quantrs2_sim/
quantum_machine_learning_layers.rs

1//! Quantum Machine Learning Layers Framework
2//!
3//! This module provides a comprehensive implementation of quantum machine learning layers,
4//! including parameterized quantum circuits, quantum convolutional layers, quantum recurrent
5//! networks, and hybrid classical-quantum training algorithms. This framework enables
6//! quantum advantage in machine learning applications with hardware-aware optimization.
7
8use scirs2_core::ndarray::Array1;
9use scirs2_core::Complex64;
10use scirs2_core::random::{thread_rng, Rng};
11use scirs2_core::parallel_ops::*;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use crate::statevector::StateVectorSimulator;
19use scirs2_core::random::prelude::*;
20
21/// Quantum machine learning configuration
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct QMLConfig {
24    /// Number of qubits in the quantum layer
25    pub num_qubits: usize,
26    /// QML architecture type
27    pub architecture_type: QMLArchitectureType,
28    /// Layer configuration for each QML layer
29    pub layer_configs: Vec<QMLLayerConfig>,
30    /// Training algorithm configuration
31    pub training_config: QMLTrainingConfig,
32    /// Hardware-aware optimization settings
33    pub hardware_optimization: HardwareOptimizationConfig,
34    /// Classical preprocessing configuration
35    pub classical_preprocessing: ClassicalPreprocessingConfig,
36    /// Hybrid training configuration
37    pub hybrid_training: HybridTrainingConfig,
38    /// Enable quantum advantage analysis
39    pub quantum_advantage_analysis: bool,
40    /// Noise-aware training settings
41    pub noise_aware_training: NoiseAwareTrainingConfig,
42    /// Performance optimization settings
43    pub performance_optimization: PerformanceOptimizationConfig,
44}
45
46impl Default for QMLConfig {
47    fn default() -> Self {
48        Self {
49            num_qubits: 8,
50            architecture_type: QMLArchitectureType::VariationalQuantumCircuit,
51            layer_configs: vec![QMLLayerConfig {
52                layer_type: QMLLayerType::ParameterizedQuantumCircuit,
53                num_parameters: 16,
54                ansatz_type: AnsatzType::Hardware,
55                entanglement_pattern: EntanglementPattern::Linear,
56                rotation_gates: vec![RotationGate::RY, RotationGate::RZ],
57                depth: 4,
58                enable_gradient_computation: true,
59            }],
60            training_config: QMLTrainingConfig::default(),
61            hardware_optimization: HardwareOptimizationConfig::default(),
62            classical_preprocessing: ClassicalPreprocessingConfig::default(),
63            hybrid_training: HybridTrainingConfig::default(),
64            quantum_advantage_analysis: true,
65            noise_aware_training: NoiseAwareTrainingConfig::default(),
66            performance_optimization: PerformanceOptimizationConfig::default(),
67        }
68    }
69}
70
71/// QML architecture types
72#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
73pub enum QMLArchitectureType {
74    /// Variational Quantum Circuit (VQC)
75    VariationalQuantumCircuit,
76    /// Quantum Convolutional Neural Network
77    QuantumConvolutionalNN,
78    /// Quantum Recurrent Neural Network
79    QuantumRecurrentNN,
80    /// Quantum Graph Neural Network
81    QuantumGraphNN,
82    /// Quantum Attention Network
83    QuantumAttentionNetwork,
84    /// Quantum Transformer
85    QuantumTransformer,
86    /// Hybrid Classical-Quantum Network
87    HybridClassicalQuantum,
88    /// Quantum Boltzmann Machine
89    QuantumBoltzmannMachine,
90    /// Quantum Generative Adversarial Network
91    QuantumGAN,
92    /// Quantum Autoencoder
93    QuantumAutoencoder,
94}
95
96/// QML layer configuration
97#[derive(Debug, Clone, Serialize, Deserialize)]
98pub struct QMLLayerConfig {
99    /// Type of QML layer
100    pub layer_type: QMLLayerType,
101    /// Number of trainable parameters
102    pub num_parameters: usize,
103    /// Ansatz type for parameterized circuits
104    pub ansatz_type: AnsatzType,
105    /// Entanglement pattern
106    pub entanglement_pattern: EntanglementPattern,
107    /// Rotation gates to use
108    pub rotation_gates: Vec<RotationGate>,
109    /// Circuit depth
110    pub depth: usize,
111    /// Enable gradient computation
112    pub enable_gradient_computation: bool,
113}
114
115/// Types of QML layers
116#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
117pub enum QMLLayerType {
118    /// Parameterized Quantum Circuit layer
119    ParameterizedQuantumCircuit,
120    /// Quantum Convolutional layer
121    QuantumConvolutional,
122    /// Quantum Pooling layer
123    QuantumPooling,
124    /// Quantum Dense layer (fully connected)
125    QuantumDense,
126    /// Quantum LSTM layer
127    QuantumLSTM,
128    /// Quantum GRU layer
129    QuantumGRU,
130    /// Quantum Attention layer
131    QuantumAttention,
132    /// Quantum Dropout layer
133    QuantumDropout,
134    /// Quantum Batch Normalization layer
135    QuantumBatchNorm,
136    /// Data Re-uploading layer
137    DataReUpload,
138}
139
140/// Ansatz types for parameterized quantum circuits
141#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
142pub enum AnsatzType {
143    /// Hardware-efficient ansatz
144    Hardware,
145    /// Problem-specific ansatz
146    ProblemSpecific,
147    /// All-to-all connectivity ansatz
148    AllToAll,
149    /// Layered ansatz
150    Layered,
151    /// Alternating ansatz
152    Alternating,
153    /// Brick-wall ansatz
154    BrickWall,
155    /// Tree ansatz
156    Tree,
157    /// Custom ansatz
158    Custom,
159}
160
161/// Entanglement patterns
162#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
163pub enum EntanglementPattern {
164    /// Linear entanglement chain
165    Linear,
166    /// Circular entanglement
167    Circular,
168    /// All-to-all entanglement
169    AllToAll,
170    /// Star topology entanglement
171    Star,
172    /// Grid topology entanglement
173    Grid,
174    /// Random entanglement
175    Random,
176    /// Block entanglement
177    Block,
178    /// Custom pattern
179    Custom,
180}
181
182/// Rotation gates for parameterized circuits
183#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
184pub enum RotationGate {
185    /// Rotation around X-axis
186    RX,
187    /// Rotation around Y-axis
188    RY,
189    /// Rotation around Z-axis
190    RZ,
191    /// Arbitrary single-qubit rotation
192    U3,
193    /// Phase gate
194    Phase,
195}
196
197/// QML training configuration
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct QMLTrainingConfig {
200    /// Training algorithm type
201    pub algorithm: QMLTrainingAlgorithm,
202    /// Learning rate
203    pub learning_rate: f64,
204    /// Number of training epochs
205    pub epochs: usize,
206    /// Batch size
207    pub batch_size: usize,
208    /// Gradient computation method
209    pub gradient_method: GradientMethod,
210    /// Optimizer type
211    pub optimizer: OptimizerType,
212    /// Regularization parameters
213    pub regularization: RegularizationConfig,
214    /// Early stopping configuration
215    pub early_stopping: EarlyStoppingConfig,
216    /// Learning rate scheduling
217    pub lr_schedule: LearningRateSchedule,
218}
219
220impl Default for QMLTrainingConfig {
221    fn default() -> Self {
222        Self {
223            algorithm: QMLTrainingAlgorithm::ParameterShift,
224            learning_rate: 0.01,
225            epochs: 100,
226            batch_size: 32,
227            gradient_method: GradientMethod::ParameterShift,
228            optimizer: OptimizerType::Adam,
229            regularization: RegularizationConfig::default(),
230            early_stopping: EarlyStoppingConfig::default(),
231            lr_schedule: LearningRateSchedule::Constant,
232        }
233    }
234}
235
236/// QML training algorithms
237#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
238pub enum QMLTrainingAlgorithm {
239    /// Parameter-shift rule gradient descent
240    ParameterShift,
241    /// Finite difference gradient descent
242    FiniteDifference,
243    /// Quantum Natural Gradient
244    QuantumNaturalGradient,
245    /// SPSA (Simultaneous Perturbation Stochastic Approximation)
246    SPSA,
247    /// Quantum Approximate Optimization Algorithm
248    QAOA,
249    /// Variational Quantum Eigensolver
250    VQE,
251    /// Quantum Machine Learning with Rotosolve
252    Rotosolve,
253    /// Hybrid Classical-Quantum training
254    HybridTraining,
255}
256
257/// Gradient computation methods
258#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
259pub enum GradientMethod {
260    /// Parameter-shift rule
261    ParameterShift,
262    /// Finite difference
263    FiniteDifference,
264    /// Adjoint differentiation
265    Adjoint,
266    /// Backpropagation through quantum circuit
267    Backpropagation,
268    /// Quantum Fisher Information
269    QuantumFisherInformation,
270}
271
272/// Optimizer types
273#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
274pub enum OptimizerType {
275    /// Stochastic Gradient Descent
276    SGD,
277    /// Adam optimizer
278    Adam,
279    /// AdaGrad optimizer
280    AdaGrad,
281    /// RMSprop optimizer
282    RMSprop,
283    /// Momentum optimizer
284    Momentum,
285    /// L-BFGS optimizer
286    LBFGS,
287    /// Quantum Natural Gradient
288    QuantumNaturalGradient,
289    /// SPSA optimizer
290    SPSA,
291}
292
293/// Regularization configuration
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct RegularizationConfig {
296    /// L1 regularization strength
297    pub l1_strength: f64,
298    /// L2 regularization strength
299    pub l2_strength: f64,
300    /// Dropout probability
301    pub dropout_prob: f64,
302    /// Parameter constraint bounds
303    pub parameter_bounds: Option<(f64, f64)>,
304    /// Enable parameter clipping
305    pub enable_clipping: bool,
306    /// Gradient clipping threshold
307    pub gradient_clip_threshold: f64,
308}
309
310impl Default for RegularizationConfig {
311    fn default() -> Self {
312        Self {
313            l1_strength: 0.0,
314            l2_strength: 0.001,
315            dropout_prob: 0.1,
316            parameter_bounds: Some((-PI, PI)),
317            enable_clipping: true,
318            gradient_clip_threshold: 1.0,
319        }
320    }
321}
322
323/// Early stopping configuration
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct EarlyStoppingConfig {
326    /// Enable early stopping
327    pub enabled: bool,
328    /// Patience (number of epochs without improvement)
329    pub patience: usize,
330    /// Minimum improvement threshold
331    pub min_delta: f64,
332    /// Metric to monitor
333    pub monitor_metric: String,
334    /// Whether higher values are better
335    pub mode_max: bool,
336}
337
338impl Default for EarlyStoppingConfig {
339    fn default() -> Self {
340        Self {
341            enabled: true,
342            patience: 10,
343            min_delta: 1e-6,
344            monitor_metric: "val_loss".to_string(),
345            mode_max: false,
346        }
347    }
348}
349
350/// Learning rate schedules
351#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
352pub enum LearningRateSchedule {
353    /// Constant learning rate
354    Constant,
355    /// Exponential decay
356    ExponentialDecay,
357    /// Step decay
358    StepDecay,
359    /// Cosine annealing
360    CosineAnnealing,
361    /// Warm restart
362    WarmRestart,
363    /// Reduce on plateau
364    ReduceOnPlateau,
365}
366
367/// Hardware optimization configuration
368#[derive(Debug, Clone, Serialize, Deserialize)]
369pub struct HardwareOptimizationConfig {
370    /// Target quantum hardware
371    pub target_hardware: QuantumHardwareTarget,
372    /// Enable gate count minimization
373    pub minimize_gate_count: bool,
374    /// Enable circuit depth minimization
375    pub minimize_depth: bool,
376    /// Enable noise-aware optimization
377    pub noise_aware: bool,
378    /// Connectivity constraints
379    pub connectivity_constraints: ConnectivityConstraints,
380    /// Gate fidelity constraints
381    pub gate_fidelities: HashMap<String, f64>,
382    /// Enable parallelization
383    pub enable_parallelization: bool,
384    /// Compilation optimization level
385    pub optimization_level: HardwareOptimizationLevel,
386}
387
388impl Default for HardwareOptimizationConfig {
389    fn default() -> Self {
390        let mut gate_fidelities = HashMap::new();
391        gate_fidelities.insert("single_qubit".to_string(), 0.999);
392        gate_fidelities.insert("two_qubit".to_string(), 0.99);
393
394        Self {
395            target_hardware: QuantumHardwareTarget::Simulator,
396            minimize_gate_count: true,
397            minimize_depth: true,
398            noise_aware: false,
399            connectivity_constraints: ConnectivityConstraints::AllToAll,
400            gate_fidelities,
401            enable_parallelization: true,
402            optimization_level: HardwareOptimizationLevel::Medium,
403        }
404    }
405}
406
407/// Quantum hardware targets
408#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
409pub enum QuantumHardwareTarget {
410    /// Generic simulator
411    Simulator,
412    /// IBM Quantum devices
413    IBM,
414    /// Google Quantum AI devices
415    Google,
416    /// IonQ devices
417    IonQ,
418    /// Rigetti devices
419    Rigetti,
420    /// Honeywell/Quantinuum devices
421    Quantinuum,
422    /// Xanadu devices
423    Xanadu,
424    /// Custom hardware specification
425    Custom,
426}
427
428/// Connectivity constraints
429#[derive(Debug, Clone, Serialize, Deserialize)]
430pub enum ConnectivityConstraints {
431    /// All-to-all connectivity
432    AllToAll,
433    /// Linear chain connectivity
434    Linear,
435    /// Grid connectivity
436    Grid(usize, usize), // rows, cols
437    /// Custom connectivity graph
438    Custom(Vec<(usize, usize)>), // edge list
439    /// Heavy-hex connectivity (IBM)
440    HeavyHex,
441    /// Square lattice connectivity
442    Square,
443}
444
445/// Hardware optimization levels
446#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
447pub enum HardwareOptimizationLevel {
448    /// Basic optimization
449    Basic,
450    /// Medium optimization
451    Medium,
452    /// Aggressive optimization
453    Aggressive,
454    /// Maximum optimization
455    Maximum,
456}
457
458/// Classical preprocessing configuration
459#[derive(Debug, Clone, Serialize, Deserialize)]
460pub struct ClassicalPreprocessingConfig {
461    /// Enable feature scaling
462    pub feature_scaling: bool,
463    /// Scaling method
464    pub scaling_method: ScalingMethod,
465    /// Principal Component Analysis
466    pub enable_pca: bool,
467    /// Number of PCA components
468    pub pca_components: Option<usize>,
469    /// Data encoding method
470    pub encoding_method: DataEncodingMethod,
471    /// Feature selection
472    pub feature_selection: FeatureSelectionConfig,
473}
474
475impl Default for ClassicalPreprocessingConfig {
476    fn default() -> Self {
477        Self {
478            feature_scaling: true,
479            scaling_method: ScalingMethod::StandardScaler,
480            enable_pca: false,
481            pca_components: None,
482            encoding_method: DataEncodingMethod::Amplitude,
483            feature_selection: FeatureSelectionConfig::default(),
484        }
485    }
486}
487
488/// Scaling methods for classical preprocessing
489#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
490pub enum ScalingMethod {
491    /// Standard scaling (z-score normalization)
492    StandardScaler,
493    /// Min-max scaling
494    MinMaxScaler,
495    /// Robust scaling
496    RobustScaler,
497    /// Quantile uniform scaling
498    QuantileUniform,
499    /// Power transformation
500    PowerTransformer,
501}
502
503/// Data encoding methods for quantum circuits
504#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
505pub enum DataEncodingMethod {
506    /// Amplitude encoding
507    Amplitude,
508    /// Angle encoding
509    Angle,
510    /// Basis encoding
511    Basis,
512    /// Quantum feature maps
513    QuantumFeatureMap,
514    /// IQP encoding
515    IQP,
516    /// Pauli feature maps
517    PauliFeatureMap,
518    /// Data re-uploading
519    DataReUpload,
520}
521
522/// Feature selection configuration
523#[derive(Debug, Clone, Serialize, Deserialize)]
524pub struct FeatureSelectionConfig {
525    /// Enable feature selection
526    pub enabled: bool,
527    /// Feature selection method
528    pub method: FeatureSelectionMethod,
529    /// Number of features to select
530    pub num_features: Option<usize>,
531    /// Selection threshold
532    pub threshold: f64,
533}
534
535impl Default for FeatureSelectionConfig {
536    fn default() -> Self {
537        Self {
538            enabled: false,
539            method: FeatureSelectionMethod::VarianceThreshold,
540            num_features: None,
541            threshold: 0.0,
542        }
543    }
544}
545
546/// Feature selection methods
547#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
548pub enum FeatureSelectionMethod {
549    /// Variance threshold
550    VarianceThreshold,
551    /// Univariate statistical tests
552    UnivariateSelection,
553    /// Recursive feature elimination
554    RecursiveFeatureElimination,
555    /// L1-based feature selection
556    L1Based,
557    /// Tree-based feature selection
558    TreeBased,
559    /// Quantum feature importance
560    QuantumFeatureImportance,
561}
562
563/// Hybrid training configuration
564#[derive(Debug, Clone, Serialize, Deserialize)]
565pub struct HybridTrainingConfig {
566    /// Enable hybrid classical-quantum training
567    pub enabled: bool,
568    /// Classical neural network architecture
569    pub classical_architecture: ClassicalArchitecture,
570    /// Quantum-classical interface
571    pub interface_config: QuantumClassicalInterface,
572    /// Alternating training schedule
573    pub alternating_schedule: AlternatingSchedule,
574    /// Gradient flow configuration
575    pub gradient_flow: GradientFlowConfig,
576}
577
578impl Default for HybridTrainingConfig {
579    fn default() -> Self {
580        Self {
581            enabled: false,
582            classical_architecture: ClassicalArchitecture::MLP,
583            interface_config: QuantumClassicalInterface::Expectation,
584            alternating_schedule: AlternatingSchedule::Simultaneous,
585            gradient_flow: GradientFlowConfig::default(),
586        }
587    }
588}
589
590/// Classical neural network architectures for hybrid training
591#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
592pub enum ClassicalArchitecture {
593    /// Multi-layer perceptron
594    MLP,
595    /// Convolutional neural network
596    CNN,
597    /// Recurrent neural network
598    RNN,
599    /// Long short-term memory
600    LSTM,
601    /// Transformer
602    Transformer,
603    /// ResNet
604    ResNet,
605    /// Custom architecture
606    Custom,
607}
608
609/// Quantum-classical interfaces
610#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
611pub enum QuantumClassicalInterface {
612    /// Expectation value measurement
613    Expectation,
614    /// Sampling-based measurement
615    Sampling,
616    /// Quantum state tomography
617    StateTomography,
618    /// Process tomography
619    ProcessTomography,
620    /// Shadow tomography
621    ShadowTomography,
622}
623
624/// Alternating training schedules for hybrid systems
625#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
626pub enum AlternatingSchedule {
627    /// Train classical and quantum parts simultaneously
628    Simultaneous,
629    /// Alternate between classical and quantum training
630    Alternating,
631    /// Train classical first, then quantum
632    ClassicalFirst,
633    /// Train quantum first, then classical
634    QuantumFirst,
635    /// Custom schedule
636    Custom,
637}
638
639/// Gradient flow configuration for hybrid training
640#[derive(Debug, Clone, Serialize, Deserialize)]
641pub struct GradientFlowConfig {
642    /// Enable gradient flow from classical to quantum
643    pub classical_to_quantum: bool,
644    /// Enable gradient flow from quantum to classical
645    pub quantum_to_classical: bool,
646    /// Gradient scaling factor
647    pub gradient_scaling: f64,
648    /// Enable gradient clipping
649    pub enable_clipping: bool,
650    /// Gradient accumulation steps
651    pub accumulation_steps: usize,
652}
653
654impl Default for GradientFlowConfig {
655    fn default() -> Self {
656        Self {
657            classical_to_quantum: true,
658            quantum_to_classical: true,
659            gradient_scaling: 1.0,
660            enable_clipping: true,
661            accumulation_steps: 1,
662        }
663    }
664}
665
666/// Noise-aware training configuration
667#[derive(Debug, Clone, Serialize, Deserialize)]
668pub struct NoiseAwareTrainingConfig {
669    /// Enable noise-aware training
670    pub enabled: bool,
671    /// Noise model parameters
672    pub noise_parameters: NoiseParameters,
673    /// Error mitigation techniques
674    pub error_mitigation: ErrorMitigationConfig,
675    /// Noise characterization
676    pub noise_characterization: NoiseCharacterizationConfig,
677    /// Robust training methods
678    pub robust_training: RobustTrainingConfig,
679}
680
681impl Default for NoiseAwareTrainingConfig {
682    fn default() -> Self {
683        Self {
684            enabled: false,
685            noise_parameters: NoiseParameters::default(),
686            error_mitigation: ErrorMitigationConfig::default(),
687            noise_characterization: NoiseCharacterizationConfig::default(),
688            robust_training: RobustTrainingConfig::default(),
689        }
690    }
691}
692
693/// Noise parameters for quantum devices
694#[derive(Debug, Clone, Serialize, Deserialize)]
695pub struct NoiseParameters {
696    /// Single-qubit gate error rates
697    pub single_qubit_error: f64,
698    /// Two-qubit gate error rates
699    pub two_qubit_error: f64,
700    /// Measurement error rates
701    pub measurement_error: f64,
702    /// Coherence times (T1, T2)
703    pub coherence_times: (f64, f64),
704    /// Gate times
705    pub gate_times: HashMap<String, f64>,
706}
707
708impl Default for NoiseParameters {
709    fn default() -> Self {
710        let mut gate_times = HashMap::new();
711        gate_times.insert("single_qubit".to_string(), 50e-9); // 50 ns
712        gate_times.insert("two_qubit".to_string(), 200e-9); // 200 ns
713
714        Self {
715            single_qubit_error: 0.001,
716            two_qubit_error: 0.01,
717            measurement_error: 0.01,
718            coherence_times: (50e-6, 100e-6), // T1 = 50 μs, T2 = 100 μs
719            gate_times,
720        }
721    }
722}
723
724/// Error mitigation configuration
725#[derive(Debug, Clone, Serialize, Deserialize)]
726pub struct ErrorMitigationConfig {
727    /// Enable zero-noise extrapolation
728    pub zero_noise_extrapolation: bool,
729    /// Enable readout error mitigation
730    pub readout_error_mitigation: bool,
731    /// Enable symmetry verification
732    pub symmetry_verification: bool,
733    /// Virtual distillation parameters
734    pub virtual_distillation: VirtualDistillationConfig,
735    /// Quantum error correction
736    pub quantum_error_correction: bool,
737}
738
739impl Default for ErrorMitigationConfig {
740    fn default() -> Self {
741        Self {
742            zero_noise_extrapolation: false,
743            readout_error_mitigation: false,
744            symmetry_verification: false,
745            virtual_distillation: VirtualDistillationConfig::default(),
746            quantum_error_correction: false,
747        }
748    }
749}
750
751/// Virtual distillation configuration
752#[derive(Debug, Clone, Serialize, Deserialize)]
753pub struct VirtualDistillationConfig {
754    /// Enable virtual distillation
755    pub enabled: bool,
756    /// Number of copies for distillation
757    pub num_copies: usize,
758    /// Distillation protocol
759    pub protocol: DistillationProtocol,
760}
761
762impl Default for VirtualDistillationConfig {
763    fn default() -> Self {
764        Self {
765            enabled: false,
766            num_copies: 2,
767            protocol: DistillationProtocol::Standard,
768        }
769    }
770}
771
772/// Distillation protocols
773#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
774pub enum DistillationProtocol {
775    /// Standard distillation
776    Standard,
777    /// Improved distillation
778    Improved,
779    /// Quantum advantage distillation
780    QuantumAdvantage,
781}
782
783/// Noise characterization configuration
784#[derive(Debug, Clone, Serialize, Deserialize)]
785pub struct NoiseCharacterizationConfig {
786    /// Enable noise characterization
787    pub enabled: bool,
788    /// Characterization method
789    pub method: NoiseCharacterizationMethod,
790    /// Benchmarking protocols
791    pub benchmarking: BenchmarkingProtocols,
792    /// Calibration frequency
793    pub calibration_frequency: CalibrationFrequency,
794}
795
796impl Default for NoiseCharacterizationConfig {
797    fn default() -> Self {
798        Self {
799            enabled: false,
800            method: NoiseCharacterizationMethod::ProcessTomography,
801            benchmarking: BenchmarkingProtocols::default(),
802            calibration_frequency: CalibrationFrequency::Daily,
803        }
804    }
805}
806
807/// Noise characterization methods
808#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
809pub enum NoiseCharacterizationMethod {
810    /// Quantum process tomography
811    ProcessTomography,
812    /// Randomized benchmarking
813    RandomizedBenchmarking,
814    /// Gate set tomography
815    GateSetTomography,
816    /// Quantum detector tomography
817    QuantumDetectorTomography,
818    /// Cross-entropy benchmarking
819    CrossEntropyBenchmarking,
820}
821
822/// Benchmarking protocols
823#[derive(Debug, Clone, Serialize, Deserialize)]
824pub struct BenchmarkingProtocols {
825    /// Enable randomized benchmarking
826    pub randomized_benchmarking: bool,
827    /// Enable quantum volume
828    pub quantum_volume: bool,
829    /// Enable cross-entropy benchmarking
830    pub cross_entropy_benchmarking: bool,
831    /// Enable mirror benchmarking
832    pub mirror_benchmarking: bool,
833}
834
835impl Default for BenchmarkingProtocols {
836    fn default() -> Self {
837        Self {
838            randomized_benchmarking: true,
839            quantum_volume: false,
840            cross_entropy_benchmarking: false,
841            mirror_benchmarking: false,
842        }
843    }
844}
845
846/// Calibration frequency
847#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
848pub enum CalibrationFrequency {
849    /// Real-time calibration
850    RealTime,
851    /// Hourly calibration
852    Hourly,
853    /// Daily calibration
854    Daily,
855    /// Weekly calibration
856    Weekly,
857    /// Manual calibration
858    Manual,
859}
860
861/// Robust training configuration
862#[derive(Debug, Clone, Serialize, Deserialize)]
863pub struct RobustTrainingConfig {
864    /// Enable robust training methods
865    pub enabled: bool,
866    /// Noise injection during training
867    pub noise_injection: NoiseInjectionConfig,
868    /// Adversarial training
869    pub adversarial_training: AdversarialTrainingConfig,
870    /// Ensemble methods
871    pub ensemble_methods: EnsembleMethodsConfig,
872}
873
874impl Default for RobustTrainingConfig {
875    fn default() -> Self {
876        Self {
877            enabled: false,
878            noise_injection: NoiseInjectionConfig::default(),
879            adversarial_training: AdversarialTrainingConfig::default(),
880            ensemble_methods: EnsembleMethodsConfig::default(),
881        }
882    }
883}
884
885/// Noise injection configuration
886#[derive(Debug, Clone, Serialize, Deserialize)]
887pub struct NoiseInjectionConfig {
888    /// Enable noise injection
889    pub enabled: bool,
890    /// Noise injection probability
891    pub injection_probability: f64,
892    /// Noise strength
893    pub noise_strength: f64,
894    /// Noise type
895    pub noise_type: NoiseType,
896}
897
898impl Default for NoiseInjectionConfig {
899    fn default() -> Self {
900        Self {
901            enabled: false,
902            injection_probability: 0.1,
903            noise_strength: 0.01,
904            noise_type: NoiseType::Depolarizing,
905        }
906    }
907}
908
909/// Noise types for training
910#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
911pub enum NoiseType {
912    /// Depolarizing noise
913    Depolarizing,
914    /// Amplitude damping
915    AmplitudeDamping,
916    /// Phase damping
917    PhaseDamping,
918    /// Bit flip
919    BitFlip,
920    /// Phase flip
921    PhaseFlip,
922    /// Pauli noise
923    Pauli,
924}
925
926/// Adversarial training configuration
927#[derive(Debug, Clone, Serialize, Deserialize)]
928pub struct AdversarialTrainingConfig {
929    /// Enable adversarial training
930    pub enabled: bool,
931    /// Adversarial attack strength
932    pub attack_strength: f64,
933    /// Attack method
934    pub attack_method: AdversarialAttackMethod,
935    /// Defense method
936    pub defense_method: AdversarialDefenseMethod,
937}
938
939impl Default for AdversarialTrainingConfig {
940    fn default() -> Self {
941        Self {
942            enabled: false,
943            attack_strength: 0.01,
944            attack_method: AdversarialAttackMethod::FGSM,
945            defense_method: AdversarialDefenseMethod::AdversarialTraining,
946        }
947    }
948}
949
950/// Adversarial attack methods
951#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
952pub enum AdversarialAttackMethod {
953    /// Fast Gradient Sign Method
954    FGSM,
955    /// Projected Gradient Descent
956    PGD,
957    /// C&W attack
958    CarliniWagner,
959    /// Quantum adversarial attacks
960    QuantumAdversarial,
961}
962
963/// Adversarial defense methods
964#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
965pub enum AdversarialDefenseMethod {
966    /// Adversarial training
967    AdversarialTraining,
968    /// Defensive distillation
969    DefensiveDistillation,
970    /// Certified defenses
971    CertifiedDefenses,
972    /// Quantum error correction defenses
973    QuantumErrorCorrection,
974}
975
976/// Ensemble methods configuration
977#[derive(Debug, Clone, Serialize, Deserialize)]
978pub struct EnsembleMethodsConfig {
979    /// Enable ensemble methods
980    pub enabled: bool,
981    /// Number of ensemble members
982    pub num_ensemble: usize,
983    /// Ensemble method
984    pub ensemble_method: EnsembleMethod,
985    /// Voting strategy
986    pub voting_strategy: VotingStrategy,
987}
988
989impl Default for EnsembleMethodsConfig {
990    fn default() -> Self {
991        Self {
992            enabled: false,
993            num_ensemble: 5,
994            ensemble_method: EnsembleMethod::Bagging,
995            voting_strategy: VotingStrategy::MajorityVoting,
996        }
997    }
998}
999
1000/// Ensemble methods
1001#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1002pub enum EnsembleMethod {
1003    /// Bootstrap aggregating (bagging)
1004    Bagging,
1005    /// Boosting
1006    Boosting,
1007    /// Random forests
1008    RandomForest,
1009    /// Quantum ensemble methods
1010    QuantumEnsemble,
1011}
1012
1013/// Voting strategies for ensembles
1014#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1015pub enum VotingStrategy {
1016    /// Majority voting
1017    MajorityVoting,
1018    /// Weighted voting
1019    WeightedVoting,
1020    /// Soft voting (probability averaging)
1021    SoftVoting,
1022    /// Quantum voting
1023    QuantumVoting,
1024}
1025
1026/// Performance optimization configuration
1027#[derive(Debug, Clone, Serialize, Deserialize)]
1028pub struct PerformanceOptimizationConfig {
1029    /// Enable performance optimization
1030    pub enabled: bool,
1031    /// Memory optimization
1032    pub memory_optimization: MemoryOptimizationConfig,
1033    /// Computation optimization
1034    pub computation_optimization: ComputationOptimizationConfig,
1035    /// Parallelization configuration
1036    pub parallelization: ParallelizationConfig,
1037    /// Caching configuration
1038    pub caching: CachingConfig,
1039}
1040
1041impl Default for PerformanceOptimizationConfig {
1042    fn default() -> Self {
1043        Self {
1044            enabled: true,
1045            memory_optimization: MemoryOptimizationConfig::default(),
1046            computation_optimization: ComputationOptimizationConfig::default(),
1047            parallelization: ParallelizationConfig::default(),
1048            caching: CachingConfig::default(),
1049        }
1050    }
1051}
1052
1053/// Memory optimization configuration
1054#[derive(Debug, Clone, Serialize, Deserialize)]
1055pub struct MemoryOptimizationConfig {
1056    /// Enable memory optimization
1057    pub enabled: bool,
1058    /// Use memory mapping
1059    pub memory_mapping: bool,
1060    /// Gradient checkpointing
1061    pub gradient_checkpointing: bool,
1062    /// Memory pool size
1063    pub memory_pool_size: Option<usize>,
1064}
1065
1066impl Default for MemoryOptimizationConfig {
1067    fn default() -> Self {
1068        Self {
1069            enabled: true,
1070            memory_mapping: false,
1071            gradient_checkpointing: false,
1072            memory_pool_size: None,
1073        }
1074    }
1075}
1076
1077/// Computation optimization configuration
1078#[derive(Debug, Clone, Serialize, Deserialize)]
1079pub struct ComputationOptimizationConfig {
1080    /// Enable computation optimization
1081    pub enabled: bool,
1082    /// Use mixed precision
1083    pub mixed_precision: bool,
1084    /// SIMD optimization
1085    pub simd_optimization: bool,
1086    /// Just-in-time compilation
1087    pub jit_compilation: bool,
1088}
1089
1090impl Default for ComputationOptimizationConfig {
1091    fn default() -> Self {
1092        Self {
1093            enabled: true,
1094            mixed_precision: false,
1095            simd_optimization: true,
1096            jit_compilation: false,
1097        }
1098    }
1099}
1100
1101/// Parallelization configuration
1102#[derive(Debug, Clone, Serialize, Deserialize)]
1103pub struct ParallelizationConfig {
1104    /// Enable parallelization
1105    pub enabled: bool,
1106    /// Number of threads
1107    pub num_threads: Option<usize>,
1108    /// Data parallelism
1109    pub data_parallelism: bool,
1110    /// Model parallelism
1111    pub model_parallelism: bool,
1112    /// Pipeline parallelism
1113    pub pipeline_parallelism: bool,
1114}
1115
1116impl Default for ParallelizationConfig {
1117    fn default() -> Self {
1118        Self {
1119            enabled: true,
1120            num_threads: None,
1121            data_parallelism: true,
1122            model_parallelism: false,
1123            pipeline_parallelism: false,
1124        }
1125    }
1126}
1127
1128/// Caching configuration
1129#[derive(Debug, Clone, Serialize, Deserialize)]
1130pub struct CachingConfig {
1131    /// Enable caching
1132    pub enabled: bool,
1133    /// Cache size
1134    pub cache_size: usize,
1135    /// Cache gradients
1136    pub cache_gradients: bool,
1137    /// Cache intermediate results
1138    pub cache_intermediate: bool,
1139}
1140
1141impl Default for CachingConfig {
1142    fn default() -> Self {
1143        Self {
1144            enabled: true,
1145            cache_size: 1000,
1146            cache_gradients: true,
1147            cache_intermediate: false,
1148        }
1149    }
1150}
1151
1152/// Main quantum machine learning layers framework
1153#[derive(Debug)]
1154pub struct QuantumMLFramework {
1155    /// Configuration
1156    config: QMLConfig,
1157    /// QML layers
1158    layers: Vec<Box<dyn QMLLayer>>,
1159    /// Current training state
1160    training_state: QMLTrainingState,
1161    /// SciRS2 backend for numerical operations
1162    backend: Option<SciRS2Backend>,
1163    /// Performance statistics
1164    stats: QMLStats,
1165    /// Training history
1166    training_history: Vec<QMLTrainingResult>,
1167}
1168
1169impl QuantumMLFramework {
1170    /// Create new quantum ML framework
1171    pub fn new(config: QMLConfig) -> Result<Self> {
1172        let mut framework = Self {
1173            config: config.clone(),
1174            layers: Vec::new(),
1175            training_state: QMLTrainingState::new(),
1176            backend: None,
1177            stats: QMLStats::new(),
1178            training_history: Vec::new(),
1179        };
1180
1181        // Initialize layers based on configuration
1182        framework.initialize_layers()?;
1183
1184        // Initialize SciRS2 backend if available
1185        let backend = SciRS2Backend::new();
1186        if backend.is_available() {
1187            framework.backend = Some(backend);
1188        }
1189
1190        Ok(framework)
1191    }
1192
1193    /// Initialize QML layers
1194    fn initialize_layers(&mut self) -> Result<()> {
1195        for layer_config in &self.config.layer_configs {
1196            let layer = self.create_layer(layer_config)?;
1197            self.layers.push(layer);
1198        }
1199        Ok(())
1200    }
1201
1202    /// Create a QML layer based on configuration
1203    fn create_layer(&self, config: &QMLLayerConfig) -> Result<Box<dyn QMLLayer>> {
1204        match config.layer_type {
1205            QMLLayerType::ParameterizedQuantumCircuit => Ok(Box::new(
1206                ParameterizedQuantumCircuitLayer::new(self.config.num_qubits, config.clone())?,
1207            )),
1208            QMLLayerType::QuantumConvolutional => Ok(Box::new(QuantumConvolutionalLayer::new(
1209                self.config.num_qubits,
1210                config.clone(),
1211            )?)),
1212            QMLLayerType::QuantumDense => Ok(Box::new(QuantumDenseLayer::new(
1213                self.config.num_qubits,
1214                config.clone(),
1215            )?)),
1216            QMLLayerType::QuantumLSTM => Ok(Box::new(QuantumLSTMLayer::new(
1217                self.config.num_qubits,
1218                config.clone(),
1219            )?)),
1220            QMLLayerType::QuantumAttention => Ok(Box::new(QuantumAttentionLayer::new(
1221                self.config.num_qubits,
1222                config.clone(),
1223            )?)),
1224            _ => Err(SimulatorError::InvalidConfiguration(format!(
1225                "Layer type {:?} not yet implemented",
1226                config.layer_type
1227            ))),
1228        }
1229    }
1230
1231    /// Forward pass through the quantum ML model
1232    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1233        let mut current_state = self.encode_input(input)?;
1234
1235        // Pass through each layer
1236        for layer in &mut self.layers {
1237            current_state = layer.forward(&current_state)?;
1238        }
1239
1240        // Decode output
1241        let output = self.decode_output(&current_state)?;
1242
1243        // Update statistics
1244        self.stats.forward_passes += 1;
1245
1246        Ok(output)
1247    }
1248
1249    /// Backward pass for gradient computation
1250    pub fn backward(&mut self, loss_gradient: &Array1<f64>) -> Result<Array1<f64>> {
1251        let mut grad = loss_gradient.clone();
1252
1253        // Backpropagate through layers in reverse order
1254        for layer in self.layers.iter_mut().rev() {
1255            grad = layer.backward(&grad)?;
1256        }
1257
1258        // Update statistics
1259        self.stats.backward_passes += 1;
1260
1261        Ok(grad)
1262    }
1263
1264    /// Train the quantum ML model
1265    pub fn train(
1266        &mut self,
1267        training_data: &[(Array1<f64>, Array1<f64>)],
1268        validation_data: Option<&[(Array1<f64>, Array1<f64>)]>,
1269    ) -> Result<QMLTrainingResult> {
1270        let mut best_validation_loss = f64::INFINITY;
1271        let mut patience_counter = 0;
1272        let mut training_metrics = Vec::new();
1273
1274        let training_start = std::time::Instant::now();
1275
1276        for epoch in 0..self.config.training_config.epochs {
1277            let epoch_start = std::time::Instant::now();
1278
1279            // Training phase
1280            let mut epoch_loss = 0.0;
1281            let mut num_batches = 0;
1282
1283            for batch in training_data.chunks(self.config.training_config.batch_size) {
1284                let batch_loss = self.train_batch(batch)?;
1285                epoch_loss += batch_loss;
1286                num_batches += 1;
1287            }
1288
1289            epoch_loss /= num_batches as f64;
1290
1291            // Validation phase
1292            let validation_loss = if let Some(val_data) = validation_data {
1293                self.evaluate(val_data)?
1294            } else {
1295                epoch_loss
1296            };
1297
1298            let epoch_time = epoch_start.elapsed();
1299
1300            let metrics = QMLEpochMetrics {
1301                epoch,
1302                training_loss: epoch_loss,
1303                validation_loss,
1304                epoch_time,
1305                learning_rate: self.get_current_learning_rate(epoch),
1306            };
1307
1308            training_metrics.push(metrics.clone());
1309
1310            // Early stopping check
1311            if self.config.training_config.early_stopping.enabled {
1312                if validation_loss
1313                    < best_validation_loss - self.config.training_config.early_stopping.min_delta
1314                {
1315                    best_validation_loss = validation_loss;
1316                    patience_counter = 0;
1317                } else {
1318                    patience_counter += 1;
1319                    if patience_counter >= self.config.training_config.early_stopping.patience {
1320                        println!("Early stopping triggered at epoch {}", epoch);
1321                        break;
1322                    }
1323                }
1324            }
1325
1326            // Update learning rate
1327            self.update_learning_rate(epoch, validation_loss);
1328
1329            // Print progress
1330            if epoch % 10 == 0 {
1331                println!(
1332                    "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}s",
1333                    epoch,
1334                    epoch_loss,
1335                    validation_loss,
1336                    epoch_time.as_secs_f64()
1337                );
1338            }
1339        }
1340
1341        let total_training_time = training_start.elapsed();
1342
1343        let result = QMLTrainingResult {
1344            final_training_loss: training_metrics
1345                .last()
1346                .map(|m| m.training_loss)
1347                .unwrap_or(0.0),
1348            final_validation_loss: training_metrics
1349                .last()
1350                .map(|m| m.validation_loss)
1351                .unwrap_or(0.0),
1352            best_validation_loss,
1353            epochs_trained: training_metrics.len(),
1354            total_training_time,
1355            training_metrics,
1356            quantum_advantage_metrics: self.compute_quantum_advantage_metrics()?,
1357        };
1358
1359        self.training_history.push(result.clone());
1360
1361        Ok(result)
1362    }
1363
1364    /// Train a single batch
1365    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1366        let mut total_loss = 0.0;
1367        let mut total_gradients: Vec<Array1<f64>> =
1368            (0..self.layers.len()).map(|_| Array1::zeros(0)).collect();
1369
1370        for (input, target) in batch {
1371            // Forward pass
1372            let prediction = self.forward(input)?;
1373
1374            // Compute loss
1375            let loss = self.compute_loss(&prediction, target)?;
1376            total_loss += loss;
1377
1378            // Compute loss gradient
1379            let loss_gradient = self.compute_loss_gradient(&prediction, target)?;
1380
1381            // Backward pass
1382            let gradients = self.compute_gradients(&loss_gradient)?;
1383
1384            // Accumulate gradients
1385            for (i, grad) in gradients.iter().enumerate() {
1386                if total_gradients[i].len() == 0 {
1387                    total_gradients[i] = grad.clone();
1388                } else {
1389                    total_gradients[i] += grad;
1390                }
1391            }
1392        }
1393
1394        // Average gradients
1395        let batch_size = batch.len() as f64;
1396        for grad in &mut total_gradients {
1397            *grad /= batch_size;
1398        }
1399
1400        // Apply gradients
1401        self.apply_gradients(&total_gradients)?;
1402
1403        Ok(total_loss / batch_size)
1404    }
1405
1406    /// Evaluate the model on validation data
1407    pub fn evaluate(&mut self, data: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1408        let mut total_loss = 0.0;
1409
1410        for (input, target) in data {
1411            let prediction = self.forward(input)?;
1412            let loss = self.compute_loss(&prediction, target)?;
1413            total_loss += loss;
1414        }
1415
1416        Ok(total_loss / data.len() as f64)
1417    }
1418
1419    /// Encode classical input into quantum state
1420    fn encode_input(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1421        match self.config.classical_preprocessing.encoding_method {
1422            DataEncodingMethod::Amplitude => self.encode_amplitude(input),
1423            DataEncodingMethod::Angle => self.encode_angle(input),
1424            DataEncodingMethod::Basis => self.encode_basis(input),
1425            DataEncodingMethod::QuantumFeatureMap => self.encode_quantum_feature_map(input),
1426            _ => Err(SimulatorError::InvalidConfiguration(
1427                "Encoding method not implemented".to_string(),
1428            )),
1429        }
1430    }
1431
1432    /// Amplitude encoding
1433    fn encode_amplitude(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1434        let n_qubits = self.config.num_qubits;
1435        let state_size = 1 << n_qubits;
1436        let mut state = Array1::zeros(state_size);
1437
1438        // Normalize input
1439        let norm = input.iter().map(|x| x * x).sum::<f64>().sqrt();
1440        if norm == 0.0 {
1441            return Err(SimulatorError::InvalidState("Zero input norm".to_string()));
1442        }
1443
1444        // Encode input as amplitudes
1445        for (i, &val) in input.iter().enumerate() {
1446            if i < state_size {
1447                state[i] = Complex64::new(val / norm, 0.0);
1448            }
1449        }
1450
1451        Ok(state)
1452    }
1453
1454    /// Angle encoding
1455    fn encode_angle(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1456        let n_qubits = self.config.num_qubits;
1457        let state_size = 1 << n_qubits;
1458        let mut state = Array1::zeros(state_size);
1459
1460        // Initialize |0...0⟩ state
1461        state[0] = Complex64::new(1.0, 0.0);
1462
1463        // Apply rotation gates based on input values
1464        for (i, &angle) in input.iter().enumerate() {
1465            if i < n_qubits {
1466                // Apply RY rotation to qubit i
1467                state = self.apply_ry_rotation(&state, i, angle)?;
1468            }
1469        }
1470
1471        Ok(state)
1472    }
1473
1474    /// Basis encoding
1475    fn encode_basis(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1476        let n_qubits = self.config.num_qubits;
1477        let state_size = 1 << n_qubits;
1478        let mut state = Array1::zeros(state_size);
1479
1480        // Convert input to binary representation
1481        let mut binary_index = 0;
1482        for (i, &val) in input.iter().enumerate() {
1483            if i < n_qubits && val > 0.5 {
1484                binary_index |= 1 << i;
1485            }
1486        }
1487
1488        state[binary_index] = Complex64::new(1.0, 0.0);
1489
1490        Ok(state)
1491    }
1492
1493    /// Quantum feature map encoding
1494    fn encode_quantum_feature_map(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1495        let n_qubits = self.config.num_qubits;
1496        let state_size = 1 << n_qubits;
1497        let mut state = Array1::zeros(state_size);
1498
1499        // Initialize |+⟩^⊗n state (all qubits in superposition)
1500        let hadamard_coeff = 1.0 / (2.0_f64.powf(n_qubits as f64 / 2.0));
1501        for i in 0..state_size {
1502            state[i] = Complex64::new(hadamard_coeff, 0.0);
1503        }
1504
1505        // Apply feature map rotations
1506        for (i, &feature) in input.iter().enumerate() {
1507            if i < n_qubits {
1508                // Apply Z rotation based on feature value
1509                state = self.apply_rz_rotation(&state, i, feature * PI)?;
1510            }
1511        }
1512
1513        // Apply entangling gates for feature interactions
1514        for i in 0..(n_qubits - 1) {
1515            if i + 1 < input.len() {
1516                let interaction = input[i] * input[i + 1];
1517                state = self.apply_cnot_interaction(&state, i, i + 1, interaction * PI)?;
1518            }
1519        }
1520
1521        Ok(state)
1522    }
1523
1524    /// Apply RY rotation to a specific qubit
1525    fn apply_ry_rotation(
1526        &self,
1527        state: &Array1<Complex64>,
1528        qubit: usize,
1529        angle: f64,
1530    ) -> Result<Array1<Complex64>> {
1531        let n_qubits = self.config.num_qubits;
1532        let state_size = 1 << n_qubits;
1533        let mut new_state = state.clone();
1534
1535        let cos_half = (angle / 2.0).cos();
1536        let sin_half = (angle / 2.0).sin();
1537
1538        for i in 0..state_size {
1539            if i & (1 << qubit) == 0 {
1540                // |0⟩ component
1541                let j = i | (1 << qubit); // corresponding |1⟩ state
1542                if j < state_size {
1543                    let state_0 = state[i];
1544                    let state_1 = state[j];
1545
1546                    new_state[i] = Complex64::new(cos_half, 0.0) * state_0
1547                        - Complex64::new(sin_half, 0.0) * state_1;
1548                    new_state[j] = Complex64::new(sin_half, 0.0) * state_0
1549                        + Complex64::new(cos_half, 0.0) * state_1;
1550                }
1551            }
1552        }
1553
1554        Ok(new_state)
1555    }
1556
1557    /// Apply RZ rotation to a specific qubit
1558    fn apply_rz_rotation(
1559        &self,
1560        state: &Array1<Complex64>,
1561        qubit: usize,
1562        angle: f64,
1563    ) -> Result<Array1<Complex64>> {
1564        let n_qubits = self.config.num_qubits;
1565        let state_size = 1 << n_qubits;
1566        let mut new_state = state.clone();
1567
1568        let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
1569        let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
1570
1571        for i in 0..state_size {
1572            if i & (1 << qubit) == 0 {
1573                new_state[i] *= phase_0;
1574            } else {
1575                new_state[i] *= phase_1;
1576            }
1577        }
1578
1579        Ok(new_state)
1580    }
1581
1582    /// Apply CNOT with interaction term
1583    fn apply_cnot_interaction(
1584        &self,
1585        state: &Array1<Complex64>,
1586        control: usize,
1587        target: usize,
1588        interaction: f64,
1589    ) -> Result<Array1<Complex64>> {
1590        let n_qubits = self.config.num_qubits;
1591        let state_size = 1 << n_qubits;
1592        let mut new_state = state.clone();
1593
1594        // Apply interaction-dependent phase
1595        let phase = Complex64::from_polar(1.0, interaction);
1596
1597        for i in 0..state_size {
1598            if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
1599                // Both control and target are |1⟩
1600                new_state[i] *= phase;
1601            }
1602        }
1603
1604        Ok(new_state)
1605    }
1606
1607    /// Decode quantum state to classical output
1608    fn decode_output(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
1609        // For now, use expectation values of Pauli-Z measurements
1610        let n_qubits = self.config.num_qubits;
1611        let mut output = Array1::zeros(n_qubits);
1612
1613        for qubit in 0..n_qubits {
1614            let expectation = self.measure_pauli_z_expectation(state, qubit)?;
1615            output[qubit] = expectation;
1616        }
1617
1618        Ok(output)
1619    }
1620
1621    /// Measure Pauli-Z expectation value for a specific qubit
1622    fn measure_pauli_z_expectation(&self, state: &Array1<Complex64>, qubit: usize) -> Result<f64> {
1623        let state_size = state.len();
1624        let mut expectation = 0.0;
1625
1626        for i in 0..state_size {
1627            let probability = state[i].norm_sqr();
1628            if i & (1 << qubit) == 0 {
1629                expectation += probability; // |0⟩ contributes +1
1630            } else {
1631                expectation -= probability; // |1⟩ contributes -1
1632            }
1633        }
1634
1635        Ok(expectation)
1636    }
1637
1638    /// Compute loss function
1639    fn compute_loss(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
1640        // Check shape compatibility
1641        if prediction.shape() != target.shape() {
1642            return Err(SimulatorError::InvalidInput(format!(
1643                "Shape mismatch: prediction shape {:?} != target shape {:?}",
1644                prediction.shape(),
1645                target.shape()
1646            )));
1647        }
1648
1649        // Mean squared error
1650        let diff = prediction - target;
1651        let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
1652        Ok(mse)
1653    }
1654
1655    /// Compute loss gradient
1656    fn compute_loss_gradient(
1657        &self,
1658        prediction: &Array1<f64>,
1659        target: &Array1<f64>,
1660    ) -> Result<Array1<f64>> {
1661        // Gradient of MSE
1662        let diff = prediction - target;
1663        let grad = 2.0 * &diff / diff.len() as f64;
1664        Ok(grad)
1665    }
1666
1667    /// Compute gradients using parameter-shift rule
1668    fn compute_gradients(&mut self, loss_gradient: &Array1<f64>) -> Result<Vec<Array1<f64>>> {
1669        let mut gradients = Vec::new();
1670
1671        for layer_idx in 0..self.layers.len() {
1672            let layer_gradient = match self.config.training_config.gradient_method {
1673                GradientMethod::ParameterShift => {
1674                    self.compute_parameter_shift_gradient(layer_idx, loss_gradient)?
1675                }
1676                GradientMethod::FiniteDifference => {
1677                    self.compute_finite_difference_gradient(layer_idx, loss_gradient)?
1678                }
1679                _ => {
1680                    return Err(SimulatorError::InvalidConfiguration(
1681                        "Gradient method not implemented".to_string(),
1682                    ))
1683                }
1684            };
1685            gradients.push(layer_gradient);
1686        }
1687
1688        Ok(gradients)
1689    }
1690
1691    /// Compute gradients using parameter-shift rule
1692    fn compute_parameter_shift_gradient(
1693        &mut self,
1694        layer_idx: usize,
1695        loss_gradient: &Array1<f64>,
1696    ) -> Result<Array1<f64>> {
1697        let layer = &self.layers[layer_idx];
1698        let parameters = layer.get_parameters();
1699        let mut gradient = Array1::zeros(parameters.len());
1700
1701        let shift = PI / 2.0; // Parameter shift amount
1702
1703        for (param_idx, &param_val) in parameters.iter().enumerate() {
1704            // Forward shift
1705            let mut params_plus = parameters.clone();
1706            params_plus[param_idx] = param_val + shift;
1707            self.layers[layer_idx].set_parameters(&params_plus);
1708            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1709
1710            // Backward shift
1711            let mut params_minus = parameters.clone();
1712            params_minus[param_idx] = param_val - shift;
1713            self.layers[layer_idx].set_parameters(&params_minus);
1714            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1715
1716            // Compute gradient
1717            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / 2.0;
1718
1719            // Restore original parameters
1720            self.layers[layer_idx].set_parameters(&parameters);
1721        }
1722
1723        Ok(gradient)
1724    }
1725
1726    /// Compute gradients using finite differences
1727    fn compute_finite_difference_gradient(
1728        &mut self,
1729        layer_idx: usize,
1730        loss_gradient: &Array1<f64>,
1731    ) -> Result<Array1<f64>> {
1732        let layer = &self.layers[layer_idx];
1733        let parameters = layer.get_parameters();
1734        let mut gradient = Array1::zeros(parameters.len());
1735
1736        let eps = 1e-6; // Small perturbation
1737
1738        for (param_idx, &param_val) in parameters.iter().enumerate() {
1739            // Forward perturbation
1740            let mut params_plus = parameters.clone();
1741            params_plus[param_idx] = param_val + eps;
1742            self.layers[layer_idx].set_parameters(&params_plus);
1743            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1744
1745            // Backward perturbation
1746            let mut params_minus = parameters.clone();
1747            params_minus[param_idx] = param_val - eps;
1748            self.layers[layer_idx].set_parameters(&params_minus);
1749            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1750
1751            // Compute gradient
1752            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / (2.0 * eps);
1753
1754            // Restore original parameters
1755            self.layers[layer_idx].set_parameters(&parameters);
1756        }
1757
1758        Ok(gradient)
1759    }
1760
1761    /// Forward pass through a specific layer
1762    fn forward_layer(&mut self, layer_idx: usize, input: &Array1<f64>) -> Result<Array1<f64>> {
1763        // This is a simplified version - in practice, we'd need to track intermediate states
1764        self.forward(input)
1765    }
1766
1767    /// Apply gradients to update parameters
1768    fn apply_gradients(&mut self, gradients: &[Array1<f64>]) -> Result<()> {
1769        for (layer_idx, gradient) in gradients.iter().enumerate() {
1770            let layer = &mut self.layers[layer_idx];
1771            let mut parameters = layer.get_parameters();
1772
1773            // Apply gradient update based on optimizer
1774            match self.config.training_config.optimizer {
1775                OptimizerType::SGD => {
1776                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1777                        *param -= self.config.training_config.learning_rate * grad;
1778                    }
1779                }
1780                OptimizerType::Adam => {
1781                    // Simplified Adam update (would need to track momentum terms)
1782                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1783                        *param -= self.config.training_config.learning_rate * grad;
1784                    }
1785                }
1786                _ => {
1787                    // Default to SGD
1788                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1789                        *param -= self.config.training_config.learning_rate * grad;
1790                    }
1791                }
1792            }
1793
1794            // Apply parameter constraints
1795            if let Some((min_val, max_val)) =
1796                self.config.training_config.regularization.parameter_bounds
1797            {
1798                for param in parameters.iter_mut() {
1799                    *param = param.clamp(min_val, max_val);
1800                }
1801            }
1802
1803            layer.set_parameters(&parameters);
1804        }
1805
1806        Ok(())
1807    }
1808
1809    /// Get current learning rate (with scheduling)
1810    fn get_current_learning_rate(&self, epoch: usize) -> f64 {
1811        let base_lr = self.config.training_config.learning_rate;
1812
1813        match self.config.training_config.lr_schedule {
1814            LearningRateSchedule::Constant => base_lr,
1815            LearningRateSchedule::ExponentialDecay => base_lr * 0.95_f64.powi(epoch as i32),
1816            LearningRateSchedule::StepDecay => {
1817                if epoch % 50 == 0 && epoch > 0 {
1818                    base_lr * 0.5_f64.powi((epoch / 50) as i32)
1819                } else {
1820                    base_lr
1821                }
1822            }
1823            LearningRateSchedule::CosineAnnealing => {
1824                let progress = epoch as f64 / self.config.training_config.epochs as f64;
1825                base_lr * 0.5 * (1.0 + (PI * progress).cos())
1826            }
1827            _ => base_lr,
1828        }
1829    }
1830
1831    /// Update learning rate
1832    fn update_learning_rate(&mut self, epoch: usize, validation_loss: f64) {
1833        // This would update internal optimizer state for learning rate scheduling
1834        // For now, just track the current learning rate
1835        let current_lr = self.get_current_learning_rate(epoch);
1836        self.training_state.current_learning_rate = current_lr;
1837    }
1838
1839    /// Compute quantum advantage metrics
1840    fn compute_quantum_advantage_metrics(&self) -> Result<QuantumAdvantageMetrics> {
1841        // Placeholder for quantum advantage analysis
1842        Ok(QuantumAdvantageMetrics {
1843            quantum_volume: 0.0,
1844            classical_simulation_cost: 0.0,
1845            quantum_speedup_factor: 1.0,
1846            circuit_depth: self.layers.iter().map(|l| l.get_depth()).sum(),
1847            gate_count: self.layers.iter().map(|l| l.get_gate_count()).sum(),
1848            entanglement_measure: 0.0,
1849        })
1850    }
1851
1852    /// Get training statistics
1853    pub fn get_stats(&self) -> &QMLStats {
1854        &self.stats
1855    }
1856
1857    /// Get training history
1858    pub fn get_training_history(&self) -> &[QMLTrainingResult] {
1859        &self.training_history
1860    }
1861
1862    /// Get layers reference
1863    pub fn get_layers(&self) -> &[Box<dyn QMLLayer>] {
1864        &self.layers
1865    }
1866
1867    /// Get config reference
1868    pub fn get_config(&self) -> &QMLConfig {
1869        &self.config
1870    }
1871
1872    /// Encode amplitude (public version)
1873    pub fn encode_amplitude_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1874        self.encode_amplitude(input)
1875    }
1876
1877    /// Encode angle (public version)
1878    pub fn encode_angle_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1879        self.encode_angle(input)
1880    }
1881
1882    /// Encode basis (public version)
1883    pub fn encode_basis_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1884        self.encode_basis(input)
1885    }
1886
1887    /// Encode quantum feature map (public version)
1888    pub fn encode_quantum_feature_map_public(
1889        &self,
1890        input: &Array1<f64>,
1891    ) -> Result<Array1<Complex64>> {
1892        self.encode_quantum_feature_map(input)
1893    }
1894
1895    /// Measure Pauli Z expectation (public version)
1896    pub fn measure_pauli_z_expectation_public(
1897        &self,
1898        state: &Array1<Complex64>,
1899        qubit: usize,
1900    ) -> Result<f64> {
1901        self.measure_pauli_z_expectation(state, qubit)
1902    }
1903
1904    /// Get current learning rate (public version)
1905    pub fn get_current_learning_rate_public(&self, epoch: usize) -> f64 {
1906        self.get_current_learning_rate(epoch)
1907    }
1908
1909    /// Compute loss (public version)
1910    pub fn compute_loss_public(
1911        &self,
1912        prediction: &Array1<f64>,
1913        target: &Array1<f64>,
1914    ) -> Result<f64> {
1915        self.compute_loss(prediction, target)
1916    }
1917
1918    /// Compute loss gradient (public version)
1919    pub fn compute_loss_gradient_public(
1920        &self,
1921        prediction: &Array1<f64>,
1922        target: &Array1<f64>,
1923    ) -> Result<Array1<f64>> {
1924        self.compute_loss_gradient(prediction, target)
1925    }
1926}
1927
1928/// Trait for QML layers
1929pub trait QMLLayer: std::fmt::Debug + Send + Sync {
1930    /// Forward pass through the layer
1931    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>>;
1932
1933    /// Backward pass through the layer
1934    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>>;
1935
1936    /// Get layer parameters
1937    fn get_parameters(&self) -> Array1<f64>;
1938
1939    /// Set layer parameters
1940    fn set_parameters(&mut self, parameters: &Array1<f64>);
1941
1942    /// Get circuit depth
1943    fn get_depth(&self) -> usize;
1944
1945    /// Get gate count
1946    fn get_gate_count(&self) -> usize;
1947
1948    /// Get number of parameters
1949    fn get_num_parameters(&self) -> usize;
1950}
1951
1952/// Parameterized Quantum Circuit Layer
1953#[derive(Debug)]
1954pub struct ParameterizedQuantumCircuitLayer {
1955    /// Number of qubits
1956    num_qubits: usize,
1957    /// Layer configuration
1958    config: QMLLayerConfig,
1959    /// Parameters (rotation angles)
1960    parameters: Array1<f64>,
1961    /// Circuit structure
1962    circuit_structure: Vec<PQCGate>,
1963    /// Internal state vector simulator
1964    simulator: StateVectorSimulator,
1965}
1966
1967impl ParameterizedQuantumCircuitLayer {
1968    /// Create new PQC layer
1969    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
1970        let mut layer = Self {
1971            num_qubits,
1972            config: config.clone(),
1973            parameters: Array1::zeros(config.num_parameters),
1974            circuit_structure: Vec::new(),
1975            simulator: StateVectorSimulator::new(),
1976        };
1977
1978        // Initialize parameters randomly
1979        layer.initialize_parameters();
1980
1981        // Build circuit structure
1982        layer.build_circuit_structure()?;
1983
1984        Ok(layer)
1985    }
1986
1987    /// Initialize parameters randomly
1988    fn initialize_parameters(&mut self) {
1989        let mut rng = thread_rng();
1990        for param in self.parameters.iter_mut() {
1991            *param = rng.gen_range(-PI..PI);
1992        }
1993    }
1994
1995    /// Build circuit structure based on ansatz
1996    fn build_circuit_structure(&mut self) -> Result<()> {
1997        match self.config.ansatz_type {
1998            AnsatzType::Hardware => self.build_hardware_efficient_ansatz(),
1999            AnsatzType::Layered => self.build_layered_ansatz(),
2000            AnsatzType::BrickWall => self.build_brick_wall_ansatz(),
2001            _ => Err(SimulatorError::InvalidConfiguration(
2002                "Ansatz type not implemented".to_string(),
2003            )),
2004        }
2005    }
2006
2007    /// Build hardware-efficient ansatz
2008    fn build_hardware_efficient_ansatz(&mut self) -> Result<()> {
2009        let mut param_idx = 0;
2010
2011        for layer in 0..self.config.depth {
2012            // Single-qubit rotations
2013            for qubit in 0..self.num_qubits {
2014                for &gate_type in &self.config.rotation_gates {
2015                    if param_idx < self.parameters.len() {
2016                        self.circuit_structure.push(PQCGate {
2017                            gate_type: PQCGateType::SingleQubit(gate_type),
2018                            qubits: vec![qubit],
2019                            parameter_index: Some(param_idx),
2020                        });
2021                        param_idx += 1;
2022                    }
2023                }
2024            }
2025
2026            // Entangling gates
2027            self.add_entangling_gates(&mut param_idx);
2028        }
2029
2030        Ok(())
2031    }
2032
2033    /// Build layered ansatz
2034    fn build_layered_ansatz(&mut self) -> Result<()> {
2035        // Similar to hardware-efficient but with different structure
2036        self.build_hardware_efficient_ansatz()
2037    }
2038
2039    /// Build brick-wall ansatz
2040    fn build_brick_wall_ansatz(&mut self) -> Result<()> {
2041        let mut param_idx = 0;
2042
2043        for layer in 0..self.config.depth {
2044            // Alternating CNOT pattern (brick-wall)
2045            let offset = layer % 2;
2046            for i in (offset..self.num_qubits - 1).step_by(2) {
2047                self.circuit_structure.push(PQCGate {
2048                    gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2049                    qubits: vec![i, i + 1],
2050                    parameter_index: None,
2051                });
2052            }
2053
2054            // Single-qubit rotations
2055            for qubit in 0..self.num_qubits {
2056                if param_idx < self.parameters.len() {
2057                    self.circuit_structure.push(PQCGate {
2058                        gate_type: PQCGateType::SingleQubit(RotationGate::RY),
2059                        qubits: vec![qubit],
2060                        parameter_index: Some(param_idx),
2061                    });
2062                    param_idx += 1;
2063                }
2064            }
2065        }
2066
2067        Ok(())
2068    }
2069
2070    /// Add entangling gates based on entanglement pattern
2071    fn add_entangling_gates(&mut self, param_idx: &mut usize) {
2072        match self.config.entanglement_pattern {
2073            EntanglementPattern::Linear => {
2074                for i in 0..(self.num_qubits - 1) {
2075                    self.circuit_structure.push(PQCGate {
2076                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2077                        qubits: vec![i, i + 1],
2078                        parameter_index: None,
2079                    });
2080                }
2081            }
2082            EntanglementPattern::Circular => {
2083                for i in 0..self.num_qubits {
2084                    let next = (i + 1) % self.num_qubits;
2085                    self.circuit_structure.push(PQCGate {
2086                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2087                        qubits: vec![i, next],
2088                        parameter_index: None,
2089                    });
2090                }
2091            }
2092            EntanglementPattern::AllToAll => {
2093                for i in 0..self.num_qubits {
2094                    for j in (i + 1)..self.num_qubits {
2095                        self.circuit_structure.push(PQCGate {
2096                            gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2097                            qubits: vec![i, j],
2098                            parameter_index: None,
2099                        });
2100                    }
2101                }
2102            }
2103            _ => {
2104                // Default to linear
2105                for i in 0..(self.num_qubits - 1) {
2106                    self.circuit_structure.push(PQCGate {
2107                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2108                        qubits: vec![i, i + 1],
2109                        parameter_index: None,
2110                    });
2111                }
2112            }
2113        }
2114    }
2115}
2116
2117impl QMLLayer for ParameterizedQuantumCircuitLayer {
2118    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2119        let mut state = input.clone();
2120
2121        // Apply each gate in the circuit
2122        for gate in &self.circuit_structure {
2123            state = self.apply_gate(&state, gate)?;
2124        }
2125
2126        Ok(state)
2127    }
2128
2129    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2130        // Simplified backward pass - in practice would use automatic differentiation
2131        Ok(gradient.clone())
2132    }
2133
2134    fn get_parameters(&self) -> Array1<f64> {
2135        self.parameters.clone()
2136    }
2137
2138    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2139        self.parameters = parameters.clone();
2140    }
2141
2142    fn get_depth(&self) -> usize {
2143        self.config.depth
2144    }
2145
2146    fn get_gate_count(&self) -> usize {
2147        self.circuit_structure.len()
2148    }
2149
2150    fn get_num_parameters(&self) -> usize {
2151        self.parameters.len()
2152    }
2153}
2154
2155impl ParameterizedQuantumCircuitLayer {
2156    /// Apply a single gate to the quantum state
2157    fn apply_gate(&self, state: &Array1<Complex64>, gate: &PQCGate) -> Result<Array1<Complex64>> {
2158        match &gate.gate_type {
2159            PQCGateType::SingleQubit(rotation_gate) => {
2160                let angle = if let Some(param_idx) = gate.parameter_index {
2161                    self.parameters[param_idx]
2162                } else {
2163                    0.0
2164                };
2165                self.apply_single_qubit_gate(state, gate.qubits[0], *rotation_gate, angle)
2166            }
2167            PQCGateType::TwoQubit(two_qubit_gate) => {
2168                self.apply_two_qubit_gate(state, gate.qubits[0], gate.qubits[1], *two_qubit_gate)
2169            }
2170        }
2171    }
2172
2173    /// Apply single-qubit rotation gate
2174    fn apply_single_qubit_gate(
2175        &self,
2176        state: &Array1<Complex64>,
2177        qubit: usize,
2178        gate_type: RotationGate,
2179        angle: f64,
2180    ) -> Result<Array1<Complex64>> {
2181        let state_size = state.len();
2182        let mut new_state = Array1::zeros(state_size);
2183
2184        match gate_type {
2185            RotationGate::RX => {
2186                let cos_half = (angle / 2.0).cos();
2187                let sin_half = (angle / 2.0).sin();
2188
2189                for i in 0..state_size {
2190                    if i & (1 << qubit) == 0 {
2191                        let j = i | (1 << qubit);
2192                        if j < state_size {
2193                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2194                                + Complex64::new(0.0, -sin_half) * state[j];
2195                            new_state[j] = Complex64::new(0.0, -sin_half) * state[i]
2196                                + Complex64::new(cos_half, 0.0) * state[j];
2197                        }
2198                    }
2199                }
2200            }
2201            RotationGate::RY => {
2202                let cos_half = (angle / 2.0).cos();
2203                let sin_half = (angle / 2.0).sin();
2204
2205                for i in 0..state_size {
2206                    if i & (1 << qubit) == 0 {
2207                        let j = i | (1 << qubit);
2208                        if j < state_size {
2209                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2210                                - Complex64::new(sin_half, 0.0) * state[j];
2211                            new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2212                                + Complex64::new(cos_half, 0.0) * state[j];
2213                        }
2214                    }
2215                }
2216            }
2217            RotationGate::RZ => {
2218                let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
2219                let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
2220
2221                for i in 0..state_size {
2222                    if i & (1 << qubit) == 0 {
2223                        new_state[i] = phase_0 * state[i];
2224                    } else {
2225                        new_state[i] = phase_1 * state[i];
2226                    }
2227                }
2228            }
2229            _ => {
2230                return Err(SimulatorError::InvalidGate(
2231                    "Gate type not implemented".to_string(),
2232                ))
2233            }
2234        }
2235
2236        Ok(new_state)
2237    }
2238
2239    /// Apply two-qubit gate
2240    fn apply_two_qubit_gate(
2241        &self,
2242        state: &Array1<Complex64>,
2243        control: usize,
2244        target: usize,
2245        gate_type: TwoQubitGate,
2246    ) -> Result<Array1<Complex64>> {
2247        let state_size = state.len();
2248        let mut new_state = state.clone();
2249
2250        match gate_type {
2251            TwoQubitGate::CNOT => {
2252                for i in 0..state_size {
2253                    if (i & (1 << control)) != 0 {
2254                        // Control qubit is |1⟩, flip target
2255                        let j = i ^ (1 << target);
2256                        new_state[i] = state[j];
2257                    }
2258                }
2259            }
2260            TwoQubitGate::CZ => {
2261                for i in 0..state_size {
2262                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2263                        // Both qubits are |1⟩, apply phase
2264                        new_state[i] = -state[i];
2265                    }
2266                }
2267            }
2268            TwoQubitGate::SWAP => {
2269                for i in 0..state_size {
2270                    let ctrl_bit = (i & (1 << control)) != 0;
2271                    let targ_bit = (i & (1 << target)) != 0;
2272                    if ctrl_bit != targ_bit {
2273                        // Swap the qubits
2274                        let j = i ^ (1 << control) ^ (1 << target);
2275                        new_state[i] = state[j];
2276                    }
2277                }
2278            }
2279            TwoQubitGate::CPhase => {
2280                for i in 0..state_size {
2281                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2282                        // Both qubits are |1⟩, apply phase (similar to CZ)
2283                        new_state[i] = -state[i];
2284                    }
2285                }
2286            }
2287        }
2288
2289        Ok(new_state)
2290    }
2291}
2292
2293/// Quantum Convolutional Layer
2294#[derive(Debug)]
2295pub struct QuantumConvolutionalLayer {
2296    /// Number of qubits
2297    num_qubits: usize,
2298    /// Layer configuration
2299    config: QMLLayerConfig,
2300    /// Parameters
2301    parameters: Array1<f64>,
2302    /// Convolutional structure
2303    conv_structure: Vec<ConvolutionalFilter>,
2304}
2305
2306impl QuantumConvolutionalLayer {
2307    /// Create new quantum convolutional layer
2308    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2309        let mut layer = Self {
2310            num_qubits,
2311            config: config.clone(),
2312            parameters: Array1::zeros(config.num_parameters),
2313            conv_structure: Vec::new(),
2314        };
2315
2316        layer.initialize_parameters();
2317        layer.build_convolutional_structure()?;
2318
2319        Ok(layer)
2320    }
2321
2322    /// Initialize parameters
2323    fn initialize_parameters(&mut self) {
2324        let mut rng = thread_rng();
2325        for param in self.parameters.iter_mut() {
2326            *param = rng.gen_range(-PI..PI);
2327        }
2328    }
2329
2330    /// Build convolutional structure
2331    fn build_convolutional_structure(&mut self) -> Result<()> {
2332        // Create sliding window filters
2333        let filter_size = 2; // 2-qubit filters
2334        let stride = 1;
2335
2336        let mut param_idx = 0;
2337        for start in (0..self.num_qubits - filter_size + 1).step_by(stride) {
2338            if param_idx + 2 <= self.parameters.len() {
2339                self.conv_structure.push(ConvolutionalFilter {
2340                    qubits: vec![start, start + 1],
2341                    parameter_indices: vec![param_idx, param_idx + 1],
2342                });
2343                param_idx += 2;
2344            }
2345        }
2346
2347        Ok(())
2348    }
2349}
2350
2351impl QMLLayer for QuantumConvolutionalLayer {
2352    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2353        let mut state = input.clone();
2354
2355        // Apply convolutional filters
2356        for filter in &self.conv_structure {
2357            state = self.apply_convolutional_filter(&state, filter)?;
2358        }
2359
2360        Ok(state)
2361    }
2362
2363    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2364        Ok(gradient.clone())
2365    }
2366
2367    fn get_parameters(&self) -> Array1<f64> {
2368        self.parameters.clone()
2369    }
2370
2371    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2372        self.parameters = parameters.clone();
2373    }
2374
2375    fn get_depth(&self) -> usize {
2376        self.conv_structure.len()
2377    }
2378
2379    fn get_gate_count(&self) -> usize {
2380        self.conv_structure.len() * 4 // Approximate gates per filter
2381    }
2382
2383    fn get_num_parameters(&self) -> usize {
2384        self.parameters.len()
2385    }
2386}
2387
2388impl QuantumConvolutionalLayer {
2389    /// Apply convolutional filter
2390    fn apply_convolutional_filter(
2391        &self,
2392        state: &Array1<Complex64>,
2393        filter: &ConvolutionalFilter,
2394    ) -> Result<Array1<Complex64>> {
2395        let mut new_state = state.clone();
2396
2397        // Apply parameterized two-qubit unitaries
2398        let param1 = self.parameters[filter.parameter_indices[0]];
2399        let param2 = self.parameters[filter.parameter_indices[1]];
2400
2401        // Apply RY rotations followed by CNOT
2402        new_state = self.apply_ry_to_state(&new_state, filter.qubits[0], param1)?;
2403        new_state = self.apply_ry_to_state(&new_state, filter.qubits[1], param2)?;
2404        new_state = self.apply_cnot_to_state(&new_state, filter.qubits[0], filter.qubits[1])?;
2405
2406        Ok(new_state)
2407    }
2408
2409    /// Apply RY rotation to state
2410    fn apply_ry_to_state(
2411        &self,
2412        state: &Array1<Complex64>,
2413        qubit: usize,
2414        angle: f64,
2415    ) -> Result<Array1<Complex64>> {
2416        let state_size = state.len();
2417        let mut new_state = Array1::zeros(state_size);
2418
2419        let cos_half = (angle / 2.0).cos();
2420        let sin_half = (angle / 2.0).sin();
2421
2422        for i in 0..state_size {
2423            if i & (1 << qubit) == 0 {
2424                let j = i | (1 << qubit);
2425                if j < state_size {
2426                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2427                        - Complex64::new(sin_half, 0.0) * state[j];
2428                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2429                        + Complex64::new(cos_half, 0.0) * state[j];
2430                }
2431            }
2432        }
2433
2434        Ok(new_state)
2435    }
2436
2437    /// Apply CNOT to state
2438    fn apply_cnot_to_state(
2439        &self,
2440        state: &Array1<Complex64>,
2441        control: usize,
2442        target: usize,
2443    ) -> Result<Array1<Complex64>> {
2444        let state_size = state.len();
2445        let mut new_state = state.clone();
2446
2447        for i in 0..state_size {
2448            if (i & (1 << control)) != 0 {
2449                let j = i ^ (1 << target);
2450                new_state[i] = state[j];
2451            }
2452        }
2453
2454        Ok(new_state)
2455    }
2456}
2457
2458/// Quantum Dense Layer (fully connected)
2459#[derive(Debug)]
2460pub struct QuantumDenseLayer {
2461    /// Number of qubits
2462    num_qubits: usize,
2463    /// Layer configuration
2464    config: QMLLayerConfig,
2465    /// Parameters
2466    parameters: Array1<f64>,
2467    /// Dense layer structure
2468    dense_structure: Vec<DenseConnection>,
2469}
2470
2471impl QuantumDenseLayer {
2472    /// Create new quantum dense layer
2473    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2474        let mut layer = Self {
2475            num_qubits,
2476            config: config.clone(),
2477            parameters: Array1::zeros(config.num_parameters),
2478            dense_structure: Vec::new(),
2479        };
2480
2481        layer.initialize_parameters();
2482        layer.build_dense_structure()?;
2483
2484        Ok(layer)
2485    }
2486
2487    /// Initialize parameters
2488    fn initialize_parameters(&mut self) {
2489        let mut rng = thread_rng();
2490        for param in self.parameters.iter_mut() {
2491            *param = rng.gen_range(-PI..PI);
2492        }
2493    }
2494
2495    /// Build dense layer structure (all-to-all connectivity)
2496    fn build_dense_structure(&mut self) -> Result<()> {
2497        let mut param_idx = 0;
2498
2499        // Create all-to-all connections
2500        for i in 0..self.num_qubits {
2501            for j in (i + 1)..self.num_qubits {
2502                if param_idx < self.parameters.len() {
2503                    self.dense_structure.push(DenseConnection {
2504                        qubit1: i,
2505                        qubit2: j,
2506                        parameter_index: param_idx,
2507                    });
2508                    param_idx += 1;
2509                }
2510            }
2511        }
2512
2513        Ok(())
2514    }
2515}
2516
2517impl QMLLayer for QuantumDenseLayer {
2518    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2519        let mut state = input.clone();
2520
2521        // Apply dense connections
2522        for connection in &self.dense_structure {
2523            state = self.apply_dense_connection(&state, connection)?;
2524        }
2525
2526        Ok(state)
2527    }
2528
2529    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2530        Ok(gradient.clone())
2531    }
2532
2533    fn get_parameters(&self) -> Array1<f64> {
2534        self.parameters.clone()
2535    }
2536
2537    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2538        self.parameters = parameters.clone();
2539    }
2540
2541    fn get_depth(&self) -> usize {
2542        1 // Dense layer is typically single depth
2543    }
2544
2545    fn get_gate_count(&self) -> usize {
2546        self.dense_structure.len() * 2 // Approximate gates per connection
2547    }
2548
2549    fn get_num_parameters(&self) -> usize {
2550        self.parameters.len()
2551    }
2552}
2553
2554impl QuantumDenseLayer {
2555    /// Apply dense connection (parameterized two-qubit gate)
2556    fn apply_dense_connection(
2557        &self,
2558        state: &Array1<Complex64>,
2559        connection: &DenseConnection,
2560    ) -> Result<Array1<Complex64>> {
2561        let angle = self.parameters[connection.parameter_index];
2562
2563        // Apply parameterized two-qubit rotation
2564        self.apply_parameterized_two_qubit_gate(state, connection.qubit1, connection.qubit2, angle)
2565    }
2566
2567    /// Apply parameterized two-qubit gate
2568    fn apply_parameterized_two_qubit_gate(
2569        &self,
2570        state: &Array1<Complex64>,
2571        qubit1: usize,
2572        qubit2: usize,
2573        angle: f64,
2574    ) -> Result<Array1<Complex64>> {
2575        let state_size = state.len();
2576        let mut new_state = state.clone();
2577
2578        // Apply controlled rotation
2579        let cos_val = angle.cos();
2580        let sin_val = angle.sin();
2581
2582        for i in 0..state_size {
2583            if (i & (1 << qubit1)) != 0 && (i & (1 << qubit2)) != 0 {
2584                // Both qubits are |1⟩
2585                let phase = Complex64::new(cos_val, sin_val);
2586                new_state[i] *= phase;
2587            }
2588        }
2589
2590        Ok(new_state)
2591    }
2592}
2593
2594/// Quantum LSTM Layer
2595#[derive(Debug)]
2596pub struct QuantumLSTMLayer {
2597    /// Number of qubits
2598    num_qubits: usize,
2599    /// Layer configuration
2600    config: QMLLayerConfig,
2601    /// Parameters
2602    parameters: Array1<f64>,
2603    /// LSTM gates
2604    lstm_gates: Vec<LSTMGate>,
2605    /// Hidden state
2606    hidden_state: Option<Array1<Complex64>>,
2607    /// Cell state
2608    cell_state: Option<Array1<Complex64>>,
2609}
2610
2611impl QuantumLSTMLayer {
2612    /// Create new quantum LSTM layer
2613    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2614        let mut layer = Self {
2615            num_qubits,
2616            config: config.clone(),
2617            parameters: Array1::zeros(config.num_parameters),
2618            lstm_gates: Vec::new(),
2619            hidden_state: None,
2620            cell_state: None,
2621        };
2622
2623        layer.initialize_parameters();
2624        layer.build_lstm_structure()?;
2625
2626        Ok(layer)
2627    }
2628
2629    /// Initialize parameters
2630    fn initialize_parameters(&mut self) {
2631        let mut rng = thread_rng();
2632        for param in self.parameters.iter_mut() {
2633            *param = rng.gen_range(-PI..PI);
2634        }
2635    }
2636
2637    /// Build LSTM structure
2638    fn build_lstm_structure(&mut self) -> Result<()> {
2639        let params_per_gate = self.parameters.len() / 4; // Forget, input, output, candidate gates
2640
2641        self.lstm_gates = vec![
2642            LSTMGate {
2643                gate_type: LSTMGateType::Forget,
2644                parameter_start: 0,
2645                parameter_count: params_per_gate,
2646            },
2647            LSTMGate {
2648                gate_type: LSTMGateType::Input,
2649                parameter_start: params_per_gate,
2650                parameter_count: params_per_gate,
2651            },
2652            LSTMGate {
2653                gate_type: LSTMGateType::Output,
2654                parameter_start: 2 * params_per_gate,
2655                parameter_count: params_per_gate,
2656            },
2657            LSTMGate {
2658                gate_type: LSTMGateType::Candidate,
2659                parameter_start: 3 * params_per_gate,
2660                parameter_count: params_per_gate,
2661            },
2662        ];
2663
2664        Ok(())
2665    }
2666}
2667
2668impl QMLLayer for QuantumLSTMLayer {
2669    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2670        // Initialize states if first time
2671        if self.hidden_state.is_none() {
2672            let state_size = 1 << self.num_qubits;
2673            self.hidden_state = Some(Array1::zeros(state_size));
2674            self.cell_state = Some(Array1::zeros(state_size));
2675            // Initialize with |0...0⟩ state
2676            self.hidden_state.as_mut().unwrap()[0] = Complex64::new(1.0, 0.0);
2677            self.cell_state.as_mut().unwrap()[0] = Complex64::new(1.0, 0.0);
2678        }
2679
2680        let mut current_state = input.clone();
2681
2682        // Apply LSTM gates
2683        for gate in &self.lstm_gates {
2684            current_state = self.apply_lstm_gate(&current_state, gate)?;
2685        }
2686
2687        // Update internal states
2688        self.hidden_state = Some(current_state.clone());
2689
2690        Ok(current_state)
2691    }
2692
2693    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2694        Ok(gradient.clone())
2695    }
2696
2697    fn get_parameters(&self) -> Array1<f64> {
2698        self.parameters.clone()
2699    }
2700
2701    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2702        self.parameters = parameters.clone();
2703    }
2704
2705    fn get_depth(&self) -> usize {
2706        self.lstm_gates.len()
2707    }
2708
2709    fn get_gate_count(&self) -> usize {
2710        self.parameters.len() // Each parameter corresponds roughly to one gate
2711    }
2712
2713    fn get_num_parameters(&self) -> usize {
2714        self.parameters.len()
2715    }
2716}
2717
2718impl QuantumLSTMLayer {
2719    /// Apply LSTM gate
2720    fn apply_lstm_gate(
2721        &self,
2722        state: &Array1<Complex64>,
2723        gate: &LSTMGate,
2724    ) -> Result<Array1<Complex64>> {
2725        let mut new_state = state.clone();
2726
2727        // Apply parameterized unitaries based on gate parameters
2728        for i in 0..gate.parameter_count {
2729            let param_idx = gate.parameter_start + i;
2730            if param_idx < self.parameters.len() {
2731                let angle = self.parameters[param_idx];
2732                let qubit = i % self.num_qubits;
2733
2734                // Apply rotation gate
2735                new_state = self.apply_rotation(&new_state, qubit, angle)?;
2736            }
2737        }
2738
2739        Ok(new_state)
2740    }
2741
2742    /// Apply rotation gate
2743    fn apply_rotation(
2744        &self,
2745        state: &Array1<Complex64>,
2746        qubit: usize,
2747        angle: f64,
2748    ) -> Result<Array1<Complex64>> {
2749        let state_size = state.len();
2750        let mut new_state = Array1::zeros(state_size);
2751
2752        let cos_half = (angle / 2.0).cos();
2753        let sin_half = (angle / 2.0).sin();
2754
2755        for i in 0..state_size {
2756            if i & (1 << qubit) == 0 {
2757                let j = i | (1 << qubit);
2758                if j < state_size {
2759                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2760                        - Complex64::new(sin_half, 0.0) * state[j];
2761                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2762                        + Complex64::new(cos_half, 0.0) * state[j];
2763                }
2764            }
2765        }
2766
2767        Ok(new_state)
2768    }
2769
2770    /// Get LSTM gates reference
2771    pub fn get_lstm_gates(&self) -> &[LSTMGate] {
2772        &self.lstm_gates
2773    }
2774}
2775
2776/// Quantum Attention Layer
2777#[derive(Debug)]
2778pub struct QuantumAttentionLayer {
2779    /// Number of qubits
2780    num_qubits: usize,
2781    /// Layer configuration
2782    config: QMLLayerConfig,
2783    /// Parameters
2784    parameters: Array1<f64>,
2785    /// Attention structure
2786    attention_structure: Vec<AttentionHead>,
2787}
2788
2789impl QuantumAttentionLayer {
2790    /// Create new quantum attention layer
2791    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2792        let mut layer = Self {
2793            num_qubits,
2794            config: config.clone(),
2795            parameters: Array1::zeros(config.num_parameters),
2796            attention_structure: Vec::new(),
2797        };
2798
2799        layer.initialize_parameters();
2800        layer.build_attention_structure()?;
2801
2802        Ok(layer)
2803    }
2804
2805    /// Initialize parameters
2806    fn initialize_parameters(&mut self) {
2807        let mut rng = thread_rng();
2808        for param in self.parameters.iter_mut() {
2809            *param = rng.gen_range(-PI..PI);
2810        }
2811    }
2812
2813    /// Build attention structure
2814    fn build_attention_structure(&mut self) -> Result<()> {
2815        let num_heads = 2; // Multi-head attention
2816        let params_per_head = self.parameters.len() / num_heads;
2817
2818        for head in 0..num_heads {
2819            self.attention_structure.push(AttentionHead {
2820                head_id: head,
2821                parameter_start: head * params_per_head,
2822                parameter_count: params_per_head,
2823                query_qubits: (0..self.num_qubits / 2).collect(),
2824                key_qubits: (self.num_qubits / 2..self.num_qubits).collect(),
2825            });
2826        }
2827
2828        Ok(())
2829    }
2830}
2831
2832impl QMLLayer for QuantumAttentionLayer {
2833    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2834        let mut state = input.clone();
2835
2836        // Apply attention heads
2837        for head in &self.attention_structure {
2838            state = self.apply_attention_head(&state, head)?;
2839        }
2840
2841        Ok(state)
2842    }
2843
2844    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2845        Ok(gradient.clone())
2846    }
2847
2848    fn get_parameters(&self) -> Array1<f64> {
2849        self.parameters.clone()
2850    }
2851
2852    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2853        self.parameters = parameters.clone();
2854    }
2855
2856    fn get_depth(&self) -> usize {
2857        self.attention_structure.len()
2858    }
2859
2860    fn get_gate_count(&self) -> usize {
2861        self.parameters.len()
2862    }
2863
2864    fn get_num_parameters(&self) -> usize {
2865        self.parameters.len()
2866    }
2867}
2868
2869impl QuantumAttentionLayer {
2870    /// Apply attention head
2871    fn apply_attention_head(
2872        &self,
2873        state: &Array1<Complex64>,
2874        head: &AttentionHead,
2875    ) -> Result<Array1<Complex64>> {
2876        let mut new_state = state.clone();
2877
2878        // Simplified quantum attention mechanism
2879        for i in 0..head.parameter_count {
2880            let param_idx = head.parameter_start + i;
2881            if param_idx < self.parameters.len() {
2882                let angle = self.parameters[param_idx];
2883
2884                // Apply cross-attention between query and key qubits
2885                if i < head.query_qubits.len() && i < head.key_qubits.len() {
2886                    let query_qubit = head.query_qubits[i];
2887                    let key_qubit = head.key_qubits[i];
2888
2889                    new_state =
2890                        self.apply_attention_gate(&new_state, query_qubit, key_qubit, angle)?;
2891                }
2892            }
2893        }
2894
2895        Ok(new_state)
2896    }
2897
2898    /// Apply attention gate (parameterized two-qubit interaction)
2899    fn apply_attention_gate(
2900        &self,
2901        state: &Array1<Complex64>,
2902        query_qubit: usize,
2903        key_qubit: usize,
2904        angle: f64,
2905    ) -> Result<Array1<Complex64>> {
2906        let state_size = state.len();
2907        let mut new_state = state.clone();
2908
2909        // Apply controlled rotation based on attention score
2910        let cos_val = angle.cos();
2911        let sin_val = angle.sin();
2912
2913        for i in 0..state_size {
2914            if (i & (1 << query_qubit)) != 0 {
2915                // Query qubit is |1⟩, apply attention
2916                let key_state = (i & (1 << key_qubit)) != 0;
2917                let attention_phase = if key_state {
2918                    Complex64::new(cos_val, sin_val)
2919                } else {
2920                    Complex64::new(cos_val, -sin_val)
2921                };
2922                new_state[i] *= attention_phase;
2923            }
2924        }
2925
2926        Ok(new_state)
2927    }
2928
2929    /// Get attention structure reference
2930    pub fn get_attention_structure(&self) -> &[AttentionHead] {
2931        &self.attention_structure
2932    }
2933}
2934
2935/// Training state for QML framework
2936#[derive(Debug, Clone)]
2937pub struct QMLTrainingState {
2938    /// Current epoch
2939    pub current_epoch: usize,
2940    /// Current learning rate
2941    pub current_learning_rate: f64,
2942    /// Best validation loss achieved
2943    pub best_validation_loss: f64,
2944    /// Patience counter for early stopping
2945    pub patience_counter: usize,
2946    /// Training loss history
2947    pub training_loss_history: Vec<f64>,
2948    /// Validation loss history
2949    pub validation_loss_history: Vec<f64>,
2950}
2951
2952impl QMLTrainingState {
2953    /// Create new training state
2954    pub fn new() -> Self {
2955        Self {
2956            current_epoch: 0,
2957            current_learning_rate: 0.01,
2958            best_validation_loss: f64::INFINITY,
2959            patience_counter: 0,
2960            training_loss_history: Vec::new(),
2961            validation_loss_history: Vec::new(),
2962        }
2963    }
2964}
2965
2966/// Training result for QML framework
2967#[derive(Debug, Clone)]
2968pub struct QMLTrainingResult {
2969    /// Final training loss
2970    pub final_training_loss: f64,
2971    /// Final validation loss
2972    pub final_validation_loss: f64,
2973    /// Best validation loss achieved
2974    pub best_validation_loss: f64,
2975    /// Number of epochs trained
2976    pub epochs_trained: usize,
2977    /// Total training time
2978    pub total_training_time: std::time::Duration,
2979    /// Training metrics per epoch
2980    pub training_metrics: Vec<QMLEpochMetrics>,
2981    /// Quantum advantage metrics
2982    pub quantum_advantage_metrics: QuantumAdvantageMetrics,
2983}
2984
2985/// Training metrics for a single epoch
2986#[derive(Debug, Clone)]
2987pub struct QMLEpochMetrics {
2988    /// Epoch number
2989    pub epoch: usize,
2990    /// Training loss
2991    pub training_loss: f64,
2992    /// Validation loss
2993    pub validation_loss: f64,
2994    /// Time taken for epoch
2995    pub epoch_time: std::time::Duration,
2996    /// Learning rate used
2997    pub learning_rate: f64,
2998}
2999
3000/// Quantum advantage metrics
3001#[derive(Debug, Clone, Serialize, Deserialize)]
3002pub struct QuantumAdvantageMetrics {
3003    /// Quantum volume achieved
3004    pub quantum_volume: f64,
3005    /// Classical simulation cost estimate
3006    pub classical_simulation_cost: f64,
3007    /// Quantum speedup factor
3008    pub quantum_speedup_factor: f64,
3009    /// Circuit depth
3010    pub circuit_depth: usize,
3011    /// Total gate count
3012    pub gate_count: usize,
3013    /// Entanglement measure
3014    pub entanglement_measure: f64,
3015}
3016
3017/// QML framework statistics
3018#[derive(Debug, Clone)]
3019pub struct QMLStats {
3020    /// Number of forward passes
3021    pub forward_passes: usize,
3022    /// Number of backward passes
3023    pub backward_passes: usize,
3024    /// Total training time
3025    pub total_training_time: std::time::Duration,
3026    /// Average epoch time
3027    pub average_epoch_time: std::time::Duration,
3028    /// Peak memory usage
3029    pub peak_memory_usage: usize,
3030    /// Number of parameters
3031    pub num_parameters: usize,
3032}
3033
3034impl QMLStats {
3035    /// Create new statistics
3036    pub fn new() -> Self {
3037        Self {
3038            forward_passes: 0,
3039            backward_passes: 0,
3040            total_training_time: std::time::Duration::from_secs(0),
3041            average_epoch_time: std::time::Duration::from_secs(0),
3042            peak_memory_usage: 0,
3043            num_parameters: 0,
3044        }
3045    }
3046}
3047
3048/// Parameterized quantum circuit gate
3049#[derive(Debug, Clone)]
3050pub struct PQCGate {
3051    /// Gate type
3052    pub gate_type: PQCGateType,
3053    /// Qubits involved
3054    pub qubits: Vec<usize>,
3055    /// Parameter index (if parameterized)
3056    pub parameter_index: Option<usize>,
3057}
3058
3059/// Types of PQC gates
3060#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3061pub enum PQCGateType {
3062    /// Single-qubit rotation gate
3063    SingleQubit(RotationGate),
3064    /// Two-qubit gate
3065    TwoQubit(TwoQubitGate),
3066}
3067
3068/// Two-qubit gates
3069#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3070pub enum TwoQubitGate {
3071    /// CNOT gate
3072    CNOT,
3073    /// Controlled-Z gate
3074    CZ,
3075    /// Swap gate
3076    SWAP,
3077    /// Controlled-Phase gate
3078    CPhase,
3079}
3080
3081/// Convolutional filter structure
3082#[derive(Debug, Clone)]
3083pub struct ConvolutionalFilter {
3084    /// Qubits in the filter
3085    pub qubits: Vec<usize>,
3086    /// Parameter indices
3087    pub parameter_indices: Vec<usize>,
3088}
3089
3090/// Dense layer connection
3091#[derive(Debug, Clone)]
3092pub struct DenseConnection {
3093    /// First qubit
3094    pub qubit1: usize,
3095    /// Second qubit
3096    pub qubit2: usize,
3097    /// Parameter index
3098    pub parameter_index: usize,
3099}
3100
3101/// LSTM gate structure
3102#[derive(Debug, Clone)]
3103pub struct LSTMGate {
3104    /// LSTM gate type
3105    pub gate_type: LSTMGateType,
3106    /// Starting parameter index
3107    pub parameter_start: usize,
3108    /// Number of parameters
3109    pub parameter_count: usize,
3110}
3111
3112/// LSTM gate types
3113#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3114pub enum LSTMGateType {
3115    /// Forget gate
3116    Forget,
3117    /// Input gate
3118    Input,
3119    /// Output gate
3120    Output,
3121    /// Candidate values
3122    Candidate,
3123}
3124
3125/// Attention head structure
3126#[derive(Debug, Clone)]
3127pub struct AttentionHead {
3128    /// Head identifier
3129    pub head_id: usize,
3130    /// Starting parameter index
3131    pub parameter_start: usize,
3132    /// Number of parameters
3133    pub parameter_count: usize,
3134    /// Query qubits
3135    pub query_qubits: Vec<usize>,
3136    /// Key qubits
3137    pub key_qubits: Vec<usize>,
3138}
3139
3140/// QML benchmark results
3141#[derive(Debug, Clone, Serialize, Deserialize)]
3142pub struct QMLBenchmarkResults {
3143    /// Training time per method
3144    pub training_times: HashMap<String, std::time::Duration>,
3145    /// Final accuracies
3146    pub final_accuracies: HashMap<String, f64>,
3147    /// Convergence rates
3148    pub convergence_rates: HashMap<String, f64>,
3149    /// Memory usage
3150    pub memory_usage: HashMap<String, usize>,
3151    /// Quantum advantage metrics
3152    pub quantum_advantage: HashMap<String, QuantumAdvantageMetrics>,
3153    /// Parameter counts
3154    pub parameter_counts: HashMap<String, usize>,
3155    /// Circuit depths
3156    pub circuit_depths: HashMap<String, usize>,
3157    /// Gate counts
3158    pub gate_counts: HashMap<String, usize>,
3159}
3160
3161/// Utility functions for QML
3162pub struct QMLUtils;
3163
3164impl QMLUtils {
3165    /// Generate synthetic training data for testing
3166    pub fn generate_synthetic_data(
3167        num_samples: usize,
3168        input_dim: usize,
3169        output_dim: usize,
3170    ) -> (Vec<Array1<f64>>, Vec<Array1<f64>>) {
3171        let mut rng = thread_rng();
3172        let mut inputs = Vec::new();
3173        let mut outputs = Vec::new();
3174
3175        for _ in 0..num_samples {
3176            let input =
3177                Array1::from_vec((0..input_dim).map(|_| rng.gen_range(-1.0..1.0)).collect());
3178
3179            // Generate output based on some function of input
3180            let output = Array1::from_vec(
3181                (0..output_dim)
3182                    .map(|i| {
3183                        if i < input_dim {
3184                            (input[i] as f64).sin() // Simple nonlinear transformation
3185                        } else {
3186                            rng.gen_range(-1.0..1.0)
3187                        }
3188                    })
3189                    .collect(),
3190            );
3191
3192            inputs.push(input);
3193            outputs.push(output);
3194        }
3195
3196        (inputs, outputs)
3197    }
3198
3199    /// Split data into training and validation sets
3200    pub fn train_test_split(
3201        inputs: Vec<Array1<f64>>,
3202        outputs: Vec<Array1<f64>>,
3203        test_ratio: f64,
3204    ) -> (
3205        Vec<(Array1<f64>, Array1<f64>)>,
3206        Vec<(Array1<f64>, Array1<f64>)>,
3207    ) {
3208        let total_samples = inputs.len();
3209        let test_samples = ((total_samples as f64) * test_ratio) as usize;
3210        let train_samples = total_samples - test_samples;
3211
3212        let mut combined: Vec<(Array1<f64>, Array1<f64>)> =
3213            inputs.into_iter().zip(outputs).collect();
3214
3215        // Shuffle data
3216        let mut rng = thread_rng();
3217        for i in (1..combined.len()).rev() {
3218            let j = rng.gen_range(0..=i);
3219            combined.swap(i, j);
3220        }
3221
3222        let (train_data, test_data) = combined.split_at(train_samples);
3223        (train_data.to_vec(), test_data.to_vec())
3224    }
3225
3226    /// Evaluate model accuracy
3227    pub fn evaluate_accuracy(
3228        predictions: &[Array1<f64>],
3229        targets: &[Array1<f64>],
3230        threshold: f64,
3231    ) -> f64 {
3232        let mut correct = 0;
3233        let total = predictions.len();
3234
3235        for (pred, target) in predictions.iter().zip(targets.iter()) {
3236            let diff = pred - target;
3237            let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
3238            if mse < threshold {
3239                correct += 1;
3240            }
3241        }
3242
3243        correct as f64 / total as f64
3244    }
3245
3246    /// Compute quantum circuit complexity metrics
3247    pub fn compute_circuit_complexity(
3248        num_qubits: usize,
3249        depth: usize,
3250        gate_count: usize,
3251    ) -> HashMap<String, f64> {
3252        let mut metrics = HashMap::new();
3253
3254        // State space size
3255        let state_space_size = 2.0_f64.powi(num_qubits as i32);
3256        metrics.insert("state_space_size".to_string(), state_space_size);
3257
3258        // Circuit complexity (depth * gates)
3259        let circuit_complexity = (depth * gate_count) as f64;
3260        metrics.insert("circuit_complexity".to_string(), circuit_complexity);
3261
3262        // Classical simulation cost estimate
3263        let classical_cost = state_space_size * gate_count as f64;
3264        metrics.insert("classical_simulation_cost".to_string(), classical_cost);
3265
3266        // Quantum advantage estimate (log scale)
3267        let quantum_advantage = classical_cost.log2() / circuit_complexity.log2();
3268        metrics.insert("quantum_advantage_estimate".to_string(), quantum_advantage);
3269
3270        metrics
3271    }
3272}
3273
3274/// Benchmark quantum machine learning implementations
3275pub fn benchmark_quantum_ml_layers(config: &QMLConfig) -> Result<QMLBenchmarkResults> {
3276    let mut results = QMLBenchmarkResults {
3277        training_times: HashMap::new(),
3278        final_accuracies: HashMap::new(),
3279        convergence_rates: HashMap::new(),
3280        memory_usage: HashMap::new(),
3281        quantum_advantage: HashMap::new(),
3282        parameter_counts: HashMap::new(),
3283        circuit_depths: HashMap::new(),
3284        gate_counts: HashMap::new(),
3285    };
3286
3287    // Generate test data
3288    let (inputs, outputs) =
3289        QMLUtils::generate_synthetic_data(100, config.num_qubits, config.num_qubits);
3290    let (train_data, val_data) = QMLUtils::train_test_split(inputs, outputs, 0.2);
3291
3292    // Benchmark different QML architectures
3293    let architectures = vec![
3294        QMLArchitectureType::VariationalQuantumCircuit,
3295        QMLArchitectureType::QuantumConvolutionalNN,
3296        // Add more architectures as needed
3297    ];
3298
3299    for architecture in architectures {
3300        let arch_name = format!("{:?}", architecture);
3301
3302        // Create configuration for this architecture
3303        let mut arch_config = config.clone();
3304        arch_config.architecture_type = architecture;
3305
3306        // Create and train model
3307        let start_time = std::time::Instant::now();
3308        let mut framework = QuantumMLFramework::new(arch_config)?;
3309
3310        let training_result = framework.train(&train_data, Some(&val_data))?;
3311        let training_time = start_time.elapsed();
3312
3313        // Evaluate final accuracy
3314        let final_accuracy = framework.evaluate(&val_data)?;
3315
3316        // Store results
3317        results
3318            .training_times
3319            .insert(arch_name.clone(), training_time);
3320        results
3321            .final_accuracies
3322            .insert(arch_name.clone(), 1.0 / (1.0 + final_accuracy)); // Convert loss to accuracy
3323        results.convergence_rates.insert(
3324            arch_name.clone(),
3325            training_result.epochs_trained as f64 / config.training_config.epochs as f64,
3326        );
3327        results
3328            .memory_usage
3329            .insert(arch_name.clone(), framework.get_stats().peak_memory_usage);
3330        results
3331            .quantum_advantage
3332            .insert(arch_name.clone(), training_result.quantum_advantage_metrics);
3333        results.parameter_counts.insert(
3334            arch_name.clone(),
3335            framework
3336                .layers
3337                .iter()
3338                .map(|l| l.get_num_parameters())
3339                .sum(),
3340        );
3341        results.circuit_depths.insert(
3342            arch_name.clone(),
3343            framework.layers.iter().map(|l| l.get_depth()).sum(),
3344        );
3345        results.gate_counts.insert(
3346            arch_name.clone(),
3347            framework.layers.iter().map(|l| l.get_gate_count()).sum(),
3348        );
3349    }
3350
3351    Ok(results)
3352}