quantrs2_sim/
quantum_machine_learning_layers.rs

1//! Quantum Machine Learning Layers Framework
2//!
3//! This module provides a comprehensive implementation of quantum machine learning layers,
4//! including parameterized quantum circuits, quantum convolutional layers, quantum recurrent
5//! networks, and hybrid classical-quantum training algorithms. This framework enables
6//! quantum advantage in machine learning applications with hardware-aware optimization.
7
8use scirs2_core::ndarray::Array1;
9use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
10use scirs2_core::random::{thread_rng, Rng};
11use scirs2_core::Complex64;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use crate::statevector::StateVectorSimulator;
19use scirs2_core::random::prelude::*;
20
21/// Quantum machine learning configuration
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct QMLConfig {
24    /// Number of qubits in the quantum layer
25    pub num_qubits: usize,
26    /// QML architecture type
27    pub architecture_type: QMLArchitectureType,
28    /// Layer configuration for each QML layer
29    pub layer_configs: Vec<QMLLayerConfig>,
30    /// Training algorithm configuration
31    pub training_config: QMLTrainingConfig,
32    /// Hardware-aware optimization settings
33    pub hardware_optimization: HardwareOptimizationConfig,
34    /// Classical preprocessing configuration
35    pub classical_preprocessing: ClassicalPreprocessingConfig,
36    /// Hybrid training configuration
37    pub hybrid_training: HybridTrainingConfig,
38    /// Enable quantum advantage analysis
39    pub quantum_advantage_analysis: bool,
40    /// Noise-aware training settings
41    pub noise_aware_training: NoiseAwareTrainingConfig,
42    /// Performance optimization settings
43    pub performance_optimization: PerformanceOptimizationConfig,
44}
45
46impl Default for QMLConfig {
47    fn default() -> Self {
48        Self {
49            num_qubits: 8,
50            architecture_type: QMLArchitectureType::VariationalQuantumCircuit,
51            layer_configs: vec![QMLLayerConfig {
52                layer_type: QMLLayerType::ParameterizedQuantumCircuit,
53                num_parameters: 16,
54                ansatz_type: AnsatzType::Hardware,
55                entanglement_pattern: EntanglementPattern::Linear,
56                rotation_gates: vec![RotationGate::RY, RotationGate::RZ],
57                depth: 4,
58                enable_gradient_computation: true,
59            }],
60            training_config: QMLTrainingConfig::default(),
61            hardware_optimization: HardwareOptimizationConfig::default(),
62            classical_preprocessing: ClassicalPreprocessingConfig::default(),
63            hybrid_training: HybridTrainingConfig::default(),
64            quantum_advantage_analysis: true,
65            noise_aware_training: NoiseAwareTrainingConfig::default(),
66            performance_optimization: PerformanceOptimizationConfig::default(),
67        }
68    }
69}
70
71/// QML architecture types
72#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
73pub enum QMLArchitectureType {
74    /// Variational Quantum Circuit (VQC)
75    VariationalQuantumCircuit,
76    /// Quantum Convolutional Neural Network
77    QuantumConvolutionalNN,
78    /// Quantum Recurrent Neural Network
79    QuantumRecurrentNN,
80    /// Quantum Graph Neural Network
81    QuantumGraphNN,
82    /// Quantum Attention Network
83    QuantumAttentionNetwork,
84    /// Quantum Transformer
85    QuantumTransformer,
86    /// Hybrid Classical-Quantum Network
87    HybridClassicalQuantum,
88    /// Quantum Boltzmann Machine
89    QuantumBoltzmannMachine,
90    /// Quantum Generative Adversarial Network
91    QuantumGAN,
92    /// Quantum Autoencoder
93    QuantumAutoencoder,
94}
95
96/// QML layer configuration
97#[derive(Debug, Clone, Serialize, Deserialize)]
98pub struct QMLLayerConfig {
99    /// Type of QML layer
100    pub layer_type: QMLLayerType,
101    /// Number of trainable parameters
102    pub num_parameters: usize,
103    /// Ansatz type for parameterized circuits
104    pub ansatz_type: AnsatzType,
105    /// Entanglement pattern
106    pub entanglement_pattern: EntanglementPattern,
107    /// Rotation gates to use
108    pub rotation_gates: Vec<RotationGate>,
109    /// Circuit depth
110    pub depth: usize,
111    /// Enable gradient computation
112    pub enable_gradient_computation: bool,
113}
114
115/// Types of QML layers
116#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
117pub enum QMLLayerType {
118    /// Parameterized Quantum Circuit layer
119    ParameterizedQuantumCircuit,
120    /// Quantum Convolutional layer
121    QuantumConvolutional,
122    /// Quantum Pooling layer
123    QuantumPooling,
124    /// Quantum Dense layer (fully connected)
125    QuantumDense,
126    /// Quantum LSTM layer
127    QuantumLSTM,
128    /// Quantum GRU layer
129    QuantumGRU,
130    /// Quantum Attention layer
131    QuantumAttention,
132    /// Quantum Dropout layer
133    QuantumDropout,
134    /// Quantum Batch Normalization layer
135    QuantumBatchNorm,
136    /// Data Re-uploading layer
137    DataReUpload,
138}
139
140/// Ansatz types for parameterized quantum circuits
141#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
142pub enum AnsatzType {
143    /// Hardware-efficient ansatz
144    Hardware,
145    /// Problem-specific ansatz
146    ProblemSpecific,
147    /// All-to-all connectivity ansatz
148    AllToAll,
149    /// Layered ansatz
150    Layered,
151    /// Alternating ansatz
152    Alternating,
153    /// Brick-wall ansatz
154    BrickWall,
155    /// Tree ansatz
156    Tree,
157    /// Custom ansatz
158    Custom,
159}
160
161/// Entanglement patterns
162#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
163pub enum EntanglementPattern {
164    /// Linear entanglement chain
165    Linear,
166    /// Circular entanglement
167    Circular,
168    /// All-to-all entanglement
169    AllToAll,
170    /// Star topology entanglement
171    Star,
172    /// Grid topology entanglement
173    Grid,
174    /// Random entanglement
175    Random,
176    /// Block entanglement
177    Block,
178    /// Custom pattern
179    Custom,
180}
181
182/// Rotation gates for parameterized circuits
183#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
184pub enum RotationGate {
185    /// Rotation around X-axis
186    RX,
187    /// Rotation around Y-axis
188    RY,
189    /// Rotation around Z-axis
190    RZ,
191    /// Arbitrary single-qubit rotation
192    U3,
193    /// Phase gate
194    Phase,
195}
196
197/// QML training configuration
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub struct QMLTrainingConfig {
200    /// Training algorithm type
201    pub algorithm: QMLTrainingAlgorithm,
202    /// Learning rate
203    pub learning_rate: f64,
204    /// Number of training epochs
205    pub epochs: usize,
206    /// Batch size
207    pub batch_size: usize,
208    /// Gradient computation method
209    pub gradient_method: GradientMethod,
210    /// Optimizer type
211    pub optimizer: OptimizerType,
212    /// Regularization parameters
213    pub regularization: RegularizationConfig,
214    /// Early stopping configuration
215    pub early_stopping: EarlyStoppingConfig,
216    /// Learning rate scheduling
217    pub lr_schedule: LearningRateSchedule,
218}
219
220impl Default for QMLTrainingConfig {
221    fn default() -> Self {
222        Self {
223            algorithm: QMLTrainingAlgorithm::ParameterShift,
224            learning_rate: 0.01,
225            epochs: 100,
226            batch_size: 32,
227            gradient_method: GradientMethod::ParameterShift,
228            optimizer: OptimizerType::Adam,
229            regularization: RegularizationConfig::default(),
230            early_stopping: EarlyStoppingConfig::default(),
231            lr_schedule: LearningRateSchedule::Constant,
232        }
233    }
234}
235
236/// QML training algorithms
237#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
238pub enum QMLTrainingAlgorithm {
239    /// Parameter-shift rule gradient descent
240    ParameterShift,
241    /// Finite difference gradient descent
242    FiniteDifference,
243    /// Quantum Natural Gradient
244    QuantumNaturalGradient,
245    /// SPSA (Simultaneous Perturbation Stochastic Approximation)
246    SPSA,
247    /// Quantum Approximate Optimization Algorithm
248    QAOA,
249    /// Variational Quantum Eigensolver
250    VQE,
251    /// Quantum Machine Learning with Rotosolve
252    Rotosolve,
253    /// Hybrid Classical-Quantum training
254    HybridTraining,
255}
256
257/// Gradient computation methods
258#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
259pub enum GradientMethod {
260    /// Parameter-shift rule
261    ParameterShift,
262    /// Finite difference
263    FiniteDifference,
264    /// Adjoint differentiation
265    Adjoint,
266    /// Backpropagation through quantum circuit
267    Backpropagation,
268    /// Quantum Fisher Information
269    QuantumFisherInformation,
270}
271
272/// Optimizer types
273#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
274pub enum OptimizerType {
275    /// Stochastic Gradient Descent
276    SGD,
277    /// Adam optimizer
278    Adam,
279    /// `AdaGrad` optimizer
280    AdaGrad,
281    /// `RMSprop` optimizer
282    RMSprop,
283    /// Momentum optimizer
284    Momentum,
285    /// L-BFGS optimizer
286    LBFGS,
287    /// Quantum Natural Gradient
288    QuantumNaturalGradient,
289    /// SPSA optimizer
290    SPSA,
291}
292
293/// Regularization configuration
294#[derive(Debug, Clone, Serialize, Deserialize)]
295pub struct RegularizationConfig {
296    /// L1 regularization strength
297    pub l1_strength: f64,
298    /// L2 regularization strength
299    pub l2_strength: f64,
300    /// Dropout probability
301    pub dropout_prob: f64,
302    /// Parameter constraint bounds
303    pub parameter_bounds: Option<(f64, f64)>,
304    /// Enable parameter clipping
305    pub enable_clipping: bool,
306    /// Gradient clipping threshold
307    pub gradient_clip_threshold: f64,
308}
309
310impl Default for RegularizationConfig {
311    fn default() -> Self {
312        Self {
313            l1_strength: 0.0,
314            l2_strength: 0.001,
315            dropout_prob: 0.1,
316            parameter_bounds: Some((-PI, PI)),
317            enable_clipping: true,
318            gradient_clip_threshold: 1.0,
319        }
320    }
321}
322
323/// Early stopping configuration
324#[derive(Debug, Clone, Serialize, Deserialize)]
325pub struct EarlyStoppingConfig {
326    /// Enable early stopping
327    pub enabled: bool,
328    /// Patience (number of epochs without improvement)
329    pub patience: usize,
330    /// Minimum improvement threshold
331    pub min_delta: f64,
332    /// Metric to monitor
333    pub monitor_metric: String,
334    /// Whether higher values are better
335    pub mode_max: bool,
336}
337
338impl Default for EarlyStoppingConfig {
339    fn default() -> Self {
340        Self {
341            enabled: true,
342            patience: 10,
343            min_delta: 1e-6,
344            monitor_metric: "val_loss".to_string(),
345            mode_max: false,
346        }
347    }
348}
349
350/// Learning rate schedules
351#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
352pub enum LearningRateSchedule {
353    /// Constant learning rate
354    Constant,
355    /// Exponential decay
356    ExponentialDecay,
357    /// Step decay
358    StepDecay,
359    /// Cosine annealing
360    CosineAnnealing,
361    /// Warm restart
362    WarmRestart,
363    /// Reduce on plateau
364    ReduceOnPlateau,
365}
366
367/// Hardware optimization configuration
368#[derive(Debug, Clone, Serialize, Deserialize)]
369pub struct HardwareOptimizationConfig {
370    /// Target quantum hardware
371    pub target_hardware: QuantumHardwareTarget,
372    /// Enable gate count minimization
373    pub minimize_gate_count: bool,
374    /// Enable circuit depth minimization
375    pub minimize_depth: bool,
376    /// Enable noise-aware optimization
377    pub noise_aware: bool,
378    /// Connectivity constraints
379    pub connectivity_constraints: ConnectivityConstraints,
380    /// Gate fidelity constraints
381    pub gate_fidelities: HashMap<String, f64>,
382    /// Enable parallelization
383    pub enable_parallelization: bool,
384    /// Compilation optimization level
385    pub optimization_level: HardwareOptimizationLevel,
386}
387
388impl Default for HardwareOptimizationConfig {
389    fn default() -> Self {
390        let mut gate_fidelities = HashMap::new();
391        gate_fidelities.insert("single_qubit".to_string(), 0.999);
392        gate_fidelities.insert("two_qubit".to_string(), 0.99);
393
394        Self {
395            target_hardware: QuantumHardwareTarget::Simulator,
396            minimize_gate_count: true,
397            minimize_depth: true,
398            noise_aware: false,
399            connectivity_constraints: ConnectivityConstraints::AllToAll,
400            gate_fidelities,
401            enable_parallelization: true,
402            optimization_level: HardwareOptimizationLevel::Medium,
403        }
404    }
405}
406
407/// Quantum hardware targets
408#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
409pub enum QuantumHardwareTarget {
410    /// Generic simulator
411    Simulator,
412    /// IBM Quantum devices
413    IBM,
414    /// Google Quantum AI devices
415    Google,
416    /// `IonQ` devices
417    IonQ,
418    /// Rigetti devices
419    Rigetti,
420    /// Honeywell/Quantinuum devices
421    Quantinuum,
422    /// Xanadu devices
423    Xanadu,
424    /// Custom hardware specification
425    Custom,
426}
427
428/// Connectivity constraints
429#[derive(Debug, Clone, Serialize, Deserialize)]
430pub enum ConnectivityConstraints {
431    /// All-to-all connectivity
432    AllToAll,
433    /// Linear chain connectivity
434    Linear,
435    /// Grid connectivity
436    Grid(usize, usize), // rows, cols
437    /// Custom connectivity graph
438    Custom(Vec<(usize, usize)>), // edge list
439    /// Heavy-hex connectivity (IBM)
440    HeavyHex,
441    /// Square lattice connectivity
442    Square,
443}
444
445/// Hardware optimization levels
446#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
447pub enum HardwareOptimizationLevel {
448    /// Basic optimization
449    Basic,
450    /// Medium optimization
451    Medium,
452    /// Aggressive optimization
453    Aggressive,
454    /// Maximum optimization
455    Maximum,
456}
457
458/// Classical preprocessing configuration
459#[derive(Debug, Clone, Serialize, Deserialize)]
460pub struct ClassicalPreprocessingConfig {
461    /// Enable feature scaling
462    pub feature_scaling: bool,
463    /// Scaling method
464    pub scaling_method: ScalingMethod,
465    /// Principal Component Analysis
466    pub enable_pca: bool,
467    /// Number of PCA components
468    pub pca_components: Option<usize>,
469    /// Data encoding method
470    pub encoding_method: DataEncodingMethod,
471    /// Feature selection
472    pub feature_selection: FeatureSelectionConfig,
473}
474
475impl Default for ClassicalPreprocessingConfig {
476    fn default() -> Self {
477        Self {
478            feature_scaling: true,
479            scaling_method: ScalingMethod::StandardScaler,
480            enable_pca: false,
481            pca_components: None,
482            encoding_method: DataEncodingMethod::Amplitude,
483            feature_selection: FeatureSelectionConfig::default(),
484        }
485    }
486}
487
488/// Scaling methods for classical preprocessing
489#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
490pub enum ScalingMethod {
491    /// Standard scaling (z-score normalization)
492    StandardScaler,
493    /// Min-max scaling
494    MinMaxScaler,
495    /// Robust scaling
496    RobustScaler,
497    /// Quantile uniform scaling
498    QuantileUniform,
499    /// Power transformation
500    PowerTransformer,
501}
502
503/// Data encoding methods for quantum circuits
504#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
505pub enum DataEncodingMethod {
506    /// Amplitude encoding
507    Amplitude,
508    /// Angle encoding
509    Angle,
510    /// Basis encoding
511    Basis,
512    /// Quantum feature maps
513    QuantumFeatureMap,
514    /// IQP encoding
515    IQP,
516    /// Pauli feature maps
517    PauliFeatureMap,
518    /// Data re-uploading
519    DataReUpload,
520}
521
522/// Feature selection configuration
523#[derive(Debug, Clone, Serialize, Deserialize)]
524pub struct FeatureSelectionConfig {
525    /// Enable feature selection
526    pub enabled: bool,
527    /// Feature selection method
528    pub method: FeatureSelectionMethod,
529    /// Number of features to select
530    pub num_features: Option<usize>,
531    /// Selection threshold
532    pub threshold: f64,
533}
534
535impl Default for FeatureSelectionConfig {
536    fn default() -> Self {
537        Self {
538            enabled: false,
539            method: FeatureSelectionMethod::VarianceThreshold,
540            num_features: None,
541            threshold: 0.0,
542        }
543    }
544}
545
546/// Feature selection methods
547#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
548pub enum FeatureSelectionMethod {
549    /// Variance threshold
550    VarianceThreshold,
551    /// Univariate statistical tests
552    UnivariateSelection,
553    /// Recursive feature elimination
554    RecursiveFeatureElimination,
555    /// L1-based feature selection
556    L1Based,
557    /// Tree-based feature selection
558    TreeBased,
559    /// Quantum feature importance
560    QuantumFeatureImportance,
561}
562
563/// Hybrid training configuration
564#[derive(Debug, Clone, Serialize, Deserialize)]
565pub struct HybridTrainingConfig {
566    /// Enable hybrid classical-quantum training
567    pub enabled: bool,
568    /// Classical neural network architecture
569    pub classical_architecture: ClassicalArchitecture,
570    /// Quantum-classical interface
571    pub interface_config: QuantumClassicalInterface,
572    /// Alternating training schedule
573    pub alternating_schedule: AlternatingSchedule,
574    /// Gradient flow configuration
575    pub gradient_flow: GradientFlowConfig,
576}
577
578impl Default for HybridTrainingConfig {
579    fn default() -> Self {
580        Self {
581            enabled: false,
582            classical_architecture: ClassicalArchitecture::MLP,
583            interface_config: QuantumClassicalInterface::Expectation,
584            alternating_schedule: AlternatingSchedule::Simultaneous,
585            gradient_flow: GradientFlowConfig::default(),
586        }
587    }
588}
589
590/// Classical neural network architectures for hybrid training
591#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
592pub enum ClassicalArchitecture {
593    /// Multi-layer perceptron
594    MLP,
595    /// Convolutional neural network
596    CNN,
597    /// Recurrent neural network
598    RNN,
599    /// Long short-term memory
600    LSTM,
601    /// Transformer
602    Transformer,
603    /// `ResNet`
604    ResNet,
605    /// Custom architecture
606    Custom,
607}
608
609/// Quantum-classical interfaces
610#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
611pub enum QuantumClassicalInterface {
612    /// Expectation value measurement
613    Expectation,
614    /// Sampling-based measurement
615    Sampling,
616    /// Quantum state tomography
617    StateTomography,
618    /// Process tomography
619    ProcessTomography,
620    /// Shadow tomography
621    ShadowTomography,
622}
623
624/// Alternating training schedules for hybrid systems
625#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
626pub enum AlternatingSchedule {
627    /// Train classical and quantum parts simultaneously
628    Simultaneous,
629    /// Alternate between classical and quantum training
630    Alternating,
631    /// Train classical first, then quantum
632    ClassicalFirst,
633    /// Train quantum first, then classical
634    QuantumFirst,
635    /// Custom schedule
636    Custom,
637}
638
639/// Gradient flow configuration for hybrid training
640#[derive(Debug, Clone, Serialize, Deserialize)]
641pub struct GradientFlowConfig {
642    /// Enable gradient flow from classical to quantum
643    pub classical_to_quantum: bool,
644    /// Enable gradient flow from quantum to classical
645    pub quantum_to_classical: bool,
646    /// Gradient scaling factor
647    pub gradient_scaling: f64,
648    /// Enable gradient clipping
649    pub enable_clipping: bool,
650    /// Gradient accumulation steps
651    pub accumulation_steps: usize,
652}
653
654impl Default for GradientFlowConfig {
655    fn default() -> Self {
656        Self {
657            classical_to_quantum: true,
658            quantum_to_classical: true,
659            gradient_scaling: 1.0,
660            enable_clipping: true,
661            accumulation_steps: 1,
662        }
663    }
664}
665
666/// Noise-aware training configuration
667#[derive(Debug, Clone, Serialize, Deserialize, Default)]
668pub struct NoiseAwareTrainingConfig {
669    /// Enable noise-aware training
670    pub enabled: bool,
671    /// Noise model parameters
672    pub noise_parameters: NoiseParameters,
673    /// Error mitigation techniques
674    pub error_mitigation: ErrorMitigationConfig,
675    /// Noise characterization
676    pub noise_characterization: NoiseCharacterizationConfig,
677    /// Robust training methods
678    pub robust_training: RobustTrainingConfig,
679}
680
681/// Noise parameters for quantum devices
682#[derive(Debug, Clone, Serialize, Deserialize)]
683pub struct NoiseParameters {
684    /// Single-qubit gate error rates
685    pub single_qubit_error: f64,
686    /// Two-qubit gate error rates
687    pub two_qubit_error: f64,
688    /// Measurement error rates
689    pub measurement_error: f64,
690    /// Coherence times (T1, T2)
691    pub coherence_times: (f64, f64),
692    /// Gate times
693    pub gate_times: HashMap<String, f64>,
694}
695
696impl Default for NoiseParameters {
697    fn default() -> Self {
698        let mut gate_times = HashMap::new();
699        gate_times.insert("single_qubit".to_string(), 50e-9); // 50 ns
700        gate_times.insert("two_qubit".to_string(), 200e-9); // 200 ns
701
702        Self {
703            single_qubit_error: 0.001,
704            two_qubit_error: 0.01,
705            measurement_error: 0.01,
706            coherence_times: (50e-6, 100e-6), // T1 = 50 μs, T2 = 100 μs
707            gate_times,
708        }
709    }
710}
711
712/// Error mitigation configuration
713#[derive(Debug, Clone, Serialize, Deserialize, Default)]
714pub struct ErrorMitigationConfig {
715    /// Enable zero-noise extrapolation
716    pub zero_noise_extrapolation: bool,
717    /// Enable readout error mitigation
718    pub readout_error_mitigation: bool,
719    /// Enable symmetry verification
720    pub symmetry_verification: bool,
721    /// Virtual distillation parameters
722    pub virtual_distillation: VirtualDistillationConfig,
723    /// Quantum error correction
724    pub quantum_error_correction: bool,
725}
726
727/// Virtual distillation configuration
728#[derive(Debug, Clone, Serialize, Deserialize)]
729pub struct VirtualDistillationConfig {
730    /// Enable virtual distillation
731    pub enabled: bool,
732    /// Number of copies for distillation
733    pub num_copies: usize,
734    /// Distillation protocol
735    pub protocol: DistillationProtocol,
736}
737
738impl Default for VirtualDistillationConfig {
739    fn default() -> Self {
740        Self {
741            enabled: false,
742            num_copies: 2,
743            protocol: DistillationProtocol::Standard,
744        }
745    }
746}
747
748/// Distillation protocols
749#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
750pub enum DistillationProtocol {
751    /// Standard distillation
752    Standard,
753    /// Improved distillation
754    Improved,
755    /// Quantum advantage distillation
756    QuantumAdvantage,
757}
758
759/// Noise characterization configuration
760#[derive(Debug, Clone, Serialize, Deserialize)]
761pub struct NoiseCharacterizationConfig {
762    /// Enable noise characterization
763    pub enabled: bool,
764    /// Characterization method
765    pub method: NoiseCharacterizationMethod,
766    /// Benchmarking protocols
767    pub benchmarking: BenchmarkingProtocols,
768    /// Calibration frequency
769    pub calibration_frequency: CalibrationFrequency,
770}
771
772impl Default for NoiseCharacterizationConfig {
773    fn default() -> Self {
774        Self {
775            enabled: false,
776            method: NoiseCharacterizationMethod::ProcessTomography,
777            benchmarking: BenchmarkingProtocols::default(),
778            calibration_frequency: CalibrationFrequency::Daily,
779        }
780    }
781}
782
783/// Noise characterization methods
784#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
785pub enum NoiseCharacterizationMethod {
786    /// Quantum process tomography
787    ProcessTomography,
788    /// Randomized benchmarking
789    RandomizedBenchmarking,
790    /// Gate set tomography
791    GateSetTomography,
792    /// Quantum detector tomography
793    QuantumDetectorTomography,
794    /// Cross-entropy benchmarking
795    CrossEntropyBenchmarking,
796}
797
798/// Benchmarking protocols
799#[derive(Debug, Clone, Serialize, Deserialize)]
800pub struct BenchmarkingProtocols {
801    /// Enable randomized benchmarking
802    pub randomized_benchmarking: bool,
803    /// Enable quantum volume
804    pub quantum_volume: bool,
805    /// Enable cross-entropy benchmarking
806    pub cross_entropy_benchmarking: bool,
807    /// Enable mirror benchmarking
808    pub mirror_benchmarking: bool,
809}
810
811impl Default for BenchmarkingProtocols {
812    fn default() -> Self {
813        Self {
814            randomized_benchmarking: true,
815            quantum_volume: false,
816            cross_entropy_benchmarking: false,
817            mirror_benchmarking: false,
818        }
819    }
820}
821
822/// Calibration frequency
823#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
824pub enum CalibrationFrequency {
825    /// Real-time calibration
826    RealTime,
827    /// Hourly calibration
828    Hourly,
829    /// Daily calibration
830    Daily,
831    /// Weekly calibration
832    Weekly,
833    /// Manual calibration
834    Manual,
835}
836
837/// Robust training configuration
838#[derive(Debug, Clone, Serialize, Deserialize, Default)]
839pub struct RobustTrainingConfig {
840    /// Enable robust training methods
841    pub enabled: bool,
842    /// Noise injection during training
843    pub noise_injection: NoiseInjectionConfig,
844    /// Adversarial training
845    pub adversarial_training: AdversarialTrainingConfig,
846    /// Ensemble methods
847    pub ensemble_methods: EnsembleMethodsConfig,
848}
849
850/// Noise injection configuration
851#[derive(Debug, Clone, Serialize, Deserialize)]
852pub struct NoiseInjectionConfig {
853    /// Enable noise injection
854    pub enabled: bool,
855    /// Noise injection probability
856    pub injection_probability: f64,
857    /// Noise strength
858    pub noise_strength: f64,
859    /// Noise type
860    pub noise_type: NoiseType,
861}
862
863impl Default for NoiseInjectionConfig {
864    fn default() -> Self {
865        Self {
866            enabled: false,
867            injection_probability: 0.1,
868            noise_strength: 0.01,
869            noise_type: NoiseType::Depolarizing,
870        }
871    }
872}
873
874/// Noise types for training
875#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
876pub enum NoiseType {
877    /// Depolarizing noise
878    Depolarizing,
879    /// Amplitude damping
880    AmplitudeDamping,
881    /// Phase damping
882    PhaseDamping,
883    /// Bit flip
884    BitFlip,
885    /// Phase flip
886    PhaseFlip,
887    /// Pauli noise
888    Pauli,
889}
890
891/// Adversarial training configuration
892#[derive(Debug, Clone, Serialize, Deserialize)]
893pub struct AdversarialTrainingConfig {
894    /// Enable adversarial training
895    pub enabled: bool,
896    /// Adversarial attack strength
897    pub attack_strength: f64,
898    /// Attack method
899    pub attack_method: AdversarialAttackMethod,
900    /// Defense method
901    pub defense_method: AdversarialDefenseMethod,
902}
903
904impl Default for AdversarialTrainingConfig {
905    fn default() -> Self {
906        Self {
907            enabled: false,
908            attack_strength: 0.01,
909            attack_method: AdversarialAttackMethod::FGSM,
910            defense_method: AdversarialDefenseMethod::AdversarialTraining,
911        }
912    }
913}
914
915/// Adversarial attack methods
916#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
917pub enum AdversarialAttackMethod {
918    /// Fast Gradient Sign Method
919    FGSM,
920    /// Projected Gradient Descent
921    PGD,
922    /// C&W attack
923    CarliniWagner,
924    /// Quantum adversarial attacks
925    QuantumAdversarial,
926}
927
928/// Adversarial defense methods
929#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
930pub enum AdversarialDefenseMethod {
931    /// Adversarial training
932    AdversarialTraining,
933    /// Defensive distillation
934    DefensiveDistillation,
935    /// Certified defenses
936    CertifiedDefenses,
937    /// Quantum error correction defenses
938    QuantumErrorCorrection,
939}
940
941/// Ensemble methods configuration
942#[derive(Debug, Clone, Serialize, Deserialize)]
943pub struct EnsembleMethodsConfig {
944    /// Enable ensemble methods
945    pub enabled: bool,
946    /// Number of ensemble members
947    pub num_ensemble: usize,
948    /// Ensemble method
949    pub ensemble_method: EnsembleMethod,
950    /// Voting strategy
951    pub voting_strategy: VotingStrategy,
952}
953
954impl Default for EnsembleMethodsConfig {
955    fn default() -> Self {
956        Self {
957            enabled: false,
958            num_ensemble: 5,
959            ensemble_method: EnsembleMethod::Bagging,
960            voting_strategy: VotingStrategy::MajorityVoting,
961        }
962    }
963}
964
965/// Ensemble methods
966#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
967pub enum EnsembleMethod {
968    /// Bootstrap aggregating (bagging)
969    Bagging,
970    /// Boosting
971    Boosting,
972    /// Random forests
973    RandomForest,
974    /// Quantum ensemble methods
975    QuantumEnsemble,
976}
977
978/// Voting strategies for ensembles
979#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
980pub enum VotingStrategy {
981    /// Majority voting
982    MajorityVoting,
983    /// Weighted voting
984    WeightedVoting,
985    /// Soft voting (probability averaging)
986    SoftVoting,
987    /// Quantum voting
988    QuantumVoting,
989}
990
991/// Performance optimization configuration
992#[derive(Debug, Clone, Serialize, Deserialize)]
993pub struct PerformanceOptimizationConfig {
994    /// Enable performance optimization
995    pub enabled: bool,
996    /// Memory optimization
997    pub memory_optimization: MemoryOptimizationConfig,
998    /// Computation optimization
999    pub computation_optimization: ComputationOptimizationConfig,
1000    /// Parallelization configuration
1001    pub parallelization: ParallelizationConfig,
1002    /// Caching configuration
1003    pub caching: CachingConfig,
1004}
1005
1006impl Default for PerformanceOptimizationConfig {
1007    fn default() -> Self {
1008        Self {
1009            enabled: true,
1010            memory_optimization: MemoryOptimizationConfig::default(),
1011            computation_optimization: ComputationOptimizationConfig::default(),
1012            parallelization: ParallelizationConfig::default(),
1013            caching: CachingConfig::default(),
1014        }
1015    }
1016}
1017
1018/// Memory optimization configuration
1019#[derive(Debug, Clone, Serialize, Deserialize)]
1020pub struct MemoryOptimizationConfig {
1021    /// Enable memory optimization
1022    pub enabled: bool,
1023    /// Use memory mapping
1024    pub memory_mapping: bool,
1025    /// Gradient checkpointing
1026    pub gradient_checkpointing: bool,
1027    /// Memory pool size
1028    pub memory_pool_size: Option<usize>,
1029}
1030
1031impl Default for MemoryOptimizationConfig {
1032    fn default() -> Self {
1033        Self {
1034            enabled: true,
1035            memory_mapping: false,
1036            gradient_checkpointing: false,
1037            memory_pool_size: None,
1038        }
1039    }
1040}
1041
1042/// Computation optimization configuration
1043#[derive(Debug, Clone, Serialize, Deserialize)]
1044pub struct ComputationOptimizationConfig {
1045    /// Enable computation optimization
1046    pub enabled: bool,
1047    /// Use mixed precision
1048    pub mixed_precision: bool,
1049    /// SIMD optimization
1050    pub simd_optimization: bool,
1051    /// Just-in-time compilation
1052    pub jit_compilation: bool,
1053}
1054
1055impl Default for ComputationOptimizationConfig {
1056    fn default() -> Self {
1057        Self {
1058            enabled: true,
1059            mixed_precision: false,
1060            simd_optimization: true,
1061            jit_compilation: false,
1062        }
1063    }
1064}
1065
1066/// Parallelization configuration
1067#[derive(Debug, Clone, Serialize, Deserialize)]
1068pub struct ParallelizationConfig {
1069    /// Enable parallelization
1070    pub enabled: bool,
1071    /// Number of threads
1072    pub num_threads: Option<usize>,
1073    /// Data parallelism
1074    pub data_parallelism: bool,
1075    /// Model parallelism
1076    pub model_parallelism: bool,
1077    /// Pipeline parallelism
1078    pub pipeline_parallelism: bool,
1079}
1080
1081impl Default for ParallelizationConfig {
1082    fn default() -> Self {
1083        Self {
1084            enabled: true,
1085            num_threads: None,
1086            data_parallelism: true,
1087            model_parallelism: false,
1088            pipeline_parallelism: false,
1089        }
1090    }
1091}
1092
1093/// Caching configuration
1094#[derive(Debug, Clone, Serialize, Deserialize)]
1095pub struct CachingConfig {
1096    /// Enable caching
1097    pub enabled: bool,
1098    /// Cache size
1099    pub cache_size: usize,
1100    /// Cache gradients
1101    pub cache_gradients: bool,
1102    /// Cache intermediate results
1103    pub cache_intermediate: bool,
1104}
1105
1106impl Default for CachingConfig {
1107    fn default() -> Self {
1108        Self {
1109            enabled: true,
1110            cache_size: 1000,
1111            cache_gradients: true,
1112            cache_intermediate: false,
1113        }
1114    }
1115}
1116
1117/// Main quantum machine learning layers framework
1118#[derive(Debug)]
1119pub struct QuantumMLFramework {
1120    /// Configuration
1121    config: QMLConfig,
1122    /// QML layers
1123    layers: Vec<Box<dyn QMLLayer>>,
1124    /// Current training state
1125    training_state: QMLTrainingState,
1126    /// `SciRS2` backend for numerical operations
1127    backend: Option<SciRS2Backend>,
1128    /// Performance statistics
1129    stats: QMLStats,
1130    /// Training history
1131    training_history: Vec<QMLTrainingResult>,
1132}
1133
1134impl QuantumMLFramework {
1135    /// Create new quantum ML framework
1136    pub fn new(config: QMLConfig) -> Result<Self> {
1137        let mut framework = Self {
1138            config,
1139            layers: Vec::new(),
1140            training_state: QMLTrainingState::new(),
1141            backend: None,
1142            stats: QMLStats::new(),
1143            training_history: Vec::new(),
1144        };
1145
1146        // Initialize layers based on configuration
1147        framework.initialize_layers()?;
1148
1149        // Initialize SciRS2 backend if available
1150        let backend = SciRS2Backend::new();
1151        if backend.is_available() {
1152            framework.backend = Some(backend);
1153        }
1154
1155        Ok(framework)
1156    }
1157
1158    /// Initialize QML layers
1159    fn initialize_layers(&mut self) -> Result<()> {
1160        for layer_config in &self.config.layer_configs {
1161            let layer = self.create_layer(layer_config)?;
1162            self.layers.push(layer);
1163        }
1164        Ok(())
1165    }
1166
1167    /// Create a QML layer based on configuration
1168    fn create_layer(&self, config: &QMLLayerConfig) -> Result<Box<dyn QMLLayer>> {
1169        match config.layer_type {
1170            QMLLayerType::ParameterizedQuantumCircuit => Ok(Box::new(
1171                ParameterizedQuantumCircuitLayer::new(self.config.num_qubits, config.clone())?,
1172            )),
1173            QMLLayerType::QuantumConvolutional => Ok(Box::new(QuantumConvolutionalLayer::new(
1174                self.config.num_qubits,
1175                config.clone(),
1176            )?)),
1177            QMLLayerType::QuantumDense => Ok(Box::new(QuantumDenseLayer::new(
1178                self.config.num_qubits,
1179                config.clone(),
1180            )?)),
1181            QMLLayerType::QuantumLSTM => Ok(Box::new(QuantumLSTMLayer::new(
1182                self.config.num_qubits,
1183                config.clone(),
1184            )?)),
1185            QMLLayerType::QuantumAttention => Ok(Box::new(QuantumAttentionLayer::new(
1186                self.config.num_qubits,
1187                config.clone(),
1188            )?)),
1189            _ => Err(SimulatorError::InvalidConfiguration(format!(
1190                "Layer type {:?} not yet implemented",
1191                config.layer_type
1192            ))),
1193        }
1194    }
1195
1196    /// Forward pass through the quantum ML model
1197    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1198        let mut current_state = self.encode_input(input)?;
1199
1200        // Pass through each layer
1201        for layer in &mut self.layers {
1202            current_state = layer.forward(&current_state)?;
1203        }
1204
1205        // Decode output
1206        let output = self.decode_output(&current_state)?;
1207
1208        // Update statistics
1209        self.stats.forward_passes += 1;
1210
1211        Ok(output)
1212    }
1213
1214    /// Backward pass for gradient computation
1215    pub fn backward(&mut self, loss_gradient: &Array1<f64>) -> Result<Array1<f64>> {
1216        let mut grad = loss_gradient.clone();
1217
1218        // Backpropagate through layers in reverse order
1219        for layer in self.layers.iter_mut().rev() {
1220            grad = layer.backward(&grad)?;
1221        }
1222
1223        // Update statistics
1224        self.stats.backward_passes += 1;
1225
1226        Ok(grad)
1227    }
1228
1229    /// Train the quantum ML model
1230    pub fn train(
1231        &mut self,
1232        training_data: &[(Array1<f64>, Array1<f64>)],
1233        validation_data: Option<&[(Array1<f64>, Array1<f64>)]>,
1234    ) -> Result<QMLTrainingResult> {
1235        let mut best_validation_loss = f64::INFINITY;
1236        let mut patience_counter = 0;
1237        let mut training_metrics = Vec::new();
1238
1239        let training_start = std::time::Instant::now();
1240
1241        for epoch in 0..self.config.training_config.epochs {
1242            let epoch_start = std::time::Instant::now();
1243
1244            // Training phase
1245            let mut epoch_loss = 0.0;
1246            let mut num_batches = 0;
1247
1248            for batch in training_data.chunks(self.config.training_config.batch_size) {
1249                let batch_loss = self.train_batch(batch)?;
1250                epoch_loss += batch_loss;
1251                num_batches += 1;
1252            }
1253
1254            epoch_loss /= f64::from(num_batches);
1255
1256            // Validation phase
1257            let validation_loss = if let Some(val_data) = validation_data {
1258                self.evaluate(val_data)?
1259            } else {
1260                epoch_loss
1261            };
1262
1263            let epoch_time = epoch_start.elapsed();
1264
1265            let metrics = QMLEpochMetrics {
1266                epoch,
1267                training_loss: epoch_loss,
1268                validation_loss,
1269                epoch_time,
1270                learning_rate: self.get_current_learning_rate(epoch),
1271            };
1272
1273            training_metrics.push(metrics.clone());
1274
1275            // Early stopping check
1276            if self.config.training_config.early_stopping.enabled {
1277                if validation_loss
1278                    < best_validation_loss - self.config.training_config.early_stopping.min_delta
1279                {
1280                    best_validation_loss = validation_loss;
1281                    patience_counter = 0;
1282                } else {
1283                    patience_counter += 1;
1284                    if patience_counter >= self.config.training_config.early_stopping.patience {
1285                        println!("Early stopping triggered at epoch {epoch}");
1286                        break;
1287                    }
1288                }
1289            }
1290
1291            // Update learning rate
1292            self.update_learning_rate(epoch, validation_loss);
1293
1294            // Print progress
1295            if epoch % 10 == 0 {
1296                println!(
1297                    "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}s",
1298                    epoch,
1299                    epoch_loss,
1300                    validation_loss,
1301                    epoch_time.as_secs_f64()
1302                );
1303            }
1304        }
1305
1306        let total_training_time = training_start.elapsed();
1307
1308        let result = QMLTrainingResult {
1309            final_training_loss: training_metrics.last().map_or(0.0, |m| m.training_loss),
1310            final_validation_loss: training_metrics.last().map_or(0.0, |m| m.validation_loss),
1311            best_validation_loss,
1312            epochs_trained: training_metrics.len(),
1313            total_training_time,
1314            training_metrics,
1315            quantum_advantage_metrics: self.compute_quantum_advantage_metrics()?,
1316        };
1317
1318        self.training_history.push(result.clone());
1319
1320        Ok(result)
1321    }
1322
1323    /// Train a single batch
1324    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1325        let mut total_loss = 0.0;
1326        let mut total_gradients: Vec<Array1<f64>> =
1327            (0..self.layers.len()).map(|_| Array1::zeros(0)).collect();
1328
1329        for (input, target) in batch {
1330            // Forward pass
1331            let prediction = self.forward(input)?;
1332
1333            // Compute loss
1334            let loss = Self::compute_loss(&prediction, target)?;
1335            total_loss += loss;
1336
1337            // Compute loss gradient
1338            let loss_gradient = Self::compute_loss_gradient(&prediction, target)?;
1339
1340            // Backward pass
1341            let gradients = self.compute_gradients(&loss_gradient)?;
1342
1343            // Accumulate gradients
1344            for (i, grad) in gradients.iter().enumerate() {
1345                if total_gradients[i].is_empty() {
1346                    total_gradients[i] = grad.clone();
1347                } else {
1348                    total_gradients[i] += grad;
1349                }
1350            }
1351        }
1352
1353        // Average gradients
1354        let batch_size = batch.len() as f64;
1355        for grad in &mut total_gradients {
1356            *grad /= batch_size;
1357        }
1358
1359        // Apply gradients
1360        self.apply_gradients(&total_gradients)?;
1361
1362        Ok(total_loss / batch_size)
1363    }
1364
1365    /// Evaluate the model on validation data
1366    pub fn evaluate(&mut self, data: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1367        let mut total_loss = 0.0;
1368
1369        for (input, target) in data {
1370            let prediction = self.forward(input)?;
1371            let loss = Self::compute_loss(&prediction, target)?;
1372            total_loss += loss;
1373        }
1374
1375        Ok(total_loss / data.len() as f64)
1376    }
1377
1378    /// Encode classical input into quantum state
1379    fn encode_input(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1380        match self.config.classical_preprocessing.encoding_method {
1381            DataEncodingMethod::Amplitude => self.encode_amplitude(input),
1382            DataEncodingMethod::Angle => self.encode_angle(input),
1383            DataEncodingMethod::Basis => self.encode_basis(input),
1384            DataEncodingMethod::QuantumFeatureMap => self.encode_quantum_feature_map(input),
1385            _ => Err(SimulatorError::InvalidConfiguration(
1386                "Encoding method not implemented".to_string(),
1387            )),
1388        }
1389    }
1390
1391    /// Amplitude encoding
1392    fn encode_amplitude(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1393        let n_qubits = self.config.num_qubits;
1394        let state_size = 1 << n_qubits;
1395        let mut state = Array1::zeros(state_size);
1396
1397        // Normalize input
1398        let norm = input.iter().map(|x| x * x).sum::<f64>().sqrt();
1399        if norm == 0.0 {
1400            return Err(SimulatorError::InvalidState("Zero input norm".to_string()));
1401        }
1402
1403        // Encode input as amplitudes
1404        for (i, &val) in input.iter().enumerate() {
1405            if i < state_size {
1406                state[i] = Complex64::new(val / norm, 0.0);
1407            }
1408        }
1409
1410        Ok(state)
1411    }
1412
1413    /// Angle encoding
1414    fn encode_angle(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1415        let n_qubits = self.config.num_qubits;
1416        let state_size = 1 << n_qubits;
1417        let mut state = Array1::zeros(state_size);
1418
1419        // Initialize |0...0⟩ state
1420        state[0] = Complex64::new(1.0, 0.0);
1421
1422        // Apply rotation gates based on input values
1423        for (i, &angle) in input.iter().enumerate() {
1424            if i < n_qubits {
1425                // Apply RY rotation to qubit i
1426                state = self.apply_ry_rotation(&state, i, angle)?;
1427            }
1428        }
1429
1430        Ok(state)
1431    }
1432
1433    /// Basis encoding
1434    fn encode_basis(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1435        let n_qubits = self.config.num_qubits;
1436        let state_size = 1 << n_qubits;
1437        let mut state = Array1::zeros(state_size);
1438
1439        // Convert input to binary representation
1440        let mut binary_index = 0;
1441        for (i, &val) in input.iter().enumerate() {
1442            if i < n_qubits && val > 0.5 {
1443                binary_index |= 1 << i;
1444            }
1445        }
1446
1447        state[binary_index] = Complex64::new(1.0, 0.0);
1448
1449        Ok(state)
1450    }
1451
1452    /// Quantum feature map encoding
1453    fn encode_quantum_feature_map(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1454        let n_qubits = self.config.num_qubits;
1455        let state_size = 1 << n_qubits;
1456        let mut state = Array1::zeros(state_size);
1457
1458        // Initialize |+⟩^⊗n state (all qubits in superposition)
1459        let hadamard_coeff = 1.0 / (n_qubits as f64 / 2.0).exp2();
1460        for i in 0..state_size {
1461            state[i] = Complex64::new(hadamard_coeff, 0.0);
1462        }
1463
1464        // Apply feature map rotations
1465        for (i, &feature) in input.iter().enumerate() {
1466            if i < n_qubits {
1467                // Apply Z rotation based on feature value
1468                state = self.apply_rz_rotation(&state, i, feature * PI)?;
1469            }
1470        }
1471
1472        // Apply entangling gates for feature interactions
1473        for i in 0..(n_qubits - 1) {
1474            if i + 1 < input.len() {
1475                let interaction = input[i] * input[i + 1];
1476                state = self.apply_cnot_interaction(&state, i, i + 1, interaction * PI)?;
1477            }
1478        }
1479
1480        Ok(state)
1481    }
1482
1483    /// Apply RY rotation to a specific qubit
1484    fn apply_ry_rotation(
1485        &self,
1486        state: &Array1<Complex64>,
1487        qubit: usize,
1488        angle: f64,
1489    ) -> Result<Array1<Complex64>> {
1490        let n_qubits = self.config.num_qubits;
1491        let state_size = 1 << n_qubits;
1492        let mut new_state = state.clone();
1493
1494        let cos_half = (angle / 2.0).cos();
1495        let sin_half = (angle / 2.0).sin();
1496
1497        for i in 0..state_size {
1498            if i & (1 << qubit) == 0 {
1499                // |0⟩ component
1500                let j = i | (1 << qubit); // corresponding |1⟩ state
1501                if j < state_size {
1502                    let state_0 = state[i];
1503                    let state_1 = state[j];
1504
1505                    new_state[i] = Complex64::new(cos_half, 0.0) * state_0
1506                        - Complex64::new(sin_half, 0.0) * state_1;
1507                    new_state[j] = Complex64::new(sin_half, 0.0) * state_0
1508                        + Complex64::new(cos_half, 0.0) * state_1;
1509                }
1510            }
1511        }
1512
1513        Ok(new_state)
1514    }
1515
1516    /// Apply RZ rotation to a specific qubit
1517    fn apply_rz_rotation(
1518        &self,
1519        state: &Array1<Complex64>,
1520        qubit: usize,
1521        angle: f64,
1522    ) -> Result<Array1<Complex64>> {
1523        let n_qubits = self.config.num_qubits;
1524        let state_size = 1 << n_qubits;
1525        let mut new_state = state.clone();
1526
1527        let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
1528        let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
1529
1530        for i in 0..state_size {
1531            if i & (1 << qubit) == 0 {
1532                new_state[i] *= phase_0;
1533            } else {
1534                new_state[i] *= phase_1;
1535            }
1536        }
1537
1538        Ok(new_state)
1539    }
1540
1541    /// Apply CNOT with interaction term
1542    fn apply_cnot_interaction(
1543        &self,
1544        state: &Array1<Complex64>,
1545        control: usize,
1546        target: usize,
1547        interaction: f64,
1548    ) -> Result<Array1<Complex64>> {
1549        let n_qubits = self.config.num_qubits;
1550        let state_size = 1 << n_qubits;
1551        let mut new_state = state.clone();
1552
1553        // Apply interaction-dependent phase
1554        let phase = Complex64::from_polar(1.0, interaction);
1555
1556        for i in 0..state_size {
1557            if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
1558                // Both control and target are |1⟩
1559                new_state[i] *= phase;
1560            }
1561        }
1562
1563        Ok(new_state)
1564    }
1565
1566    /// Decode quantum state to classical output
1567    fn decode_output(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
1568        // For now, use expectation values of Pauli-Z measurements
1569        let n_qubits = self.config.num_qubits;
1570        let mut output = Array1::zeros(n_qubits);
1571
1572        for qubit in 0..n_qubits {
1573            let expectation = Self::measure_pauli_z_expectation(state, qubit)?;
1574            output[qubit] = expectation;
1575        }
1576
1577        Ok(output)
1578    }
1579
1580    /// Measure Pauli-Z expectation value for a specific qubit
1581    fn measure_pauli_z_expectation(state: &Array1<Complex64>, qubit: usize) -> Result<f64> {
1582        let state_size = state.len();
1583        let mut expectation = 0.0;
1584
1585        for i in 0..state_size {
1586            let probability = state[i].norm_sqr();
1587            if i & (1 << qubit) == 0 {
1588                expectation += probability; // |0⟩ contributes +1
1589            } else {
1590                expectation -= probability; // |1⟩ contributes -1
1591            }
1592        }
1593
1594        Ok(expectation)
1595    }
1596
1597    /// Compute loss function
1598    fn compute_loss(prediction: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
1599        // Check shape compatibility
1600        if prediction.shape() != target.shape() {
1601            return Err(SimulatorError::InvalidInput(format!(
1602                "Shape mismatch: prediction shape {:?} != target shape {:?}",
1603                prediction.shape(),
1604                target.shape()
1605            )));
1606        }
1607
1608        // Mean squared error
1609        let diff = prediction - target;
1610        let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
1611        Ok(mse)
1612    }
1613
1614    /// Compute loss gradient
1615    fn compute_loss_gradient(
1616        prediction: &Array1<f64>,
1617        target: &Array1<f64>,
1618    ) -> Result<Array1<f64>> {
1619        // Gradient of MSE
1620        let diff = prediction - target;
1621        let grad = 2.0 * &diff / diff.len() as f64;
1622        Ok(grad)
1623    }
1624
1625    /// Compute gradients using parameter-shift rule
1626    fn compute_gradients(&mut self, loss_gradient: &Array1<f64>) -> Result<Vec<Array1<f64>>> {
1627        let mut gradients = Vec::new();
1628
1629        for layer_idx in 0..self.layers.len() {
1630            let layer_gradient = match self.config.training_config.gradient_method {
1631                GradientMethod::ParameterShift => {
1632                    self.compute_parameter_shift_gradient(layer_idx, loss_gradient)?
1633                }
1634                GradientMethod::FiniteDifference => {
1635                    self.compute_finite_difference_gradient(layer_idx, loss_gradient)?
1636                }
1637                _ => {
1638                    return Err(SimulatorError::InvalidConfiguration(
1639                        "Gradient method not implemented".to_string(),
1640                    ))
1641                }
1642            };
1643            gradients.push(layer_gradient);
1644        }
1645
1646        Ok(gradients)
1647    }
1648
1649    /// Compute gradients using parameter-shift rule
1650    fn compute_parameter_shift_gradient(
1651        &mut self,
1652        layer_idx: usize,
1653        loss_gradient: &Array1<f64>,
1654    ) -> Result<Array1<f64>> {
1655        let layer = &self.layers[layer_idx];
1656        let parameters = layer.get_parameters();
1657        let mut gradient = Array1::zeros(parameters.len());
1658
1659        let shift = PI / 2.0; // Parameter shift amount
1660
1661        for (param_idx, &param_val) in parameters.iter().enumerate() {
1662            // Forward shift
1663            let mut params_plus = parameters.clone();
1664            params_plus[param_idx] = param_val + shift;
1665            self.layers[layer_idx].set_parameters(&params_plus);
1666            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1667
1668            // Backward shift
1669            let mut params_minus = parameters.clone();
1670            params_minus[param_idx] = param_val - shift;
1671            self.layers[layer_idx].set_parameters(&params_minus);
1672            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1673
1674            // Compute gradient
1675            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / 2.0;
1676
1677            // Restore original parameters
1678            self.layers[layer_idx].set_parameters(&parameters);
1679        }
1680
1681        Ok(gradient)
1682    }
1683
1684    /// Compute gradients using finite differences
1685    fn compute_finite_difference_gradient(
1686        &mut self,
1687        layer_idx: usize,
1688        loss_gradient: &Array1<f64>,
1689    ) -> Result<Array1<f64>> {
1690        let layer = &self.layers[layer_idx];
1691        let parameters = layer.get_parameters();
1692        let mut gradient = Array1::zeros(parameters.len());
1693
1694        let eps = 1e-6; // Small perturbation
1695
1696        for (param_idx, &param_val) in parameters.iter().enumerate() {
1697            // Forward perturbation
1698            let mut params_plus = parameters.clone();
1699            params_plus[param_idx] = param_val + eps;
1700            self.layers[layer_idx].set_parameters(&params_plus);
1701            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1702
1703            // Backward perturbation
1704            let mut params_minus = parameters.clone();
1705            params_minus[param_idx] = param_val - eps;
1706            self.layers[layer_idx].set_parameters(&params_minus);
1707            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1708
1709            // Compute gradient
1710            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / (2.0 * eps);
1711
1712            // Restore original parameters
1713            self.layers[layer_idx].set_parameters(&parameters);
1714        }
1715
1716        Ok(gradient)
1717    }
1718
1719    /// Forward pass through a specific layer
1720    fn forward_layer(&mut self, layer_idx: usize, input: &Array1<f64>) -> Result<Array1<f64>> {
1721        // This is a simplified version - in practice, we'd need to track intermediate states
1722        self.forward(input)
1723    }
1724
1725    /// Apply gradients to update parameters
1726    fn apply_gradients(&mut self, gradients: &[Array1<f64>]) -> Result<()> {
1727        for (layer_idx, gradient) in gradients.iter().enumerate() {
1728            let layer = &mut self.layers[layer_idx];
1729            let mut parameters = layer.get_parameters();
1730
1731            // Apply gradient update based on optimizer
1732            match self.config.training_config.optimizer {
1733                OptimizerType::SGD => {
1734                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1735                        *param -= self.config.training_config.learning_rate * grad;
1736                    }
1737                }
1738                OptimizerType::Adam => {
1739                    // Simplified Adam update (would need to track momentum terms)
1740                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1741                        *param -= self.config.training_config.learning_rate * grad;
1742                    }
1743                }
1744                _ => {
1745                    // Default to SGD
1746                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1747                        *param -= self.config.training_config.learning_rate * grad;
1748                    }
1749                }
1750            }
1751
1752            // Apply parameter constraints
1753            if let Some((min_val, max_val)) =
1754                self.config.training_config.regularization.parameter_bounds
1755            {
1756                for param in &mut parameters {
1757                    *param = param.clamp(min_val, max_val);
1758                }
1759            }
1760
1761            layer.set_parameters(&parameters);
1762        }
1763
1764        Ok(())
1765    }
1766
1767    /// Get current learning rate (with scheduling)
1768    fn get_current_learning_rate(&self, epoch: usize) -> f64 {
1769        let base_lr = self.config.training_config.learning_rate;
1770
1771        match self.config.training_config.lr_schedule {
1772            LearningRateSchedule::Constant => base_lr,
1773            LearningRateSchedule::ExponentialDecay => base_lr * 0.95_f64.powi(epoch as i32),
1774            LearningRateSchedule::StepDecay => {
1775                if epoch % 50 == 0 && epoch > 0 {
1776                    base_lr * 0.5_f64.powi((epoch / 50) as i32)
1777                } else {
1778                    base_lr
1779                }
1780            }
1781            LearningRateSchedule::CosineAnnealing => {
1782                let progress = epoch as f64 / self.config.training_config.epochs as f64;
1783                base_lr * 0.5 * (1.0 + (PI * progress).cos())
1784            }
1785            _ => base_lr,
1786        }
1787    }
1788
1789    /// Update learning rate
1790    fn update_learning_rate(&mut self, epoch: usize, validation_loss: f64) {
1791        // This would update internal optimizer state for learning rate scheduling
1792        // For now, just track the current learning rate
1793        let current_lr = self.get_current_learning_rate(epoch);
1794        self.training_state.current_learning_rate = current_lr;
1795    }
1796
1797    /// Compute quantum advantage metrics
1798    fn compute_quantum_advantage_metrics(&self) -> Result<QuantumAdvantageMetrics> {
1799        // Placeholder for quantum advantage analysis
1800        Ok(QuantumAdvantageMetrics {
1801            quantum_volume: 0.0,
1802            classical_simulation_cost: 0.0,
1803            quantum_speedup_factor: 1.0,
1804            circuit_depth: self.layers.iter().map(|l| l.get_depth()).sum(),
1805            gate_count: self.layers.iter().map(|l| l.get_gate_count()).sum(),
1806            entanglement_measure: 0.0,
1807        })
1808    }
1809
1810    /// Get training statistics
1811    #[must_use]
1812    pub const fn get_stats(&self) -> &QMLStats {
1813        &self.stats
1814    }
1815
1816    /// Get training history
1817    #[must_use]
1818    pub fn get_training_history(&self) -> &[QMLTrainingResult] {
1819        &self.training_history
1820    }
1821
1822    /// Get layers reference
1823    #[must_use]
1824    pub fn get_layers(&self) -> &[Box<dyn QMLLayer>] {
1825        &self.layers
1826    }
1827
1828    /// Get config reference
1829    #[must_use]
1830    pub const fn get_config(&self) -> &QMLConfig {
1831        &self.config
1832    }
1833
1834    /// Encode amplitude (public version)
1835    pub fn encode_amplitude_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1836        self.encode_amplitude(input)
1837    }
1838
1839    /// Encode angle (public version)
1840    pub fn encode_angle_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1841        self.encode_angle(input)
1842    }
1843
1844    /// Encode basis (public version)
1845    pub fn encode_basis_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1846        self.encode_basis(input)
1847    }
1848
1849    /// Encode quantum feature map (public version)
1850    pub fn encode_quantum_feature_map_public(
1851        &self,
1852        input: &Array1<f64>,
1853    ) -> Result<Array1<Complex64>> {
1854        self.encode_quantum_feature_map(input)
1855    }
1856
1857    /// Measure Pauli Z expectation (public version)
1858    pub fn measure_pauli_z_expectation_public(
1859        &self,
1860        state: &Array1<Complex64>,
1861        qubit: usize,
1862    ) -> Result<f64> {
1863        Self::measure_pauli_z_expectation(state, qubit)
1864    }
1865
1866    /// Get current learning rate (public version)
1867    #[must_use]
1868    pub fn get_current_learning_rate_public(&self, epoch: usize) -> f64 {
1869        self.get_current_learning_rate(epoch)
1870    }
1871
1872    /// Compute loss (public version)
1873    pub fn compute_loss_public(
1874        &self,
1875        prediction: &Array1<f64>,
1876        target: &Array1<f64>,
1877    ) -> Result<f64> {
1878        Self::compute_loss(prediction, target)
1879    }
1880
1881    /// Compute loss gradient (public version)
1882    pub fn compute_loss_gradient_public(
1883        &self,
1884        prediction: &Array1<f64>,
1885        target: &Array1<f64>,
1886    ) -> Result<Array1<f64>> {
1887        Self::compute_loss_gradient(prediction, target)
1888    }
1889}
1890
1891/// Trait for QML layers
1892pub trait QMLLayer: std::fmt::Debug + Send + Sync {
1893    /// Forward pass through the layer
1894    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>>;
1895
1896    /// Backward pass through the layer
1897    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>>;
1898
1899    /// Get layer parameters
1900    fn get_parameters(&self) -> Array1<f64>;
1901
1902    /// Set layer parameters
1903    fn set_parameters(&mut self, parameters: &Array1<f64>);
1904
1905    /// Get circuit depth
1906    fn get_depth(&self) -> usize;
1907
1908    /// Get gate count
1909    fn get_gate_count(&self) -> usize;
1910
1911    /// Get number of parameters
1912    fn get_num_parameters(&self) -> usize;
1913}
1914
1915/// Parameterized Quantum Circuit Layer
1916#[derive(Debug)]
1917pub struct ParameterizedQuantumCircuitLayer {
1918    /// Number of qubits
1919    num_qubits: usize,
1920    /// Layer configuration
1921    config: QMLLayerConfig,
1922    /// Parameters (rotation angles)
1923    parameters: Array1<f64>,
1924    /// Circuit structure
1925    circuit_structure: Vec<PQCGate>,
1926    /// Internal state vector simulator
1927    simulator: StateVectorSimulator,
1928}
1929
1930impl ParameterizedQuantumCircuitLayer {
1931    /// Create new PQC layer
1932    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
1933        let mut layer = Self {
1934            num_qubits,
1935            config: config.clone(),
1936            parameters: Array1::zeros(config.num_parameters),
1937            circuit_structure: Vec::new(),
1938            simulator: StateVectorSimulator::new(),
1939        };
1940
1941        // Initialize parameters randomly
1942        layer.initialize_parameters();
1943
1944        // Build circuit structure
1945        layer.build_circuit_structure()?;
1946
1947        Ok(layer)
1948    }
1949
1950    /// Initialize parameters randomly
1951    fn initialize_parameters(&mut self) {
1952        let mut rng = thread_rng();
1953        for param in &mut self.parameters {
1954            *param = rng.gen_range(-PI..PI);
1955        }
1956    }
1957
1958    /// Build circuit structure based on ansatz
1959    fn build_circuit_structure(&mut self) -> Result<()> {
1960        match self.config.ansatz_type {
1961            AnsatzType::Hardware => self.build_hardware_efficient_ansatz(),
1962            AnsatzType::Layered => self.build_layered_ansatz(),
1963            AnsatzType::BrickWall => self.build_brick_wall_ansatz(),
1964            _ => Err(SimulatorError::InvalidConfiguration(
1965                "Ansatz type not implemented".to_string(),
1966            )),
1967        }
1968    }
1969
1970    /// Build hardware-efficient ansatz
1971    fn build_hardware_efficient_ansatz(&mut self) -> Result<()> {
1972        let mut param_idx = 0;
1973
1974        for layer in 0..self.config.depth {
1975            // Single-qubit rotations
1976            for qubit in 0..self.num_qubits {
1977                for &gate_type in &self.config.rotation_gates {
1978                    if param_idx < self.parameters.len() {
1979                        self.circuit_structure.push(PQCGate {
1980                            gate_type: PQCGateType::SingleQubit(gate_type),
1981                            qubits: vec![qubit],
1982                            parameter_index: Some(param_idx),
1983                        });
1984                        param_idx += 1;
1985                    }
1986                }
1987            }
1988
1989            // Entangling gates
1990            self.add_entangling_gates(&param_idx);
1991        }
1992
1993        Ok(())
1994    }
1995
1996    /// Build layered ansatz
1997    fn build_layered_ansatz(&mut self) -> Result<()> {
1998        // Similar to hardware-efficient but with different structure
1999        self.build_hardware_efficient_ansatz()
2000    }
2001
2002    /// Build brick-wall ansatz
2003    fn build_brick_wall_ansatz(&mut self) -> Result<()> {
2004        let mut param_idx = 0;
2005
2006        for layer in 0..self.config.depth {
2007            // Alternating CNOT pattern (brick-wall)
2008            let offset = layer % 2;
2009            for i in (offset..self.num_qubits - 1).step_by(2) {
2010                self.circuit_structure.push(PQCGate {
2011                    gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2012                    qubits: vec![i, i + 1],
2013                    parameter_index: None,
2014                });
2015            }
2016
2017            // Single-qubit rotations
2018            for qubit in 0..self.num_qubits {
2019                if param_idx < self.parameters.len() {
2020                    self.circuit_structure.push(PQCGate {
2021                        gate_type: PQCGateType::SingleQubit(RotationGate::RY),
2022                        qubits: vec![qubit],
2023                        parameter_index: Some(param_idx),
2024                    });
2025                    param_idx += 1;
2026                }
2027            }
2028        }
2029
2030        Ok(())
2031    }
2032
2033    /// Add entangling gates based on entanglement pattern
2034    fn add_entangling_gates(&mut self, param_idx: &usize) {
2035        match self.config.entanglement_pattern {
2036            EntanglementPattern::Linear => {
2037                for i in 0..(self.num_qubits - 1) {
2038                    self.circuit_structure.push(PQCGate {
2039                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2040                        qubits: vec![i, i + 1],
2041                        parameter_index: None,
2042                    });
2043                }
2044            }
2045            EntanglementPattern::Circular => {
2046                for i in 0..self.num_qubits {
2047                    let next = (i + 1) % self.num_qubits;
2048                    self.circuit_structure.push(PQCGate {
2049                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2050                        qubits: vec![i, next],
2051                        parameter_index: None,
2052                    });
2053                }
2054            }
2055            EntanglementPattern::AllToAll => {
2056                for i in 0..self.num_qubits {
2057                    for j in (i + 1)..self.num_qubits {
2058                        self.circuit_structure.push(PQCGate {
2059                            gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2060                            qubits: vec![i, j],
2061                            parameter_index: None,
2062                        });
2063                    }
2064                }
2065            }
2066            _ => {
2067                // Default to linear
2068                for i in 0..(self.num_qubits - 1) {
2069                    self.circuit_structure.push(PQCGate {
2070                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2071                        qubits: vec![i, i + 1],
2072                        parameter_index: None,
2073                    });
2074                }
2075            }
2076        }
2077    }
2078}
2079
2080impl QMLLayer for ParameterizedQuantumCircuitLayer {
2081    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2082        let mut state = input.clone();
2083
2084        // Apply each gate in the circuit
2085        for gate in &self.circuit_structure {
2086            state = self.apply_gate(&state, gate)?;
2087        }
2088
2089        Ok(state)
2090    }
2091
2092    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2093        // Simplified backward pass - in practice would use automatic differentiation
2094        Ok(gradient.clone())
2095    }
2096
2097    fn get_parameters(&self) -> Array1<f64> {
2098        self.parameters.clone()
2099    }
2100
2101    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2102        self.parameters = parameters.clone();
2103    }
2104
2105    fn get_depth(&self) -> usize {
2106        self.config.depth
2107    }
2108
2109    fn get_gate_count(&self) -> usize {
2110        self.circuit_structure.len()
2111    }
2112
2113    fn get_num_parameters(&self) -> usize {
2114        self.parameters.len()
2115    }
2116}
2117
2118impl ParameterizedQuantumCircuitLayer {
2119    /// Apply a single gate to the quantum state
2120    fn apply_gate(&self, state: &Array1<Complex64>, gate: &PQCGate) -> Result<Array1<Complex64>> {
2121        match &gate.gate_type {
2122            PQCGateType::SingleQubit(rotation_gate) => {
2123                let angle = if let Some(param_idx) = gate.parameter_index {
2124                    self.parameters[param_idx]
2125                } else {
2126                    0.0
2127                };
2128                Self::apply_single_qubit_gate(state, gate.qubits[0], *rotation_gate, angle)
2129            }
2130            PQCGateType::TwoQubit(two_qubit_gate) => {
2131                Self::apply_two_qubit_gate(state, gate.qubits[0], gate.qubits[1], *two_qubit_gate)
2132            }
2133        }
2134    }
2135
2136    /// Apply single-qubit rotation gate
2137    fn apply_single_qubit_gate(
2138        state: &Array1<Complex64>,
2139        qubit: usize,
2140        gate_type: RotationGate,
2141        angle: f64,
2142    ) -> Result<Array1<Complex64>> {
2143        let state_size = state.len();
2144        let mut new_state = Array1::zeros(state_size);
2145
2146        match gate_type {
2147            RotationGate::RX => {
2148                let cos_half = (angle / 2.0).cos();
2149                let sin_half = (angle / 2.0).sin();
2150
2151                for i in 0..state_size {
2152                    if i & (1 << qubit) == 0 {
2153                        let j = i | (1 << qubit);
2154                        if j < state_size {
2155                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2156                                + Complex64::new(0.0, -sin_half) * state[j];
2157                            new_state[j] = Complex64::new(0.0, -sin_half) * state[i]
2158                                + Complex64::new(cos_half, 0.0) * state[j];
2159                        }
2160                    }
2161                }
2162            }
2163            RotationGate::RY => {
2164                let cos_half = (angle / 2.0).cos();
2165                let sin_half = (angle / 2.0).sin();
2166
2167                for i in 0..state_size {
2168                    if i & (1 << qubit) == 0 {
2169                        let j = i | (1 << qubit);
2170                        if j < state_size {
2171                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2172                                - Complex64::new(sin_half, 0.0) * state[j];
2173                            new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2174                                + Complex64::new(cos_half, 0.0) * state[j];
2175                        }
2176                    }
2177                }
2178            }
2179            RotationGate::RZ => {
2180                let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
2181                let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
2182
2183                for i in 0..state_size {
2184                    if i & (1 << qubit) == 0 {
2185                        new_state[i] = phase_0 * state[i];
2186                    } else {
2187                        new_state[i] = phase_1 * state[i];
2188                    }
2189                }
2190            }
2191            _ => {
2192                return Err(SimulatorError::InvalidGate(
2193                    "Gate type not implemented".to_string(),
2194                ))
2195            }
2196        }
2197
2198        Ok(new_state)
2199    }
2200
2201    /// Apply two-qubit gate
2202    fn apply_two_qubit_gate(
2203        state: &Array1<Complex64>,
2204        control: usize,
2205        target: usize,
2206        gate_type: TwoQubitGate,
2207    ) -> Result<Array1<Complex64>> {
2208        let state_size = state.len();
2209        let mut new_state = state.clone();
2210
2211        match gate_type {
2212            TwoQubitGate::CNOT => {
2213                for i in 0..state_size {
2214                    if (i & (1 << control)) != 0 {
2215                        // Control qubit is |1⟩, flip target
2216                        let j = i ^ (1 << target);
2217                        new_state[i] = state[j];
2218                    }
2219                }
2220            }
2221            TwoQubitGate::CZ => {
2222                for i in 0..state_size {
2223                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2224                        // Both qubits are |1⟩, apply phase
2225                        new_state[i] = -state[i];
2226                    }
2227                }
2228            }
2229            TwoQubitGate::SWAP => {
2230                for i in 0..state_size {
2231                    let ctrl_bit = (i & (1 << control)) != 0;
2232                    let targ_bit = (i & (1 << target)) != 0;
2233                    if ctrl_bit != targ_bit {
2234                        // Swap the qubits
2235                        let j = i ^ (1 << control) ^ (1 << target);
2236                        new_state[i] = state[j];
2237                    }
2238                }
2239            }
2240            TwoQubitGate::CPhase => {
2241                for i in 0..state_size {
2242                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2243                        // Both qubits are |1⟩, apply phase (similar to CZ)
2244                        new_state[i] = -state[i];
2245                    }
2246                }
2247            }
2248        }
2249
2250        Ok(new_state)
2251    }
2252}
2253
2254/// Quantum Convolutional Layer
2255#[derive(Debug)]
2256pub struct QuantumConvolutionalLayer {
2257    /// Number of qubits
2258    num_qubits: usize,
2259    /// Layer configuration
2260    config: QMLLayerConfig,
2261    /// Parameters
2262    parameters: Array1<f64>,
2263    /// Convolutional structure
2264    conv_structure: Vec<ConvolutionalFilter>,
2265}
2266
2267impl QuantumConvolutionalLayer {
2268    /// Create new quantum convolutional layer
2269    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2270        let mut layer = Self {
2271            num_qubits,
2272            config: config.clone(),
2273            parameters: Array1::zeros(config.num_parameters),
2274            conv_structure: Vec::new(),
2275        };
2276
2277        layer.initialize_parameters();
2278        layer.build_convolutional_structure()?;
2279
2280        Ok(layer)
2281    }
2282
2283    /// Initialize parameters
2284    fn initialize_parameters(&mut self) {
2285        let mut rng = thread_rng();
2286        for param in &mut self.parameters {
2287            *param = rng.gen_range(-PI..PI);
2288        }
2289    }
2290
2291    /// Build convolutional structure
2292    fn build_convolutional_structure(&mut self) -> Result<()> {
2293        // Create sliding window filters
2294        let filter_size = 2; // 2-qubit filters
2295        let stride = 1;
2296
2297        let mut param_idx = 0;
2298        for start in (0..=(self.num_qubits - filter_size)).step_by(stride) {
2299            if param_idx + 2 <= self.parameters.len() {
2300                self.conv_structure.push(ConvolutionalFilter {
2301                    qubits: vec![start, start + 1],
2302                    parameter_indices: vec![param_idx, param_idx + 1],
2303                });
2304                param_idx += 2;
2305            }
2306        }
2307
2308        Ok(())
2309    }
2310}
2311
2312impl QMLLayer for QuantumConvolutionalLayer {
2313    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2314        let mut state = input.clone();
2315
2316        // Apply convolutional filters
2317        for filter in &self.conv_structure {
2318            state = self.apply_convolutional_filter(&state, filter)?;
2319        }
2320
2321        Ok(state)
2322    }
2323
2324    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2325        Ok(gradient.clone())
2326    }
2327
2328    fn get_parameters(&self) -> Array1<f64> {
2329        self.parameters.clone()
2330    }
2331
2332    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2333        self.parameters = parameters.clone();
2334    }
2335
2336    fn get_depth(&self) -> usize {
2337        self.conv_structure.len()
2338    }
2339
2340    fn get_gate_count(&self) -> usize {
2341        self.conv_structure.len() * 4 // Approximate gates per filter
2342    }
2343
2344    fn get_num_parameters(&self) -> usize {
2345        self.parameters.len()
2346    }
2347}
2348
2349impl QuantumConvolutionalLayer {
2350    /// Apply convolutional filter
2351    fn apply_convolutional_filter(
2352        &self,
2353        state: &Array1<Complex64>,
2354        filter: &ConvolutionalFilter,
2355    ) -> Result<Array1<Complex64>> {
2356        let mut new_state = state.clone();
2357
2358        // Apply parameterized two-qubit unitaries
2359        let param1 = self.parameters[filter.parameter_indices[0]];
2360        let param2 = self.parameters[filter.parameter_indices[1]];
2361
2362        // Apply RY rotations followed by CNOT
2363        new_state = Self::apply_ry_to_state(&new_state, filter.qubits[0], param1)?;
2364        new_state = Self::apply_ry_to_state(&new_state, filter.qubits[1], param2)?;
2365        new_state = Self::apply_cnot_to_state(&new_state, filter.qubits[0], filter.qubits[1])?;
2366
2367        Ok(new_state)
2368    }
2369
2370    /// Apply RY rotation to state
2371    fn apply_ry_to_state(
2372        state: &Array1<Complex64>,
2373        qubit: usize,
2374        angle: f64,
2375    ) -> Result<Array1<Complex64>> {
2376        let state_size = state.len();
2377        let mut new_state = Array1::zeros(state_size);
2378
2379        let cos_half = (angle / 2.0).cos();
2380        let sin_half = (angle / 2.0).sin();
2381
2382        for i in 0..state_size {
2383            if i & (1 << qubit) == 0 {
2384                let j = i | (1 << qubit);
2385                if j < state_size {
2386                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2387                        - Complex64::new(sin_half, 0.0) * state[j];
2388                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2389                        + Complex64::new(cos_half, 0.0) * state[j];
2390                }
2391            }
2392        }
2393
2394        Ok(new_state)
2395    }
2396
2397    /// Apply CNOT to state
2398    fn apply_cnot_to_state(
2399        state: &Array1<Complex64>,
2400        control: usize,
2401        target: usize,
2402    ) -> Result<Array1<Complex64>> {
2403        let state_size = state.len();
2404        let mut new_state = state.clone();
2405
2406        for i in 0..state_size {
2407            if (i & (1 << control)) != 0 {
2408                let j = i ^ (1 << target);
2409                new_state[i] = state[j];
2410            }
2411        }
2412
2413        Ok(new_state)
2414    }
2415}
2416
2417/// Quantum Dense Layer (fully connected)
2418#[derive(Debug)]
2419pub struct QuantumDenseLayer {
2420    /// Number of qubits
2421    num_qubits: usize,
2422    /// Layer configuration
2423    config: QMLLayerConfig,
2424    /// Parameters
2425    parameters: Array1<f64>,
2426    /// Dense layer structure
2427    dense_structure: Vec<DenseConnection>,
2428}
2429
2430impl QuantumDenseLayer {
2431    /// Create new quantum dense layer
2432    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2433        let mut layer = Self {
2434            num_qubits,
2435            config: config.clone(),
2436            parameters: Array1::zeros(config.num_parameters),
2437            dense_structure: Vec::new(),
2438        };
2439
2440        layer.initialize_parameters();
2441        layer.build_dense_structure()?;
2442
2443        Ok(layer)
2444    }
2445
2446    /// Initialize parameters
2447    fn initialize_parameters(&mut self) {
2448        let mut rng = thread_rng();
2449        for param in &mut self.parameters {
2450            *param = rng.gen_range(-PI..PI);
2451        }
2452    }
2453
2454    /// Build dense layer structure (all-to-all connectivity)
2455    fn build_dense_structure(&mut self) -> Result<()> {
2456        let mut param_idx = 0;
2457
2458        // Create all-to-all connections
2459        for i in 0..self.num_qubits {
2460            for j in (i + 1)..self.num_qubits {
2461                if param_idx < self.parameters.len() {
2462                    self.dense_structure.push(DenseConnection {
2463                        qubit1: i,
2464                        qubit2: j,
2465                        parameter_index: param_idx,
2466                    });
2467                    param_idx += 1;
2468                }
2469            }
2470        }
2471
2472        Ok(())
2473    }
2474}
2475
2476impl QMLLayer for QuantumDenseLayer {
2477    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2478        let mut state = input.clone();
2479
2480        // Apply dense connections
2481        for connection in &self.dense_structure {
2482            state = self.apply_dense_connection(&state, connection)?;
2483        }
2484
2485        Ok(state)
2486    }
2487
2488    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2489        Ok(gradient.clone())
2490    }
2491
2492    fn get_parameters(&self) -> Array1<f64> {
2493        self.parameters.clone()
2494    }
2495
2496    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2497        self.parameters = parameters.clone();
2498    }
2499
2500    fn get_depth(&self) -> usize {
2501        1 // Dense layer is typically single depth
2502    }
2503
2504    fn get_gate_count(&self) -> usize {
2505        self.dense_structure.len() * 2 // Approximate gates per connection
2506    }
2507
2508    fn get_num_parameters(&self) -> usize {
2509        self.parameters.len()
2510    }
2511}
2512
2513impl QuantumDenseLayer {
2514    /// Apply dense connection (parameterized two-qubit gate)
2515    fn apply_dense_connection(
2516        &self,
2517        state: &Array1<Complex64>,
2518        connection: &DenseConnection,
2519    ) -> Result<Array1<Complex64>> {
2520        let angle = self.parameters[connection.parameter_index];
2521
2522        // Apply parameterized two-qubit rotation
2523        Self::apply_parameterized_two_qubit_gate(state, connection.qubit1, connection.qubit2, angle)
2524    }
2525
2526    /// Apply parameterized two-qubit gate
2527    fn apply_parameterized_two_qubit_gate(
2528        state: &Array1<Complex64>,
2529        qubit1: usize,
2530        qubit2: usize,
2531        angle: f64,
2532    ) -> Result<Array1<Complex64>> {
2533        let state_size = state.len();
2534        let mut new_state = state.clone();
2535
2536        // Apply controlled rotation
2537        let cos_val = angle.cos();
2538        let sin_val = angle.sin();
2539
2540        for i in 0..state_size {
2541            if (i & (1 << qubit1)) != 0 && (i & (1 << qubit2)) != 0 {
2542                // Both qubits are |1⟩
2543                let phase = Complex64::new(cos_val, sin_val);
2544                new_state[i] *= phase;
2545            }
2546        }
2547
2548        Ok(new_state)
2549    }
2550}
2551
2552/// Quantum LSTM Layer
2553#[derive(Debug)]
2554pub struct QuantumLSTMLayer {
2555    /// Number of qubits
2556    num_qubits: usize,
2557    /// Layer configuration
2558    config: QMLLayerConfig,
2559    /// Parameters
2560    parameters: Array1<f64>,
2561    /// LSTM gates
2562    lstm_gates: Vec<LSTMGate>,
2563    /// Hidden state
2564    hidden_state: Option<Array1<Complex64>>,
2565    /// Cell state
2566    cell_state: Option<Array1<Complex64>>,
2567}
2568
2569impl QuantumLSTMLayer {
2570    /// Create new quantum LSTM layer
2571    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2572        let mut layer = Self {
2573            num_qubits,
2574            config: config.clone(),
2575            parameters: Array1::zeros(config.num_parameters),
2576            lstm_gates: Vec::new(),
2577            hidden_state: None,
2578            cell_state: None,
2579        };
2580
2581        layer.initialize_parameters();
2582        layer.build_lstm_structure()?;
2583
2584        Ok(layer)
2585    }
2586
2587    /// Initialize parameters
2588    fn initialize_parameters(&mut self) {
2589        let mut rng = thread_rng();
2590        for param in &mut self.parameters {
2591            *param = rng.gen_range(-PI..PI);
2592        }
2593    }
2594
2595    /// Build LSTM structure
2596    fn build_lstm_structure(&mut self) -> Result<()> {
2597        let params_per_gate = self.parameters.len() / 4; // Forget, input, output, candidate gates
2598
2599        self.lstm_gates = vec![
2600            LSTMGate {
2601                gate_type: LSTMGateType::Forget,
2602                parameter_start: 0,
2603                parameter_count: params_per_gate,
2604            },
2605            LSTMGate {
2606                gate_type: LSTMGateType::Input,
2607                parameter_start: params_per_gate,
2608                parameter_count: params_per_gate,
2609            },
2610            LSTMGate {
2611                gate_type: LSTMGateType::Output,
2612                parameter_start: 2 * params_per_gate,
2613                parameter_count: params_per_gate,
2614            },
2615            LSTMGate {
2616                gate_type: LSTMGateType::Candidate,
2617                parameter_start: 3 * params_per_gate,
2618                parameter_count: params_per_gate,
2619            },
2620        ];
2621
2622        Ok(())
2623    }
2624}
2625
2626impl QMLLayer for QuantumLSTMLayer {
2627    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2628        // Initialize states if first time
2629        if self.hidden_state.is_none() {
2630            let state_size = 1 << self.num_qubits;
2631            let mut hidden = Array1::zeros(state_size);
2632            let mut cell = Array1::zeros(state_size);
2633            // Initialize with |0...0⟩ state
2634            hidden[0] = Complex64::new(1.0, 0.0);
2635            cell[0] = Complex64::new(1.0, 0.0);
2636            self.hidden_state = Some(hidden);
2637            self.cell_state = Some(cell);
2638        }
2639
2640        let mut current_state = input.clone();
2641
2642        // Apply LSTM gates
2643        for gate in &self.lstm_gates {
2644            current_state = self.apply_lstm_gate(&current_state, gate)?;
2645        }
2646
2647        // Update internal states
2648        self.hidden_state = Some(current_state.clone());
2649
2650        Ok(current_state)
2651    }
2652
2653    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2654        Ok(gradient.clone())
2655    }
2656
2657    fn get_parameters(&self) -> Array1<f64> {
2658        self.parameters.clone()
2659    }
2660
2661    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2662        self.parameters = parameters.clone();
2663    }
2664
2665    fn get_depth(&self) -> usize {
2666        self.lstm_gates.len()
2667    }
2668
2669    fn get_gate_count(&self) -> usize {
2670        self.parameters.len() // Each parameter corresponds roughly to one gate
2671    }
2672
2673    fn get_num_parameters(&self) -> usize {
2674        self.parameters.len()
2675    }
2676}
2677
2678impl QuantumLSTMLayer {
2679    /// Apply LSTM gate
2680    fn apply_lstm_gate(
2681        &self,
2682        state: &Array1<Complex64>,
2683        gate: &LSTMGate,
2684    ) -> Result<Array1<Complex64>> {
2685        let mut new_state = state.clone();
2686
2687        // Apply parameterized unitaries based on gate parameters
2688        for i in 0..gate.parameter_count {
2689            let param_idx = gate.parameter_start + i;
2690            if param_idx < self.parameters.len() {
2691                let angle = self.parameters[param_idx];
2692                let qubit = i % self.num_qubits;
2693
2694                // Apply rotation gate
2695                new_state = Self::apply_rotation(&new_state, qubit, angle)?;
2696            }
2697        }
2698
2699        Ok(new_state)
2700    }
2701
2702    /// Apply rotation gate
2703    fn apply_rotation(
2704        state: &Array1<Complex64>,
2705        qubit: usize,
2706        angle: f64,
2707    ) -> Result<Array1<Complex64>> {
2708        let state_size = state.len();
2709        let mut new_state = Array1::zeros(state_size);
2710
2711        let cos_half = (angle / 2.0).cos();
2712        let sin_half = (angle / 2.0).sin();
2713
2714        for i in 0..state_size {
2715            if i & (1 << qubit) == 0 {
2716                let j = i | (1 << qubit);
2717                if j < state_size {
2718                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2719                        - Complex64::new(sin_half, 0.0) * state[j];
2720                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2721                        + Complex64::new(cos_half, 0.0) * state[j];
2722                }
2723            }
2724        }
2725
2726        Ok(new_state)
2727    }
2728
2729    /// Get LSTM gates reference
2730    #[must_use]
2731    pub fn get_lstm_gates(&self) -> &[LSTMGate] {
2732        &self.lstm_gates
2733    }
2734}
2735
2736/// Quantum Attention Layer
2737#[derive(Debug)]
2738pub struct QuantumAttentionLayer {
2739    /// Number of qubits
2740    num_qubits: usize,
2741    /// Layer configuration
2742    config: QMLLayerConfig,
2743    /// Parameters
2744    parameters: Array1<f64>,
2745    /// Attention structure
2746    attention_structure: Vec<AttentionHead>,
2747}
2748
2749impl QuantumAttentionLayer {
2750    /// Create new quantum attention layer
2751    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2752        let mut layer = Self {
2753            num_qubits,
2754            config: config.clone(),
2755            parameters: Array1::zeros(config.num_parameters),
2756            attention_structure: Vec::new(),
2757        };
2758
2759        layer.initialize_parameters();
2760        layer.build_attention_structure()?;
2761
2762        Ok(layer)
2763    }
2764
2765    /// Initialize parameters
2766    fn initialize_parameters(&mut self) {
2767        let mut rng = thread_rng();
2768        for param in &mut self.parameters {
2769            *param = rng.gen_range(-PI..PI);
2770        }
2771    }
2772
2773    /// Build attention structure
2774    fn build_attention_structure(&mut self) -> Result<()> {
2775        let num_heads = 2; // Multi-head attention
2776        let params_per_head = self.parameters.len() / num_heads;
2777
2778        for head in 0..num_heads {
2779            self.attention_structure.push(AttentionHead {
2780                head_id: head,
2781                parameter_start: head * params_per_head,
2782                parameter_count: params_per_head,
2783                query_qubits: (0..self.num_qubits / 2).collect(),
2784                key_qubits: (self.num_qubits / 2..self.num_qubits).collect(),
2785            });
2786        }
2787
2788        Ok(())
2789    }
2790}
2791
2792impl QMLLayer for QuantumAttentionLayer {
2793    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2794        let mut state = input.clone();
2795
2796        // Apply attention heads
2797        for head in &self.attention_structure {
2798            state = self.apply_attention_head(&state, head)?;
2799        }
2800
2801        Ok(state)
2802    }
2803
2804    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2805        Ok(gradient.clone())
2806    }
2807
2808    fn get_parameters(&self) -> Array1<f64> {
2809        self.parameters.clone()
2810    }
2811
2812    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2813        self.parameters = parameters.clone();
2814    }
2815
2816    fn get_depth(&self) -> usize {
2817        self.attention_structure.len()
2818    }
2819
2820    fn get_gate_count(&self) -> usize {
2821        self.parameters.len()
2822    }
2823
2824    fn get_num_parameters(&self) -> usize {
2825        self.parameters.len()
2826    }
2827}
2828
2829impl QuantumAttentionLayer {
2830    /// Apply attention head
2831    fn apply_attention_head(
2832        &self,
2833        state: &Array1<Complex64>,
2834        head: &AttentionHead,
2835    ) -> Result<Array1<Complex64>> {
2836        let mut new_state = state.clone();
2837
2838        // Simplified quantum attention mechanism
2839        for i in 0..head.parameter_count {
2840            let param_idx = head.parameter_start + i;
2841            if param_idx < self.parameters.len() {
2842                let angle = self.parameters[param_idx];
2843
2844                // Apply cross-attention between query and key qubits
2845                if i < head.query_qubits.len() && i < head.key_qubits.len() {
2846                    let query_qubit = head.query_qubits[i];
2847                    let key_qubit = head.key_qubits[i];
2848
2849                    new_state =
2850                        Self::apply_attention_gate(&new_state, query_qubit, key_qubit, angle)?;
2851                }
2852            }
2853        }
2854
2855        Ok(new_state)
2856    }
2857
2858    /// Apply attention gate (parameterized two-qubit interaction)
2859    fn apply_attention_gate(
2860        state: &Array1<Complex64>,
2861        query_qubit: usize,
2862        key_qubit: usize,
2863        angle: f64,
2864    ) -> Result<Array1<Complex64>> {
2865        let state_size = state.len();
2866        let mut new_state = state.clone();
2867
2868        // Apply controlled rotation based on attention score
2869        let cos_val = angle.cos();
2870        let sin_val = angle.sin();
2871
2872        for i in 0..state_size {
2873            if (i & (1 << query_qubit)) != 0 {
2874                // Query qubit is |1⟩, apply attention
2875                let key_state = (i & (1 << key_qubit)) != 0;
2876                let attention_phase = if key_state {
2877                    Complex64::new(cos_val, sin_val)
2878                } else {
2879                    Complex64::new(cos_val, -sin_val)
2880                };
2881                new_state[i] *= attention_phase;
2882            }
2883        }
2884
2885        Ok(new_state)
2886    }
2887
2888    /// Get attention structure reference
2889    #[must_use]
2890    pub fn get_attention_structure(&self) -> &[AttentionHead] {
2891        &self.attention_structure
2892    }
2893}
2894
2895/// Training state for QML framework
2896#[derive(Debug, Clone)]
2897pub struct QMLTrainingState {
2898    /// Current epoch
2899    pub current_epoch: usize,
2900    /// Current learning rate
2901    pub current_learning_rate: f64,
2902    /// Best validation loss achieved
2903    pub best_validation_loss: f64,
2904    /// Patience counter for early stopping
2905    pub patience_counter: usize,
2906    /// Training loss history
2907    pub training_loss_history: Vec<f64>,
2908    /// Validation loss history
2909    pub validation_loss_history: Vec<f64>,
2910}
2911
2912impl Default for QMLTrainingState {
2913    fn default() -> Self {
2914        Self::new()
2915    }
2916}
2917
2918impl QMLTrainingState {
2919    /// Create new training state
2920    #[must_use]
2921    pub const fn new() -> Self {
2922        Self {
2923            current_epoch: 0,
2924            current_learning_rate: 0.01,
2925            best_validation_loss: f64::INFINITY,
2926            patience_counter: 0,
2927            training_loss_history: Vec::new(),
2928            validation_loss_history: Vec::new(),
2929        }
2930    }
2931}
2932
2933/// Training result for QML framework
2934#[derive(Debug, Clone)]
2935pub struct QMLTrainingResult {
2936    /// Final training loss
2937    pub final_training_loss: f64,
2938    /// Final validation loss
2939    pub final_validation_loss: f64,
2940    /// Best validation loss achieved
2941    pub best_validation_loss: f64,
2942    /// Number of epochs trained
2943    pub epochs_trained: usize,
2944    /// Total training time
2945    pub total_training_time: std::time::Duration,
2946    /// Training metrics per epoch
2947    pub training_metrics: Vec<QMLEpochMetrics>,
2948    /// Quantum advantage metrics
2949    pub quantum_advantage_metrics: QuantumAdvantageMetrics,
2950}
2951
2952/// Training metrics for a single epoch
2953#[derive(Debug, Clone)]
2954pub struct QMLEpochMetrics {
2955    /// Epoch number
2956    pub epoch: usize,
2957    /// Training loss
2958    pub training_loss: f64,
2959    /// Validation loss
2960    pub validation_loss: f64,
2961    /// Time taken for epoch
2962    pub epoch_time: std::time::Duration,
2963    /// Learning rate used
2964    pub learning_rate: f64,
2965}
2966
2967/// Quantum advantage metrics
2968#[derive(Debug, Clone, Serialize, Deserialize)]
2969pub struct QuantumAdvantageMetrics {
2970    /// Quantum volume achieved
2971    pub quantum_volume: f64,
2972    /// Classical simulation cost estimate
2973    pub classical_simulation_cost: f64,
2974    /// Quantum speedup factor
2975    pub quantum_speedup_factor: f64,
2976    /// Circuit depth
2977    pub circuit_depth: usize,
2978    /// Total gate count
2979    pub gate_count: usize,
2980    /// Entanglement measure
2981    pub entanglement_measure: f64,
2982}
2983
2984/// QML framework statistics
2985#[derive(Debug, Clone)]
2986pub struct QMLStats {
2987    /// Number of forward passes
2988    pub forward_passes: usize,
2989    /// Number of backward passes
2990    pub backward_passes: usize,
2991    /// Total training time
2992    pub total_training_time: std::time::Duration,
2993    /// Average epoch time
2994    pub average_epoch_time: std::time::Duration,
2995    /// Peak memory usage
2996    pub peak_memory_usage: usize,
2997    /// Number of parameters
2998    pub num_parameters: usize,
2999}
3000
3001impl Default for QMLStats {
3002    fn default() -> Self {
3003        Self::new()
3004    }
3005}
3006
3007impl QMLStats {
3008    /// Create new statistics
3009    #[must_use]
3010    pub const fn new() -> Self {
3011        Self {
3012            forward_passes: 0,
3013            backward_passes: 0,
3014            total_training_time: std::time::Duration::from_secs(0),
3015            average_epoch_time: std::time::Duration::from_secs(0),
3016            peak_memory_usage: 0,
3017            num_parameters: 0,
3018        }
3019    }
3020}
3021
3022/// Parameterized quantum circuit gate
3023#[derive(Debug, Clone)]
3024pub struct PQCGate {
3025    /// Gate type
3026    pub gate_type: PQCGateType,
3027    /// Qubits involved
3028    pub qubits: Vec<usize>,
3029    /// Parameter index (if parameterized)
3030    pub parameter_index: Option<usize>,
3031}
3032
3033/// Types of PQC gates
3034#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3035pub enum PQCGateType {
3036    /// Single-qubit rotation gate
3037    SingleQubit(RotationGate),
3038    /// Two-qubit gate
3039    TwoQubit(TwoQubitGate),
3040}
3041
3042/// Two-qubit gates
3043#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3044pub enum TwoQubitGate {
3045    /// CNOT gate
3046    CNOT,
3047    /// Controlled-Z gate
3048    CZ,
3049    /// Swap gate
3050    SWAP,
3051    /// Controlled-Phase gate
3052    CPhase,
3053}
3054
3055/// Convolutional filter structure
3056#[derive(Debug, Clone)]
3057pub struct ConvolutionalFilter {
3058    /// Qubits in the filter
3059    pub qubits: Vec<usize>,
3060    /// Parameter indices
3061    pub parameter_indices: Vec<usize>,
3062}
3063
3064/// Dense layer connection
3065#[derive(Debug, Clone)]
3066pub struct DenseConnection {
3067    /// First qubit
3068    pub qubit1: usize,
3069    /// Second qubit
3070    pub qubit2: usize,
3071    /// Parameter index
3072    pub parameter_index: usize,
3073}
3074
3075/// LSTM gate structure
3076#[derive(Debug, Clone)]
3077pub struct LSTMGate {
3078    /// LSTM gate type
3079    pub gate_type: LSTMGateType,
3080    /// Starting parameter index
3081    pub parameter_start: usize,
3082    /// Number of parameters
3083    pub parameter_count: usize,
3084}
3085
3086/// LSTM gate types
3087#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3088pub enum LSTMGateType {
3089    /// Forget gate
3090    Forget,
3091    /// Input gate
3092    Input,
3093    /// Output gate
3094    Output,
3095    /// Candidate values
3096    Candidate,
3097}
3098
3099/// Attention head structure
3100#[derive(Debug, Clone)]
3101pub struct AttentionHead {
3102    /// Head identifier
3103    pub head_id: usize,
3104    /// Starting parameter index
3105    pub parameter_start: usize,
3106    /// Number of parameters
3107    pub parameter_count: usize,
3108    /// Query qubits
3109    pub query_qubits: Vec<usize>,
3110    /// Key qubits
3111    pub key_qubits: Vec<usize>,
3112}
3113
3114/// QML benchmark results
3115#[derive(Debug, Clone, Serialize, Deserialize)]
3116pub struct QMLBenchmarkResults {
3117    /// Training time per method
3118    pub training_times: HashMap<String, std::time::Duration>,
3119    /// Final accuracies
3120    pub final_accuracies: HashMap<String, f64>,
3121    /// Convergence rates
3122    pub convergence_rates: HashMap<String, f64>,
3123    /// Memory usage
3124    pub memory_usage: HashMap<String, usize>,
3125    /// Quantum advantage metrics
3126    pub quantum_advantage: HashMap<String, QuantumAdvantageMetrics>,
3127    /// Parameter counts
3128    pub parameter_counts: HashMap<String, usize>,
3129    /// Circuit depths
3130    pub circuit_depths: HashMap<String, usize>,
3131    /// Gate counts
3132    pub gate_counts: HashMap<String, usize>,
3133}
3134
3135/// Utility functions for QML
3136pub struct QMLUtils;
3137
3138impl QMLUtils {
3139    /// Generate synthetic training data for testing
3140    #[must_use]
3141    pub fn generate_synthetic_data(
3142        num_samples: usize,
3143        input_dim: usize,
3144        output_dim: usize,
3145    ) -> (Vec<Array1<f64>>, Vec<Array1<f64>>) {
3146        let mut rng = thread_rng();
3147        let mut inputs = Vec::new();
3148        let mut outputs = Vec::new();
3149
3150        for _ in 0..num_samples {
3151            let input: Array1<f64> = Array1::from_vec(
3152                (0..input_dim)
3153                    .map(|_| rng.gen_range(-1.0_f64..1.0_f64))
3154                    .collect(),
3155            );
3156
3157            // Generate output based on some function of input
3158            let output = Array1::from_vec(
3159                (0..output_dim)
3160                    .map(|i| {
3161                        if i < input_dim {
3162                            input[i].sin() // Simple nonlinear transformation
3163                        } else {
3164                            rng.gen_range(-1.0_f64..1.0_f64)
3165                        }
3166                    })
3167                    .collect(),
3168            );
3169
3170            inputs.push(input);
3171            outputs.push(output);
3172        }
3173
3174        (inputs, outputs)
3175    }
3176
3177    /// Split data into training and validation sets
3178    #[must_use]
3179    pub fn train_test_split(
3180        inputs: Vec<Array1<f64>>,
3181        outputs: Vec<Array1<f64>>,
3182        test_ratio: f64,
3183    ) -> (
3184        Vec<(Array1<f64>, Array1<f64>)>,
3185        Vec<(Array1<f64>, Array1<f64>)>,
3186    ) {
3187        let total_samples = inputs.len();
3188        let test_samples = ((total_samples as f64) * test_ratio) as usize;
3189        let train_samples = total_samples - test_samples;
3190
3191        let mut combined: Vec<(Array1<f64>, Array1<f64>)> =
3192            inputs.into_iter().zip(outputs).collect();
3193
3194        // Shuffle data
3195        let mut rng = thread_rng();
3196        for i in (1..combined.len()).rev() {
3197            let j = rng.gen_range(0..=i);
3198            combined.swap(i, j);
3199        }
3200
3201        let (train_data, test_data) = combined.split_at(train_samples);
3202        (train_data.to_vec(), test_data.to_vec())
3203    }
3204
3205    /// Evaluate model accuracy
3206    #[must_use]
3207    pub fn evaluate_accuracy(
3208        predictions: &[Array1<f64>],
3209        targets: &[Array1<f64>],
3210        threshold: f64,
3211    ) -> f64 {
3212        let mut correct = 0;
3213        let total = predictions.len();
3214
3215        for (pred, target) in predictions.iter().zip(targets.iter()) {
3216            let diff = pred - target;
3217            let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
3218            if mse < threshold {
3219                correct += 1;
3220            }
3221        }
3222
3223        f64::from(correct) / total as f64
3224    }
3225
3226    /// Compute quantum circuit complexity metrics
3227    #[must_use]
3228    pub fn compute_circuit_complexity(
3229        num_qubits: usize,
3230        depth: usize,
3231        gate_count: usize,
3232    ) -> HashMap<String, f64> {
3233        let mut metrics = HashMap::new();
3234
3235        // State space size
3236        let state_space_size = 2.0_f64.powi(num_qubits as i32);
3237        metrics.insert("state_space_size".to_string(), state_space_size);
3238
3239        // Circuit complexity (depth * gates)
3240        let circuit_complexity = (depth * gate_count) as f64;
3241        metrics.insert("circuit_complexity".to_string(), circuit_complexity);
3242
3243        // Classical simulation cost estimate
3244        let classical_cost = state_space_size * gate_count as f64;
3245        metrics.insert("classical_simulation_cost".to_string(), classical_cost);
3246
3247        // Quantum advantage estimate (log scale)
3248        let quantum_advantage = classical_cost.log(circuit_complexity);
3249        metrics.insert("quantum_advantage_estimate".to_string(), quantum_advantage);
3250
3251        metrics
3252    }
3253}
3254
3255/// Benchmark quantum machine learning implementations
3256pub fn benchmark_quantum_ml_layers(config: &QMLConfig) -> Result<QMLBenchmarkResults> {
3257    let mut results = QMLBenchmarkResults {
3258        training_times: HashMap::new(),
3259        final_accuracies: HashMap::new(),
3260        convergence_rates: HashMap::new(),
3261        memory_usage: HashMap::new(),
3262        quantum_advantage: HashMap::new(),
3263        parameter_counts: HashMap::new(),
3264        circuit_depths: HashMap::new(),
3265        gate_counts: HashMap::new(),
3266    };
3267
3268    // Generate test data
3269    let (inputs, outputs) =
3270        QMLUtils::generate_synthetic_data(100, config.num_qubits, config.num_qubits);
3271    let (train_data, val_data) = QMLUtils::train_test_split(inputs, outputs, 0.2);
3272
3273    // Benchmark different QML architectures
3274    let architectures = vec![
3275        QMLArchitectureType::VariationalQuantumCircuit,
3276        QMLArchitectureType::QuantumConvolutionalNN,
3277        // Add more architectures as needed
3278    ];
3279
3280    for architecture in architectures {
3281        let arch_name = format!("{architecture:?}");
3282
3283        // Create configuration for this architecture
3284        let mut arch_config = config.clone();
3285        arch_config.architecture_type = architecture;
3286
3287        // Create and train model
3288        let start_time = std::time::Instant::now();
3289        let mut framework = QuantumMLFramework::new(arch_config)?;
3290
3291        let training_result = framework.train(&train_data, Some(&val_data))?;
3292        let training_time = start_time.elapsed();
3293
3294        // Evaluate final accuracy
3295        let final_accuracy = framework.evaluate(&val_data)?;
3296
3297        // Store results
3298        results
3299            .training_times
3300            .insert(arch_name.clone(), training_time);
3301        results
3302            .final_accuracies
3303            .insert(arch_name.clone(), 1.0 / (1.0 + final_accuracy)); // Convert loss to accuracy
3304        results.convergence_rates.insert(
3305            arch_name.clone(),
3306            training_result.epochs_trained as f64 / config.training_config.epochs as f64,
3307        );
3308        results
3309            .memory_usage
3310            .insert(arch_name.clone(), framework.get_stats().peak_memory_usage);
3311        results
3312            .quantum_advantage
3313            .insert(arch_name.clone(), training_result.quantum_advantage_metrics);
3314        results.parameter_counts.insert(
3315            arch_name.clone(),
3316            framework
3317                .layers
3318                .iter()
3319                .map(|l| l.get_num_parameters())
3320                .sum(),
3321        );
3322        results.circuit_depths.insert(
3323            arch_name.clone(),
3324            framework.layers.iter().map(|l| l.get_depth()).sum(),
3325        );
3326        results.gate_counts.insert(
3327            arch_name.clone(),
3328            framework.layers.iter().map(|l| l.get_gate_count()).sum(),
3329        );
3330    }
3331
3332    Ok(results)
3333}