quantrs2_sim/
quantum_ldpc_codes.rs

1//! Quantum Low-Density Parity-Check (LDPC) Codes with Belief Propagation Decoding
2//!
3//! This module implements quantum LDPC codes, which are a class of quantum error correction
4//! codes characterized by sparse parity-check matrices. LDPC codes offer excellent error
5//! correction performance with efficient decoding algorithms, making them practical for
6//! large-scale quantum error correction.
7//!
8//! Key features:
9//! - Sparse parity-check matrix construction and optimization
10//! - Belief propagation decoding with message passing
11//! - Support for both CSS and non-CSS LDPC codes
12//! - Tanner graph representation for efficient processing
13//! - Syndrome decoding with iterative refinement
14//! - Performance analysis and threshold estimation
15//! - Hardware-aware optimization for different architectures
16
17use scirs2_core::ndarray::Array2;
18use serde::{Deserialize, Serialize};
19use std::collections::{HashMap, HashSet, VecDeque};
20
21use crate::circuit_interfaces::{
22    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
23};
24use crate::error::Result;
25
26/// LDPC code construction method
27#[derive(Debug, Clone, Copy, PartialEq, Eq)]
28pub enum LDPCConstructionMethod {
29    /// Random regular LDPC codes
30    RandomRegular,
31    /// Progressive edge-growth (PEG) construction
32    ProgressiveEdgeGrowth,
33    /// Gallager construction
34    Gallager,
35    /// MacKay construction
36    MacKay,
37    /// Quantum-specific constructions
38    QuantumBicycle,
39    /// Surface code as LDPC
40    SurfaceCode,
41}
42
43/// Belief propagation decoding algorithm
44#[derive(Debug, Clone, Copy, PartialEq, Eq)]
45pub enum BeliefPropagationAlgorithm {
46    /// Sum-product algorithm
47    SumProduct,
48    /// Min-sum algorithm (simplified)
49    MinSum,
50    /// Normalized min-sum
51    NormalizedMinSum,
52    /// Offset min-sum
53    OffsetMinSum,
54    /// Layered belief propagation
55    LayeredBP,
56}
57
58/// LDPC code configuration
59#[derive(Debug, Clone)]
60pub struct LDPCConfig {
61    /// Number of information bits
62    pub k: usize,
63    /// Code length (number of physical qubits)
64    pub n: usize,
65    /// Number of parity checks
66    pub m: usize,
67    /// Variable node degree (for regular codes)
68    pub dv: usize,
69    /// Check node degree (for regular codes)
70    pub dc: usize,
71    /// Construction method
72    pub construction_method: LDPCConstructionMethod,
73    /// Belief propagation algorithm
74    pub bp_algorithm: BeliefPropagationAlgorithm,
75    /// Maximum BP iterations
76    pub max_bp_iterations: usize,
77    /// Convergence threshold
78    pub convergence_threshold: f64,
79    /// Damping factor for message updates
80    pub damping_factor: f64,
81    /// Enable early termination
82    pub early_termination: bool,
83    /// Noise variance for channel
84    pub noise_variance: f64,
85}
86
87impl Default for LDPCConfig {
88    fn default() -> Self {
89        Self {
90            k: 10,
91            n: 20,
92            m: 10,
93            dv: 3,
94            dc: 6,
95            construction_method: LDPCConstructionMethod::ProgressiveEdgeGrowth,
96            bp_algorithm: BeliefPropagationAlgorithm::SumProduct,
97            max_bp_iterations: 50,
98            convergence_threshold: 1e-6,
99            damping_factor: 0.8,
100            early_termination: true,
101            noise_variance: 0.1,
102        }
103    }
104}
105
106/// Tanner graph representation of LDPC code
107#[derive(Debug, Clone)]
108pub struct TannerGraph {
109    /// Variable nodes (corresponding to qubits)
110    pub variable_nodes: Vec<VariableNode>,
111    /// Check nodes (corresponding to stabilizers)
112    pub check_nodes: Vec<CheckNode>,
113    /// Adjacency matrix (variable to check connections)
114    pub adjacency_matrix: Array2<bool>,
115    /// Parity check matrix H
116    pub parity_check_matrix: Array2<u8>,
117}
118
119/// Variable node in Tanner graph
120#[derive(Debug, Clone)]
121pub struct VariableNode {
122    /// Node index
123    pub id: usize,
124    /// Connected check nodes
125    pub connected_checks: Vec<usize>,
126    /// Current belief (log-likelihood ratio)
127    pub belief: f64,
128    /// Channel information
129    pub channel_llr: f64,
130    /// Incoming messages from check nodes
131    pub incoming_messages: HashMap<usize, f64>,
132}
133
134/// Check node in Tanner graph
135#[derive(Debug, Clone)]
136pub struct CheckNode {
137    /// Node index
138    pub id: usize,
139    /// Connected variable nodes
140    pub connected_variables: Vec<usize>,
141    /// Incoming messages from variable nodes
142    pub incoming_messages: HashMap<usize, f64>,
143    /// Syndrome value
144    pub syndrome: bool,
145}
146
147impl VariableNode {
148    /// Create new variable node
149    pub fn new(id: usize) -> Self {
150        Self {
151            id,
152            connected_checks: Vec::new(),
153            belief: 0.0,
154            channel_llr: 0.0,
155            incoming_messages: HashMap::new(),
156        }
157    }
158
159    /// Update belief based on incoming messages
160    pub fn update_belief(&mut self) {
161        self.belief = self.channel_llr + self.incoming_messages.values().sum::<f64>();
162    }
163
164    /// Compute outgoing message to specific check node
165    pub fn compute_outgoing_message(&self, check_id: usize) -> f64 {
166        let message_sum: f64 = self
167            .incoming_messages
168            .iter()
169            .filter(|(&id, _)| id != check_id)
170            .map(|(_, &value)| value)
171            .sum();
172        self.channel_llr + message_sum
173    }
174}
175
176impl CheckNode {
177    /// Create new check node
178    pub fn new(id: usize) -> Self {
179        Self {
180            id,
181            connected_variables: Vec::new(),
182            incoming_messages: HashMap::new(),
183            syndrome: false,
184        }
185    }
186
187    /// Compute outgoing message to specific variable node using sum-product
188    pub fn compute_outgoing_message_sum_product(&self, var_id: usize) -> f64 {
189        let product: f64 = self
190            .incoming_messages
191            .iter()
192            .filter(|(&id, _)| id != var_id)
193            .map(|(_, &msg)| msg.tanh() / 2.0)
194            .product();
195
196        2.0 * product.atanh()
197    }
198
199    /// Compute outgoing message using min-sum algorithm
200    pub fn compute_outgoing_message_min_sum(&self, var_id: usize) -> f64 {
201        let other_messages: Vec<f64> = self
202            .incoming_messages
203            .iter()
204            .filter(|(&id, _)| id != var_id)
205            .map(|(_, &msg)| msg)
206            .collect();
207
208        if other_messages.is_empty() {
209            return 0.0;
210        }
211
212        let sign_product: f64 = other_messages
213            .iter()
214            .map(|&msg| if msg >= 0.0 { 1.0 } else { -1.0 })
215            .product();
216
217        let min_magnitude = other_messages
218            .iter()
219            .map(|&msg| msg.abs())
220            .fold(f64::INFINITY, |a, b| a.min(b));
221
222        sign_product * min_magnitude
223    }
224}
225
226/// Quantum LDPC code implementation
227pub struct QuantumLDPCCode {
228    /// Configuration
229    config: LDPCConfig,
230    /// Tanner graph representation
231    tanner_graph: TannerGraph,
232    /// X stabilizer generators
233    #[allow(dead_code)]
234    x_stabilizers: Array2<u8>,
235    /// Z stabilizer generators
236    #[allow(dead_code)]
237    z_stabilizers: Array2<u8>,
238    /// Logical X operators
239    #[allow(dead_code)]
240    logical_x_ops: Array2<u8>,
241    /// Logical Z operators
242    #[allow(dead_code)]
243    logical_z_ops: Array2<u8>,
244    /// Circuit interface
245    #[allow(dead_code)]
246    circuit_interface: CircuitInterface,
247    /// Performance statistics
248    stats: LDPCStats,
249}
250
251/// LDPC performance statistics
252#[derive(Debug, Clone, Default, Serialize, Deserialize)]
253pub struct LDPCStats {
254    /// Total decoding attempts
255    pub total_decodings: usize,
256    /// Successful decodings
257    pub successful_decodings: usize,
258    /// Average BP iterations
259    pub avg_bp_iterations: f64,
260    /// Block error rate
261    pub block_error_rate: f64,
262    /// Bit error rate
263    pub bit_error_rate: f64,
264    /// Average decoding time
265    pub avg_decoding_time_ms: f64,
266    /// Threshold estimate
267    pub threshold_estimate: f64,
268    /// Convergence rate
269    pub convergence_rate: f64,
270}
271
272impl LDPCStats {
273    /// Update statistics after decoding
274    pub fn update_after_decoding(&mut self, success: bool, iterations: usize, time_ms: f64) {
275        self.total_decodings += 1;
276        if success {
277            self.successful_decodings += 1;
278        }
279
280        let prev_avg_iter = self.avg_bp_iterations;
281        self.avg_bp_iterations = (prev_avg_iter * (self.total_decodings - 1) as f64
282            + iterations as f64)
283            / self.total_decodings as f64;
284
285        let prev_avg_time = self.avg_decoding_time_ms;
286        self.avg_decoding_time_ms = (prev_avg_time * (self.total_decodings - 1) as f64 + time_ms)
287            / self.total_decodings as f64;
288
289        self.block_error_rate =
290            1.0 - (self.successful_decodings as f64 / self.total_decodings as f64);
291        self.convergence_rate = self.successful_decodings as f64 / self.total_decodings as f64;
292    }
293}
294
295/// Belief propagation decoding result
296#[derive(Debug, Clone, Serialize, Deserialize)]
297pub struct BPDecodingResult {
298    /// Decoded codeword
299    pub decoded_bits: Vec<bool>,
300    /// Final syndrome
301    pub final_syndrome: Vec<bool>,
302    /// Number of BP iterations
303    pub iterations: usize,
304    /// Converged successfully
305    pub converged: bool,
306    /// Final log-likelihood ratios
307    pub final_llrs: Vec<f64>,
308    /// Decoding time in milliseconds
309    pub decoding_time_ms: f64,
310    /// Error correction success
311    pub success: bool,
312}
313
314impl QuantumLDPCCode {
315    /// Create new quantum LDPC code
316    pub fn new(config: LDPCConfig) -> Result<Self> {
317        let circuit_interface = CircuitInterface::new(Default::default())?;
318
319        // Construct Tanner graph
320        let tanner_graph = Self::construct_tanner_graph(&config)?;
321
322        // Generate stabilizer matrices
323        let (x_stabilizers, z_stabilizers) =
324            Self::generate_stabilizer_matrices(&config, &tanner_graph)?;
325
326        // Generate logical operators
327        let (logical_x_ops, logical_z_ops) =
328            Self::generate_logical_operators(&config, &x_stabilizers, &z_stabilizers)?;
329
330        Ok(Self {
331            config,
332            tanner_graph,
333            x_stabilizers,
334            z_stabilizers,
335            logical_x_ops,
336            logical_z_ops,
337            circuit_interface,
338            stats: LDPCStats::default(),
339        })
340    }
341
342    /// Construct Tanner graph based on configuration
343    fn construct_tanner_graph(config: &LDPCConfig) -> Result<TannerGraph> {
344        match config.construction_method {
345            LDPCConstructionMethod::RandomRegular => Self::construct_random_regular(config),
346            LDPCConstructionMethod::ProgressiveEdgeGrowth => Self::construct_peg(config),
347            LDPCConstructionMethod::Gallager => Self::construct_gallager(config),
348            LDPCConstructionMethod::MacKay => Self::construct_mackay(config),
349            LDPCConstructionMethod::QuantumBicycle => Self::construct_quantum_bicycle(config),
350            LDPCConstructionMethod::SurfaceCode => Self::construct_surface_code(config),
351        }
352    }
353
354    /// Construct random regular LDPC code
355    fn construct_random_regular(config: &LDPCConfig) -> Result<TannerGraph> {
356        let mut variable_nodes = Vec::with_capacity(config.n);
357        let mut check_nodes = Vec::with_capacity(config.m);
358        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
359
360        // Initialize nodes
361        for i in 0..config.n {
362            variable_nodes.push(VariableNode::new(i));
363        }
364        for i in 0..config.m {
365            check_nodes.push(CheckNode::new(i));
366        }
367
368        // Create edges for regular LDPC code
369        let mut edges = Vec::new();
370
371        // Add edges from variable nodes
372        for var_id in 0..config.n {
373            for _ in 0..config.dv {
374                edges.push(var_id);
375            }
376        }
377
378        // Shuffle edges for randomness
379        for i in 0..edges.len() {
380            let j = fastrand::usize(i..edges.len());
381            edges.swap(i, j);
382        }
383
384        // Assign edges to check nodes
385        let mut edge_idx = 0;
386        for check_id in 0..config.m {
387            for _ in 0..config.dc {
388                if edge_idx < edges.len() {
389                    let var_id = edges[edge_idx];
390
391                    // Add connection
392                    variable_nodes[var_id].connected_checks.push(check_id);
393                    check_nodes[check_id].connected_variables.push(var_id);
394                    adjacency_matrix[[var_id, check_id]] = true;
395
396                    edge_idx += 1;
397                }
398            }
399        }
400
401        // Create parity check matrix
402        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
403        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
404            if *check_id {
405                parity_check_matrix[[var_id.1, var_id.0]] = 1;
406            }
407        }
408
409        Ok(TannerGraph {
410            variable_nodes,
411            check_nodes,
412            adjacency_matrix,
413            parity_check_matrix,
414        })
415    }
416
417    /// Construct LDPC code using Progressive Edge Growth (PEG)
418    fn construct_peg(config: &LDPCConfig) -> Result<TannerGraph> {
419        let mut variable_nodes = Vec::with_capacity(config.n);
420        let mut check_nodes = Vec::with_capacity(config.m);
421        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
422
423        // Initialize nodes
424        for i in 0..config.n {
425            variable_nodes.push(VariableNode::new(i));
426        }
427        for i in 0..config.m {
428            check_nodes.push(CheckNode::new(i));
429        }
430
431        // PEG algorithm: for each variable node, connect to checks that maximize girth
432        for var_id in 0..config.n {
433            let mut connected_checks = HashSet::new();
434
435            for _ in 0..config.dv {
436                let best_check = Self::find_best_check_for_peg(
437                    var_id,
438                    &connected_checks,
439                    &variable_nodes,
440                    &check_nodes,
441                    &adjacency_matrix,
442                    config.m,
443                );
444
445                if let Some(check_id) = best_check {
446                    // Add connection
447                    variable_nodes[var_id].connected_checks.push(check_id);
448                    check_nodes[check_id].connected_variables.push(var_id);
449                    adjacency_matrix[[var_id, check_id]] = true;
450                    connected_checks.insert(check_id);
451                }
452            }
453        }
454
455        // Create parity check matrix
456        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
457        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
458            if *check_id {
459                parity_check_matrix[[var_id.1, var_id.0]] = 1;
460            }
461        }
462
463        Ok(TannerGraph {
464            variable_nodes,
465            check_nodes,
466            adjacency_matrix,
467            parity_check_matrix,
468        })
469    }
470
471    /// Find best check node for PEG construction
472    fn find_best_check_for_peg(
473        var_id: usize,
474        connected_checks: &HashSet<usize>,
475        _variable_nodes: &[VariableNode],
476        _check_nodes: &[CheckNode],
477        adjacency_matrix: &Array2<bool>,
478        num_checks: usize,
479    ) -> Option<usize> {
480        let mut best_check = None;
481        let mut best_girth = 0;
482
483        for check_id in 0..num_checks {
484            if connected_checks.contains(&check_id) {
485                continue;
486            }
487
488            // Calculate local girth if we connect to this check
489            let girth = Self::calculate_local_girth(var_id, check_id, adjacency_matrix);
490
491            if girth > best_girth {
492                best_girth = girth;
493                best_check = Some(check_id);
494            }
495        }
496
497        best_check
498    }
499
500    /// Calculate local girth around a potential edge
501    fn calculate_local_girth(
502        var_id: usize,
503        check_id: usize,
504        adjacency_matrix: &Array2<bool>,
505    ) -> usize {
506        // Simplified girth calculation - BFS to find shortest cycle
507        let mut visited_vars = HashSet::new();
508        let mut visited_checks = HashSet::new();
509        let mut queue = VecDeque::new();
510
511        queue.push_back((var_id, 0, true)); // (node_id, distance, is_variable)
512        visited_vars.insert(var_id);
513
514        while let Some((node_id, dist, is_var)) = queue.pop_front() {
515            if dist > 6 {
516                // Limit search depth
517                break;
518            }
519
520            if is_var {
521                // Variable node - explore connected checks
522                for (check_idx, &connected) in adjacency_matrix.row(node_id).indexed_iter() {
523                    if connected && check_idx != check_id {
524                        if visited_checks.contains(&check_idx) {
525                            return dist * 2; // Found cycle
526                        }
527                        visited_checks.insert(check_idx);
528                        queue.push_back((check_idx, dist + 1, false));
529                    }
530                }
531            } else {
532                // Check node - explore connected variables
533                for (var_idx, &connected) in adjacency_matrix.column(node_id).indexed_iter() {
534                    if connected && var_idx != var_id {
535                        if visited_vars.contains(&var_idx) {
536                            return dist * 2 + 1; // Found cycle
537                        }
538                        visited_vars.insert(var_idx);
539                        queue.push_back((var_idx, dist + 1, true));
540                    }
541                }
542            }
543        }
544
545        12 // Default large girth if no cycle found
546    }
547
548    /// Construct Gallager LDPC code
549    fn construct_gallager(config: &LDPCConfig) -> Result<TannerGraph> {
550        // For simplicity, use random regular construction
551        // Real Gallager construction would be more sophisticated
552        Self::construct_random_regular(config)
553    }
554
555    /// Construct MacKay LDPC code
556    fn construct_mackay(config: &LDPCConfig) -> Result<TannerGraph> {
557        // For simplicity, use PEG construction
558        // Real MacKay construction would use specific algorithms
559        Self::construct_peg(config)
560    }
561
562    /// Construct quantum bicycle code
563    fn construct_quantum_bicycle(config: &LDPCConfig) -> Result<TannerGraph> {
564        // Simplified bicycle code construction
565        let mut variable_nodes = Vec::with_capacity(config.n);
566        let mut check_nodes = Vec::with_capacity(config.m);
567        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
568
569        // Initialize nodes
570        for i in 0..config.n {
571            variable_nodes.push(VariableNode::new(i));
572        }
573        for i in 0..config.m {
574            check_nodes.push(CheckNode::new(i));
575        }
576
577        // Bicycle code structure: cyclic connections
578        let l = config.n / 2;
579        for i in 0..l {
580            for j in 0..config.dv {
581                let check_id = (i + j * l / config.dv) % config.m;
582
583                // Connect variable i to check_id
584                variable_nodes[i].connected_checks.push(check_id);
585                check_nodes[check_id].connected_variables.push(i);
586                adjacency_matrix[[i, check_id]] = true;
587
588                // Connect variable i+l to check_id (bicycle structure)
589                if i + l < config.n {
590                    variable_nodes[i + l].connected_checks.push(check_id);
591                    check_nodes[check_id].connected_variables.push(i + l);
592                    adjacency_matrix[[i + l, check_id]] = true;
593                }
594            }
595        }
596
597        // Create parity check matrix
598        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
599        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
600            if *check_id {
601                parity_check_matrix[[var_id.1, var_id.0]] = 1;
602            }
603        }
604
605        Ok(TannerGraph {
606            variable_nodes,
607            check_nodes,
608            adjacency_matrix,
609            parity_check_matrix,
610        })
611    }
612
613    /// Construct surface code as LDPC
614    fn construct_surface_code(config: &LDPCConfig) -> Result<TannerGraph> {
615        // Simplified surface code construction
616        let d = (config.n as f64).sqrt() as usize; // Assume square lattice
617        let mut variable_nodes = Vec::with_capacity(config.n);
618        let mut check_nodes = Vec::with_capacity(config.m);
619        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
620
621        // Initialize nodes
622        for i in 0..config.n {
623            variable_nodes.push(VariableNode::new(i));
624        }
625        for i in 0..config.m {
626            check_nodes.push(CheckNode::new(i));
627        }
628
629        // Surface code structure: each stabilizer connects to 4 neighboring qubits
630        for check_id in 0..config.m {
631            let row = check_id / d;
632            let col = check_id % d;
633
634            // Connect to neighboring qubits (up, down, left, right)
635            let neighbors = [
636                (row.wrapping_sub(1), col),
637                (row + 1, col),
638                (row, col.wrapping_sub(1)),
639                (row, col + 1),
640            ];
641
642            for (r, c) in neighbors.iter() {
643                if *r < d && *c < d {
644                    let var_id = r * d + c;
645                    if var_id < config.n {
646                        variable_nodes[var_id].connected_checks.push(check_id);
647                        check_nodes[check_id].connected_variables.push(var_id);
648                        adjacency_matrix[[var_id, check_id]] = true;
649                    }
650                }
651            }
652        }
653
654        // Create parity check matrix
655        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
656        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
657            if *check_id {
658                parity_check_matrix[[var_id.1, var_id.0]] = 1;
659            }
660        }
661
662        Ok(TannerGraph {
663            variable_nodes,
664            check_nodes,
665            adjacency_matrix,
666            parity_check_matrix,
667        })
668    }
669
670    /// Generate stabilizer matrices for quantum LDPC code
671    fn generate_stabilizer_matrices(
672        _config: &LDPCConfig,
673        tanner_graph: &TannerGraph,
674    ) -> Result<(Array2<u8>, Array2<u8>)> {
675        // For CSS codes, X and Z stabilizers are independent
676        let x_stabilizers = tanner_graph.parity_check_matrix.clone();
677        let z_stabilizers = tanner_graph.parity_check_matrix.clone();
678
679        Ok((x_stabilizers, z_stabilizers))
680    }
681
682    /// Generate logical operators
683    fn generate_logical_operators(
684        config: &LDPCConfig,
685        _x_stabilizers: &Array2<u8>,
686        _z_stabilizers: &Array2<u8>,
687    ) -> Result<(Array2<u8>, Array2<u8>)> {
688        let k = config.k;
689        let n = config.n;
690
691        // Simplified logical operator generation
692        let mut logical_x_ops = Array2::zeros((k, n));
693        let mut logical_z_ops = Array2::zeros((k, n));
694
695        // For demonstration, create simple logical operators
696        for i in 0..k.min(n) {
697            logical_x_ops[[i, i]] = 1;
698            logical_z_ops[[i, i]] = 1;
699        }
700
701        Ok((logical_x_ops, logical_z_ops))
702    }
703
704    /// Perform belief propagation decoding
705    pub fn decode_belief_propagation(
706        &mut self,
707        received_llrs: &[f64],
708        syndrome: &[bool],
709    ) -> Result<BPDecodingResult> {
710        let start_time = std::time::Instant::now();
711
712        // Initialize channel LLRs
713        for (i, &llr) in received_llrs.iter().enumerate() {
714            if i < self.tanner_graph.variable_nodes.len() {
715                self.tanner_graph.variable_nodes[i].channel_llr = llr;
716            }
717        }
718
719        // Set syndromes
720        for (i, &syn) in syndrome.iter().enumerate() {
721            if i < self.tanner_graph.check_nodes.len() {
722                self.tanner_graph.check_nodes[i].syndrome = syn;
723            }
724        }
725
726        let mut converged = false;
727        let mut iteration = 0;
728
729        // Belief propagation iterations
730        while iteration < self.config.max_bp_iterations && !converged {
731            // Variable to check messages
732            self.update_variable_to_check_messages();
733
734            // Check to variable messages
735            self.update_check_to_variable_messages();
736
737            // Update variable beliefs
738            self.update_variable_beliefs();
739
740            // Check convergence
741            converged = self.check_convergence();
742
743            if self.config.early_termination && converged {
744                break;
745            }
746
747            iteration += 1;
748        }
749
750        // Extract final decoded bits
751        let decoded_bits = self.extract_decoded_bits();
752
753        // Calculate final syndrome
754        let final_syndrome = self.calculate_syndrome(&decoded_bits);
755
756        // Check if decoding was successful
757        let success = final_syndrome.iter().all(|&s| !s);
758
759        let decoding_time_ms = start_time.elapsed().as_secs_f64() * 1000.0;
760
761        // Update statistics
762        self.stats
763            .update_after_decoding(success, iteration, decoding_time_ms);
764
765        // Extract final LLRs
766        let final_llrs: Vec<f64> = self
767            .tanner_graph
768            .variable_nodes
769            .iter()
770            .map(|node| node.belief)
771            .collect();
772
773        Ok(BPDecodingResult {
774            decoded_bits,
775            final_syndrome,
776            iterations: iteration,
777            converged,
778            final_llrs,
779            decoding_time_ms,
780            success,
781        })
782    }
783
784    /// Update variable to check messages
785    fn update_variable_to_check_messages(&mut self) {
786        for var_node in &mut self.tanner_graph.variable_nodes {
787            for &check_id in &var_node.connected_checks.clone() {
788                let message = var_node.compute_outgoing_message(check_id);
789
790                // Apply damping
791                let old_message = self.tanner_graph.check_nodes[check_id]
792                    .incoming_messages
793                    .get(&var_node.id)
794                    .unwrap_or(&0.0);
795
796                let damped_message = self.config.damping_factor * message
797                    + (1.0 - self.config.damping_factor) * old_message;
798
799                self.tanner_graph.check_nodes[check_id]
800                    .incoming_messages
801                    .insert(var_node.id, damped_message);
802            }
803        }
804    }
805
806    /// Update check to variable messages
807    fn update_check_to_variable_messages(&mut self) {
808        for check_node in &mut self.tanner_graph.check_nodes {
809            for &var_id in &check_node.connected_variables.clone() {
810                let message = match self.config.bp_algorithm {
811                    BeliefPropagationAlgorithm::SumProduct => {
812                        check_node.compute_outgoing_message_sum_product(var_id)
813                    }
814                    BeliefPropagationAlgorithm::MinSum => {
815                        check_node.compute_outgoing_message_min_sum(var_id)
816                    }
817                    BeliefPropagationAlgorithm::NormalizedMinSum => {
818                        let min_sum_msg = check_node.compute_outgoing_message_min_sum(var_id);
819                        min_sum_msg * 0.75 // Normalization factor
820                    }
821                    BeliefPropagationAlgorithm::OffsetMinSum => {
822                        let min_sum_msg = check_node.compute_outgoing_message_min_sum(var_id);
823                        let offset = 0.1;
824                        if min_sum_msg.abs() > offset {
825                            min_sum_msg.signum() * (min_sum_msg.abs() - offset)
826                        } else {
827                            0.0
828                        }
829                    }
830                    BeliefPropagationAlgorithm::LayeredBP => {
831                        // Simplified layered BP
832                        check_node.compute_outgoing_message_sum_product(var_id)
833                    }
834                };
835
836                // Apply damping
837                let old_message = self.tanner_graph.variable_nodes[var_id]
838                    .incoming_messages
839                    .get(&check_node.id)
840                    .unwrap_or(&0.0);
841
842                let damped_message = self.config.damping_factor * message
843                    + (1.0 - self.config.damping_factor) * old_message;
844
845                self.tanner_graph.variable_nodes[var_id]
846                    .incoming_messages
847                    .insert(check_node.id, damped_message);
848            }
849        }
850    }
851
852    /// Update variable node beliefs
853    fn update_variable_beliefs(&mut self) {
854        for var_node in &mut self.tanner_graph.variable_nodes {
855            var_node.update_belief();
856        }
857    }
858
859    /// Check convergence of belief propagation
860    fn check_convergence(&self) -> bool {
861        // Check if syndrome is satisfied
862        let decoded_bits = self.extract_decoded_bits();
863        let syndrome = self.calculate_syndrome(&decoded_bits);
864
865        syndrome.iter().all(|&s| !s)
866    }
867
868    /// Extract decoded bits from current beliefs
869    fn extract_decoded_bits(&self) -> Vec<bool> {
870        self.tanner_graph
871            .variable_nodes
872            .iter()
873            .map(|node| node.belief < 0.0)
874            .collect()
875    }
876
877    /// Calculate syndrome for given codeword
878    fn calculate_syndrome(&self, codeword: &[bool]) -> Vec<bool> {
879        let mut syndrome = vec![false; self.tanner_graph.check_nodes.len()];
880
881        for (check_id, check_node) in self.tanner_graph.check_nodes.iter().enumerate() {
882            let mut parity = false;
883            for &var_id in &check_node.connected_variables {
884                if var_id < codeword.len() && codeword[var_id] {
885                    parity = !parity;
886                }
887            }
888            syndrome[check_id] = parity;
889        }
890
891        syndrome
892    }
893
894    /// Generate syndrome extraction circuit
895    pub fn syndrome_circuit(&self) -> Result<InterfaceCircuit> {
896        let num_data_qubits = self.config.n;
897        let num_syndrome_qubits = self.config.m;
898        let total_qubits = num_data_qubits + num_syndrome_qubits;
899
900        let mut circuit = InterfaceCircuit::new(total_qubits, num_syndrome_qubits);
901
902        // Add syndrome extraction gates based on parity check matrix
903        for (check_id, check_node) in self.tanner_graph.check_nodes.iter().enumerate() {
904            let syndrome_qubit = num_data_qubits + check_id;
905
906            for &var_id in &check_node.connected_variables {
907                if var_id < num_data_qubits {
908                    circuit.add_gate(InterfaceGate::new(
909                        InterfaceGateType::CNOT,
910                        vec![var_id, syndrome_qubit],
911                    ));
912                }
913            }
914        }
915
916        Ok(circuit)
917    }
918
919    /// Estimate error threshold
920    pub fn estimate_threshold(
921        &mut self,
922        noise_range: (f64, f64),
923        num_trials: usize,
924    ) -> Result<f64> {
925        let (min_noise, max_noise) = noise_range;
926        let mut threshold = (min_noise + max_noise) / 2.0;
927        let mut search_range = max_noise - min_noise;
928
929        // Binary search for threshold
930        while search_range > 0.001 {
931            self.config.noise_variance = threshold;
932
933            let mut successes = 0;
934            for _ in 0..num_trials {
935                // Generate random errors
936                let errors: Vec<bool> = (0..self.config.n)
937                    .map(|_| fastrand::f64() < threshold)
938                    .collect();
939
940                // Generate LLRs from errors
941                let llrs: Vec<f64> = errors
942                    .iter()
943                    .map(|&error| {
944                        if error {
945                            -2.0 / self.config.noise_variance
946                        } else {
947                            2.0 / self.config.noise_variance
948                        }
949                    })
950                    .collect();
951
952                // Calculate syndrome
953                let syndrome = self.calculate_syndrome(&errors);
954
955                // Attempt decoding
956                if let Ok(result) = self.decode_belief_propagation(&llrs, &syndrome) {
957                    if result.success {
958                        successes += 1;
959                    }
960                }
961            }
962
963            let success_rate = successes as f64 / num_trials as f64;
964
965            if success_rate > 0.5 {
966                threshold = (threshold + max_noise) / 2.0;
967            } else {
968                threshold = (min_noise + threshold) / 2.0;
969            }
970
971            search_range /= 2.0;
972        }
973
974        self.stats.threshold_estimate = threshold;
975        Ok(threshold)
976    }
977
978    /// Get current statistics
979    pub fn get_stats(&self) -> &LDPCStats {
980        &self.stats
981    }
982
983    /// Reset statistics
984    pub fn reset_stats(&mut self) {
985        self.stats = LDPCStats::default();
986    }
987
988    /// Get code parameters
989    pub fn get_parameters(&self) -> (usize, usize, usize) {
990        (self.config.n, self.config.k, self.config.m)
991    }
992
993    /// Get Tanner graph
994    pub fn get_tanner_graph(&self) -> &TannerGraph {
995        &self.tanner_graph
996    }
997}
998
999/// Benchmark quantum LDPC codes performance
1000pub fn benchmark_quantum_ldpc_codes() -> Result<HashMap<String, f64>> {
1001    let mut results = HashMap::new();
1002
1003    // Test different LDPC configurations
1004    let configs = vec![
1005        LDPCConfig {
1006            k: 10,
1007            n: 20,
1008            m: 10,
1009            construction_method: LDPCConstructionMethod::RandomRegular,
1010            bp_algorithm: BeliefPropagationAlgorithm::SumProduct,
1011            ..Default::default()
1012        },
1013        LDPCConfig {
1014            k: 15,
1015            n: 30,
1016            m: 15,
1017            construction_method: LDPCConstructionMethod::ProgressiveEdgeGrowth,
1018            bp_algorithm: BeliefPropagationAlgorithm::MinSum,
1019            ..Default::default()
1020        },
1021        LDPCConfig {
1022            k: 20,
1023            n: 40,
1024            m: 20,
1025            construction_method: LDPCConstructionMethod::QuantumBicycle,
1026            bp_algorithm: BeliefPropagationAlgorithm::NormalizedMinSum,
1027            ..Default::default()
1028        },
1029    ];
1030
1031    for (i, config) in configs.into_iter().enumerate() {
1032        let start = std::time::Instant::now();
1033
1034        let mut ldpc_code = QuantumLDPCCode::new(config)?;
1035
1036        // Perform multiple decoding tests
1037        for _ in 0..50 {
1038            // Generate test errors
1039            let errors: Vec<bool> = (0..ldpc_code.config.n)
1040                .map(|_| fastrand::f64() < 0.05)
1041                .collect();
1042
1043            // Generate LLRs
1044            let llrs: Vec<f64> = errors
1045                .iter()
1046                .map(|&error| if error { -1.0 } else { 1.0 })
1047                .collect();
1048
1049            // Calculate syndrome
1050            let syndrome = ldpc_code.calculate_syndrome(&errors);
1051
1052            // Decode
1053            let _result = ldpc_code.decode_belief_propagation(&llrs, &syndrome)?;
1054        }
1055
1056        let time = start.elapsed().as_secs_f64() * 1000.0;
1057        results.insert(format!("config_{}", i), time);
1058
1059        // Add performance metrics
1060        let stats = ldpc_code.get_stats();
1061        results.insert(format!("config_{}_success_rate", i), stats.convergence_rate);
1062        results.insert(
1063            format!("config_{}_avg_iterations", i),
1064            stats.avg_bp_iterations,
1065        );
1066    }
1067
1068    Ok(results)
1069}
1070
1071#[cfg(test)]
1072mod tests {
1073    use super::*;
1074    use approx::assert_abs_diff_eq;
1075
1076    #[test]
1077    fn test_ldpc_code_creation() {
1078        let config = LDPCConfig::default();
1079        let ldpc_code = QuantumLDPCCode::new(config);
1080        assert!(ldpc_code.is_ok());
1081    }
1082
1083    #[test]
1084    fn test_tanner_graph_construction() {
1085        let config = LDPCConfig {
1086            k: 5,
1087            n: 10,
1088            m: 5,
1089            dv: 2,
1090            dc: 4,
1091            ..Default::default()
1092        };
1093
1094        let tanner_graph = QuantumLDPCCode::construct_random_regular(&config);
1095        assert!(tanner_graph.is_ok());
1096
1097        let graph = tanner_graph.unwrap();
1098        assert_eq!(graph.variable_nodes.len(), 10);
1099        assert_eq!(graph.check_nodes.len(), 5);
1100    }
1101
1102    #[test]
1103    fn test_variable_node_operations() {
1104        let mut var_node = VariableNode::new(0);
1105        var_node.channel_llr = 1.0;
1106        var_node.incoming_messages.insert(1, 0.5);
1107        var_node.incoming_messages.insert(2, -0.3);
1108
1109        var_node.update_belief();
1110        assert_abs_diff_eq!(var_node.belief, 1.2, epsilon = 1e-10);
1111
1112        let outgoing = var_node.compute_outgoing_message(1);
1113        assert_abs_diff_eq!(outgoing, 0.7, epsilon = 1e-10);
1114    }
1115
1116    #[test]
1117    fn test_check_node_operations() {
1118        let mut check_node = CheckNode::new(0);
1119        check_node.incoming_messages.insert(1, 0.8);
1120        check_node.incoming_messages.insert(2, -0.6);
1121        check_node.incoming_messages.insert(3, 1.2);
1122
1123        let sum_product_msg = check_node.compute_outgoing_message_sum_product(1);
1124        assert!(sum_product_msg.is_finite());
1125
1126        let min_sum_msg = check_node.compute_outgoing_message_min_sum(1);
1127        assert_abs_diff_eq!(min_sum_msg.abs(), 0.6, epsilon = 1e-10);
1128    }
1129
1130    #[test]
1131    fn test_belief_propagation_decoding() {
1132        let config = LDPCConfig {
1133            k: 3,
1134            n: 6,
1135            m: 3,
1136            max_bp_iterations: 10,
1137            ..Default::default()
1138        };
1139
1140        let mut ldpc_code = QuantumLDPCCode::new(config).unwrap();
1141
1142        let llrs = vec![1.0, -1.0, 1.0, 1.0, -1.0, 1.0];
1143        let syndrome = vec![false, true, false];
1144
1145        let result = ldpc_code.decode_belief_propagation(&llrs, &syndrome);
1146        assert!(result.is_ok());
1147
1148        let bp_result = result.unwrap();
1149        assert_eq!(bp_result.decoded_bits.len(), 6);
1150        assert!(bp_result.iterations <= 10);
1151    }
1152
1153    #[test]
1154    fn test_syndrome_calculation() {
1155        let config = LDPCConfig {
1156            k: 2,
1157            n: 4,
1158            m: 2,
1159            ..Default::default()
1160        };
1161
1162        let ldpc_code = QuantumLDPCCode::new(config).unwrap();
1163
1164        let codeword = vec![false, true, false, true];
1165        let syndrome = ldpc_code.calculate_syndrome(&codeword);
1166
1167        assert_eq!(syndrome.len(), 2);
1168    }
1169
1170    #[test]
1171    fn test_syndrome_circuit_generation() {
1172        let config = LDPCConfig {
1173            k: 3,
1174            n: 6,
1175            m: 3,
1176            ..Default::default()
1177        };
1178
1179        let ldpc_code = QuantumLDPCCode::new(config).unwrap();
1180        let circuit = ldpc_code.syndrome_circuit();
1181
1182        assert!(circuit.is_ok());
1183        let syndrome_circuit = circuit.unwrap();
1184        assert_eq!(syndrome_circuit.num_qubits, 9); // 6 data + 3 syndrome
1185    }
1186
1187    #[test]
1188    fn test_different_construction_methods() {
1189        let base_config = LDPCConfig {
1190            k: 3,
1191            n: 6,
1192            m: 3,
1193            ..Default::default()
1194        };
1195
1196        let methods = vec![
1197            LDPCConstructionMethod::RandomRegular,
1198            LDPCConstructionMethod::ProgressiveEdgeGrowth,
1199            LDPCConstructionMethod::QuantumBicycle,
1200            LDPCConstructionMethod::SurfaceCode,
1201        ];
1202
1203        for method in methods {
1204            let mut config = base_config.clone();
1205            config.construction_method = method;
1206
1207            let ldpc_code = QuantumLDPCCode::new(config);
1208            assert!(ldpc_code.is_ok(), "Failed for method: {:?}", method);
1209        }
1210    }
1211
1212    #[test]
1213    fn test_different_bp_algorithms() {
1214        let base_config = LDPCConfig {
1215            k: 3,
1216            n: 6,
1217            m: 3,
1218            ..Default::default()
1219        };
1220
1221        let algorithms = vec![
1222            BeliefPropagationAlgorithm::SumProduct,
1223            BeliefPropagationAlgorithm::MinSum,
1224            BeliefPropagationAlgorithm::NormalizedMinSum,
1225            BeliefPropagationAlgorithm::OffsetMinSum,
1226        ];
1227
1228        for algorithm in algorithms {
1229            let mut config = base_config.clone();
1230            config.bp_algorithm = algorithm;
1231
1232            let mut ldpc_code = QuantumLDPCCode::new(config).unwrap();
1233
1234            let llrs = vec![1.0, -1.0, 1.0, 1.0, -1.0, 1.0];
1235            let syndrome = vec![false, true, false];
1236
1237            let result = ldpc_code.decode_belief_propagation(&llrs, &syndrome);
1238            assert!(result.is_ok(), "Failed for algorithm: {:?}", algorithm);
1239        }
1240    }
1241
1242    #[test]
1243    fn test_stats_updates() {
1244        let mut stats = LDPCStats::default();
1245
1246        stats.update_after_decoding(true, 5, 10.0);
1247        assert_eq!(stats.total_decodings, 1);
1248        assert_eq!(stats.successful_decodings, 1);
1249        assert_abs_diff_eq!(stats.avg_bp_iterations, 5.0, epsilon = 1e-10);
1250        assert_abs_diff_eq!(stats.block_error_rate, 0.0, epsilon = 1e-10);
1251
1252        stats.update_after_decoding(false, 8, 15.0);
1253        assert_eq!(stats.total_decodings, 2);
1254        assert_eq!(stats.successful_decodings, 1);
1255        assert_abs_diff_eq!(stats.avg_bp_iterations, 6.5, epsilon = 1e-10);
1256        assert_abs_diff_eq!(stats.block_error_rate, 0.5, epsilon = 1e-10);
1257    }
1258}