::Equal)
452        });
453
454        opportunities
455    }
456
457    /// Check if two kernels can be fused
458    fn can_fuse(&self, kernel1: &str, kernel2: &str, deps1: &[String], deps2: &[String]) -> bool {
459        // Check if kernel2 depends on kernel1 or vice versa
460        let direct_dep =
461            deps2.contains(&kernel1.to_string()) || deps1.contains(&kernel2.to_string());
462
463        // Check if both kernels are fusable
464        let both_fusable = self.kernel_info.get(kernel1).is_some_and(|k| k.fusable)
465            && self.kernel_info.get(kernel2).is_some_and(|k| k.fusable);
466
467        direct_dep && both_fusable
468    }
469
470    /// Calculate benefit of fusing two kernels
471    fn calculate_fusion_benefit(&self, kernel1: &str, kernel2: &str) -> f64 {
472        let info1 = &self.kernel_info[kernel1];
473        let info2 = &self.kernel_info[kernel2];
474
475        // Benefit based on reduced memory transfers and kernel launch overhead
476        let memory_benefit = (info1.memory_required + info2.memory_required) as f64 * 0.001;
477        let launch_benefit = 1.0; // Fixed benefit for reducing kernel launches
478        let intensity_benefit = (info1.compute_intensity + info2.compute_intensity) * 0.1;
479
480        memory_benefit + launch_benefit + intensity_benefit
481    }
482
483    /// Estimate memory saved by fusion
484    fn estimate_memory_saved(&self, kernel1: &str, kernel2: &str) -> usize {
485        let info1 = &self.kernel_info[kernel1];
486        let info2 = &self.kernel_info[kernel2];
487
488        // Assume some intermediate results don't need to be stored
489        (info1.memory_required + info2.memory_required) / 4
490    }
491}
492
493/// Fusion opportunity
494#[derive(Debug)]
495pub struct FusionOpportunity {
496    pub kernels: Vec<String>,
497    pub benefit_score: f64,
498    pub memory_saved: usize,
499}
500
501/// Calculate statistics from duration samples
502fn calculate_stats(times: &[Duration]) -> PerformanceStats {
503    if times.is_empty() {
504        return PerformanceStats {
505            mean: Duration::ZERO,
506            min: Duration::ZERO,
507            max: Duration::ZERO,
508            std_dev: Duration::ZERO,
509            percentile_95: Duration::ZERO,
510        };
511    }
512
513    let mut sorted_times = times.to_vec();
514    sorted_times.sort();
515
516    let sum: Duration = times.iter().sum();
517    let mean = sum / times.len() as u32;
518
519    let variance = times
520        .iter()
521        .map(|&t| {
522            let diff = if t > mean {
523                t.checked_sub(mean).unwrap_or(Duration::ZERO).as_secs_f64()
524            } else {
525                mean.checked_sub(t).unwrap_or(Duration::ZERO).as_secs_f64()
526            };
527            diff * diff
528        })
529        .sum::<f64>()
530        / times.len() as f64;
531
532    let std_dev = Duration::from_secs_f64(variance.sqrt());
533
534    let percentile_95_idx = (times.len() as f64 * 0.95) as usize;
535    let percentile_95 = sorted_times[percentile_95_idx.min(sorted_times.len() - 1)];
536
537    PerformanceStats {
538        mean,
539        min: sorted_times[0],
540        max: sorted_times[sorted_times.len() - 1],
541        std_dev,
542        percentile_95,
543    }
544}
545
546#[cfg(test)]
547mod tests {
548    use super::*;
549
550    #[test]
551    fn test_memory_access_analyzer() {
552        let mut analyzer = MemoryAccessAnalyzer::new();
553
554        // Test coalesced access pattern
555        let addresses: Vec<usize> = (0..32).map(|i| i * 4).collect();
556        analyzer.analyze_pattern(&addresses, AccessType::Read);
557
558        // Should have good coalescing
559        assert!(analyzer.coalescing_efficiency > 0.7);
560
561        // Test strided access pattern
562        let strided: Vec<usize> = (0..32).map(|i| i * 128).collect();
563        analyzer.analyze_pattern(&strided, AccessType::Read);
564
565        let suggestions = analyzer.get_suggestions();
566        assert!(!suggestions.is_empty());
567    }
568
569    #[test]
570    fn test_kernel_fusion_optimizer() {
571        let mut optimizer = KernelFusionOptimizer::new();
572
573        // Add kernels with dependencies
574        optimizer.add_kernel("kernel_a", 10.0, 1024, vec![]);
575        optimizer.add_kernel("kernel_b", 5.0, 2048, vec!["kernel_a".to_string()]);
576        optimizer.add_kernel("kernel_c", 8.0, 512, vec!["kernel_b".to_string()]);
577
578        let opportunities = optimizer.find_fusion_opportunities();
579        assert!(!opportunities.is_empty());
580
581        // Should find fusion opportunity between dependent kernels
582        let first = &opportunities[0];
583        assert!(first.benefit_score > 0.0);
584        assert!(first.memory_saved > 0);
585    }
586}