quantrs2_sim/
quantum_ldpc_codes.rs

1//! Quantum Low-Density Parity-Check (LDPC) Codes with Belief Propagation Decoding
2//!
3//! This module implements quantum LDPC codes, which are a class of quantum error correction
4//! codes characterized by sparse parity-check matrices. LDPC codes offer excellent error
5//! correction performance with efficient decoding algorithms, making them practical for
6//! large-scale quantum error correction.
7//!
8//! Key features:
9//! - Sparse parity-check matrix construction and optimization
10//! - Belief propagation decoding with message passing
11//! - Support for both CSS and non-CSS LDPC codes
12//! - Tanner graph representation for efficient processing
13//! - Syndrome decoding with iterative refinement
14//! - Performance analysis and threshold estimation
15//! - Hardware-aware optimization for different architectures
16
17use scirs2_core::ndarray::Array2;
18use serde::{Deserialize, Serialize};
19use std::collections::{HashMap, HashSet, VecDeque};
20
21use crate::circuit_interfaces::{
22    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
23};
24use crate::error::Result;
25
26/// LDPC code construction method
27#[derive(Debug, Clone, Copy, PartialEq, Eq)]
28pub enum LDPCConstructionMethod {
29    /// Random regular LDPC codes
30    RandomRegular,
31    /// Progressive edge-growth (PEG) construction
32    ProgressiveEdgeGrowth,
33    /// Gallager construction
34    Gallager,
35    /// `MacKay` construction
36    MacKay,
37    /// Quantum-specific constructions
38    QuantumBicycle,
39    /// Surface code as LDPC
40    SurfaceCode,
41}
42
43/// Belief propagation decoding algorithm
44#[derive(Debug, Clone, Copy, PartialEq, Eq)]
45pub enum BeliefPropagationAlgorithm {
46    /// Sum-product algorithm
47    SumProduct,
48    /// Min-sum algorithm (simplified)
49    MinSum,
50    /// Normalized min-sum
51    NormalizedMinSum,
52    /// Offset min-sum
53    OffsetMinSum,
54    /// Layered belief propagation
55    LayeredBP,
56}
57
58/// LDPC code configuration
59#[derive(Debug, Clone)]
60pub struct LDPCConfig {
61    /// Number of information bits
62    pub k: usize,
63    /// Code length (number of physical qubits)
64    pub n: usize,
65    /// Number of parity checks
66    pub m: usize,
67    /// Variable node degree (for regular codes)
68    pub dv: usize,
69    /// Check node degree (for regular codes)
70    pub dc: usize,
71    /// Construction method
72    pub construction_method: LDPCConstructionMethod,
73    /// Belief propagation algorithm
74    pub bp_algorithm: BeliefPropagationAlgorithm,
75    /// Maximum BP iterations
76    pub max_bp_iterations: usize,
77    /// Convergence threshold
78    pub convergence_threshold: f64,
79    /// Damping factor for message updates
80    pub damping_factor: f64,
81    /// Enable early termination
82    pub early_termination: bool,
83    /// Noise variance for channel
84    pub noise_variance: f64,
85}
86
87impl Default for LDPCConfig {
88    fn default() -> Self {
89        Self {
90            k: 10,
91            n: 20,
92            m: 10,
93            dv: 3,
94            dc: 6,
95            construction_method: LDPCConstructionMethod::ProgressiveEdgeGrowth,
96            bp_algorithm: BeliefPropagationAlgorithm::SumProduct,
97            max_bp_iterations: 50,
98            convergence_threshold: 1e-6,
99            damping_factor: 0.8,
100            early_termination: true,
101            noise_variance: 0.1,
102        }
103    }
104}
105
106/// Tanner graph representation of LDPC code
107#[derive(Debug, Clone)]
108pub struct TannerGraph {
109    /// Variable nodes (corresponding to qubits)
110    pub variable_nodes: Vec<VariableNode>,
111    /// Check nodes (corresponding to stabilizers)
112    pub check_nodes: Vec<CheckNode>,
113    /// Adjacency matrix (variable to check connections)
114    pub adjacency_matrix: Array2<bool>,
115    /// Parity check matrix H
116    pub parity_check_matrix: Array2<u8>,
117}
118
119/// Variable node in Tanner graph
120#[derive(Debug, Clone)]
121pub struct VariableNode {
122    /// Node index
123    pub id: usize,
124    /// Connected check nodes
125    pub connected_checks: Vec<usize>,
126    /// Current belief (log-likelihood ratio)
127    pub belief: f64,
128    /// Channel information
129    pub channel_llr: f64,
130    /// Incoming messages from check nodes
131    pub incoming_messages: HashMap<usize, f64>,
132}
133
134/// Check node in Tanner graph
135#[derive(Debug, Clone)]
136pub struct CheckNode {
137    /// Node index
138    pub id: usize,
139    /// Connected variable nodes
140    pub connected_variables: Vec<usize>,
141    /// Incoming messages from variable nodes
142    pub incoming_messages: HashMap<usize, f64>,
143    /// Syndrome value
144    pub syndrome: bool,
145}
146
147impl VariableNode {
148    /// Create new variable node
149    #[must_use]
150    pub fn new(id: usize) -> Self {
151        Self {
152            id,
153            connected_checks: Vec::new(),
154            belief: 0.0,
155            channel_llr: 0.0,
156            incoming_messages: HashMap::new(),
157        }
158    }
159
160    /// Update belief based on incoming messages
161    pub fn update_belief(&mut self) {
162        self.belief = self.channel_llr + self.incoming_messages.values().sum::<f64>();
163    }
164
165    /// Compute outgoing message to specific check node
166    #[must_use]
167    pub fn compute_outgoing_message(&self, check_id: usize) -> f64 {
168        let message_sum: f64 = self
169            .incoming_messages
170            .iter()
171            .filter(|(&id, _)| id != check_id)
172            .map(|(_, &value)| value)
173            .sum();
174        self.channel_llr + message_sum
175    }
176}
177
178impl CheckNode {
179    /// Create new check node
180    #[must_use]
181    pub fn new(id: usize) -> Self {
182        Self {
183            id,
184            connected_variables: Vec::new(),
185            incoming_messages: HashMap::new(),
186            syndrome: false,
187        }
188    }
189
190    /// Compute outgoing message to specific variable node using sum-product
191    #[must_use]
192    pub fn compute_outgoing_message_sum_product(&self, var_id: usize) -> f64 {
193        let product: f64 = self
194            .incoming_messages
195            .iter()
196            .filter(|(&id, _)| id != var_id)
197            .map(|(_, &msg)| msg.tanh() / 2.0)
198            .product();
199
200        2.0 * product.atanh()
201    }
202
203    /// Compute outgoing message using min-sum algorithm
204    #[must_use]
205    pub fn compute_outgoing_message_min_sum(&self, var_id: usize) -> f64 {
206        let other_messages: Vec<f64> = self
207            .incoming_messages
208            .iter()
209            .filter(|(&id, _)| id != var_id)
210            .map(|(_, &msg)| msg)
211            .collect();
212
213        if other_messages.is_empty() {
214            return 0.0;
215        }
216
217        let sign_product: f64 = other_messages
218            .iter()
219            .map(|&msg| if msg >= 0.0 { 1.0 } else { -1.0 })
220            .product();
221
222        let min_magnitude = other_messages
223            .iter()
224            .map(|&msg| msg.abs())
225            .fold(f64::INFINITY, f64::min);
226
227        sign_product * min_magnitude
228    }
229}
230
231/// Quantum LDPC code implementation
232pub struct QuantumLDPCCode {
233    /// Configuration
234    config: LDPCConfig,
235    /// Tanner graph representation
236    tanner_graph: TannerGraph,
237    /// X stabilizer generators
238    #[allow(dead_code)]
239    x_stabilizers: Array2<u8>,
240    /// Z stabilizer generators
241    #[allow(dead_code)]
242    z_stabilizers: Array2<u8>,
243    /// Logical X operators
244    #[allow(dead_code)]
245    logical_x_ops: Array2<u8>,
246    /// Logical Z operators
247    #[allow(dead_code)]
248    logical_z_ops: Array2<u8>,
249    /// Circuit interface
250    #[allow(dead_code)]
251    circuit_interface: CircuitInterface,
252    /// Performance statistics
253    stats: LDPCStats,
254}
255
256/// LDPC performance statistics
257#[derive(Debug, Clone, Default, Serialize, Deserialize)]
258pub struct LDPCStats {
259    /// Total decoding attempts
260    pub total_decodings: usize,
261    /// Successful decodings
262    pub successful_decodings: usize,
263    /// Average BP iterations
264    pub avg_bp_iterations: f64,
265    /// Block error rate
266    pub block_error_rate: f64,
267    /// Bit error rate
268    pub bit_error_rate: f64,
269    /// Average decoding time
270    pub avg_decoding_time_ms: f64,
271    /// Threshold estimate
272    pub threshold_estimate: f64,
273    /// Convergence rate
274    pub convergence_rate: f64,
275}
276
277impl LDPCStats {
278    /// Update statistics after decoding
279    pub fn update_after_decoding(&mut self, success: bool, iterations: usize, time_ms: f64) {
280        self.total_decodings += 1;
281        if success {
282            self.successful_decodings += 1;
283        }
284
285        let prev_avg_iter = self.avg_bp_iterations;
286        self.avg_bp_iterations = prev_avg_iter
287            .mul_add((self.total_decodings - 1) as f64, iterations as f64)
288            / self.total_decodings as f64;
289
290        let prev_avg_time = self.avg_decoding_time_ms;
291        self.avg_decoding_time_ms = prev_avg_time
292            .mul_add((self.total_decodings - 1) as f64, time_ms)
293            / self.total_decodings as f64;
294
295        self.block_error_rate =
296            1.0 - (self.successful_decodings as f64 / self.total_decodings as f64);
297        self.convergence_rate = self.successful_decodings as f64 / self.total_decodings as f64;
298    }
299}
300
301/// Belief propagation decoding result
302#[derive(Debug, Clone, Serialize, Deserialize)]
303pub struct BPDecodingResult {
304    /// Decoded codeword
305    pub decoded_bits: Vec<bool>,
306    /// Final syndrome
307    pub final_syndrome: Vec<bool>,
308    /// Number of BP iterations
309    pub iterations: usize,
310    /// Converged successfully
311    pub converged: bool,
312    /// Final log-likelihood ratios
313    pub final_llrs: Vec<f64>,
314    /// Decoding time in milliseconds
315    pub decoding_time_ms: f64,
316    /// Error correction success
317    pub success: bool,
318}
319
320impl QuantumLDPCCode {
321    /// Create new quantum LDPC code
322    pub fn new(config: LDPCConfig) -> Result<Self> {
323        let circuit_interface = CircuitInterface::new(Default::default())?;
324
325        // Construct Tanner graph
326        let tanner_graph = Self::construct_tanner_graph(&config)?;
327
328        // Generate stabilizer matrices
329        let (x_stabilizers, z_stabilizers) =
330            Self::generate_stabilizer_matrices(&config, &tanner_graph)?;
331
332        // Generate logical operators
333        let (logical_x_ops, logical_z_ops) =
334            Self::generate_logical_operators(&config, &x_stabilizers, &z_stabilizers)?;
335
336        Ok(Self {
337            config,
338            tanner_graph,
339            x_stabilizers,
340            z_stabilizers,
341            logical_x_ops,
342            logical_z_ops,
343            circuit_interface,
344            stats: LDPCStats::default(),
345        })
346    }
347
348    /// Construct Tanner graph based on configuration
349    fn construct_tanner_graph(config: &LDPCConfig) -> Result<TannerGraph> {
350        match config.construction_method {
351            LDPCConstructionMethod::RandomRegular => Self::construct_random_regular(config),
352            LDPCConstructionMethod::ProgressiveEdgeGrowth => Self::construct_peg(config),
353            LDPCConstructionMethod::Gallager => Self::construct_gallager(config),
354            LDPCConstructionMethod::MacKay => Self::construct_mackay(config),
355            LDPCConstructionMethod::QuantumBicycle => Self::construct_quantum_bicycle(config),
356            LDPCConstructionMethod::SurfaceCode => Self::construct_surface_code(config),
357        }
358    }
359
360    /// Construct random regular LDPC code
361    fn construct_random_regular(config: &LDPCConfig) -> Result<TannerGraph> {
362        let mut variable_nodes = Vec::with_capacity(config.n);
363        let mut check_nodes = Vec::with_capacity(config.m);
364        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
365
366        // Initialize nodes
367        for i in 0..config.n {
368            variable_nodes.push(VariableNode::new(i));
369        }
370        for i in 0..config.m {
371            check_nodes.push(CheckNode::new(i));
372        }
373
374        // Create edges for regular LDPC code
375        let mut edges = Vec::new();
376
377        // Add edges from variable nodes
378        for var_id in 0..config.n {
379            for _ in 0..config.dv {
380                edges.push(var_id);
381            }
382        }
383
384        // Shuffle edges for randomness
385        for i in 0..edges.len() {
386            let j = fastrand::usize(i..edges.len());
387            edges.swap(i, j);
388        }
389
390        // Assign edges to check nodes
391        let mut edge_idx = 0;
392        for check_id in 0..config.m {
393            for _ in 0..config.dc {
394                if edge_idx < edges.len() {
395                    let var_id = edges[edge_idx];
396
397                    // Add connection
398                    variable_nodes[var_id].connected_checks.push(check_id);
399                    check_nodes[check_id].connected_variables.push(var_id);
400                    adjacency_matrix[[var_id, check_id]] = true;
401
402                    edge_idx += 1;
403                }
404            }
405        }
406
407        // Create parity check matrix
408        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
409        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
410            if *check_id {
411                parity_check_matrix[[var_id.1, var_id.0]] = 1;
412            }
413        }
414
415        Ok(TannerGraph {
416            variable_nodes,
417            check_nodes,
418            adjacency_matrix,
419            parity_check_matrix,
420        })
421    }
422
423    /// Construct LDPC code using Progressive Edge Growth (PEG)
424    fn construct_peg(config: &LDPCConfig) -> Result<TannerGraph> {
425        let mut variable_nodes = Vec::with_capacity(config.n);
426        let mut check_nodes = Vec::with_capacity(config.m);
427        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
428
429        // Initialize nodes
430        for i in 0..config.n {
431            variable_nodes.push(VariableNode::new(i));
432        }
433        for i in 0..config.m {
434            check_nodes.push(CheckNode::new(i));
435        }
436
437        // PEG algorithm: for each variable node, connect to checks that maximize girth
438        for var_id in 0..config.n {
439            let mut connected_checks = HashSet::new();
440
441            for _ in 0..config.dv {
442                let best_check = Self::find_best_check_for_peg(
443                    var_id,
444                    &connected_checks,
445                    &variable_nodes,
446                    &check_nodes,
447                    &adjacency_matrix,
448                    config.m,
449                );
450
451                if let Some(check_id) = best_check {
452                    // Add connection
453                    variable_nodes[var_id].connected_checks.push(check_id);
454                    check_nodes[check_id].connected_variables.push(var_id);
455                    adjacency_matrix[[var_id, check_id]] = true;
456                    connected_checks.insert(check_id);
457                }
458            }
459        }
460
461        // Create parity check matrix
462        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
463        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
464            if *check_id {
465                parity_check_matrix[[var_id.1, var_id.0]] = 1;
466            }
467        }
468
469        Ok(TannerGraph {
470            variable_nodes,
471            check_nodes,
472            adjacency_matrix,
473            parity_check_matrix,
474        })
475    }
476
477    /// Find best check node for PEG construction
478    fn find_best_check_for_peg(
479        var_id: usize,
480        connected_checks: &HashSet<usize>,
481        _variable_nodes: &[VariableNode],
482        _check_nodes: &[CheckNode],
483        adjacency_matrix: &Array2<bool>,
484        num_checks: usize,
485    ) -> Option<usize> {
486        let mut best_check = None;
487        let mut best_girth = 0;
488
489        for check_id in 0..num_checks {
490            if connected_checks.contains(&check_id) {
491                continue;
492            }
493
494            // Calculate local girth if we connect to this check
495            let girth = Self::calculate_local_girth(var_id, check_id, adjacency_matrix);
496
497            if girth > best_girth {
498                best_girth = girth;
499                best_check = Some(check_id);
500            }
501        }
502
503        best_check
504    }
505
506    /// Calculate local girth around a potential edge
507    fn calculate_local_girth(
508        var_id: usize,
509        check_id: usize,
510        adjacency_matrix: &Array2<bool>,
511    ) -> usize {
512        // Simplified girth calculation - BFS to find shortest cycle
513        let mut visited_vars = HashSet::new();
514        let mut visited_checks = HashSet::new();
515        let mut queue = VecDeque::new();
516
517        queue.push_back((var_id, 0, true)); // (node_id, distance, is_variable)
518        visited_vars.insert(var_id);
519
520        while let Some((node_id, dist, is_var)) = queue.pop_front() {
521            if dist > 6 {
522                // Limit search depth
523                break;
524            }
525
526            if is_var {
527                // Variable node - explore connected checks
528                for (check_idx, &connected) in adjacency_matrix.row(node_id).indexed_iter() {
529                    if connected && check_idx != check_id {
530                        if visited_checks.contains(&check_idx) {
531                            return dist * 2; // Found cycle
532                        }
533                        visited_checks.insert(check_idx);
534                        queue.push_back((check_idx, dist + 1, false));
535                    }
536                }
537            } else {
538                // Check node - explore connected variables
539                for (var_idx, &connected) in adjacency_matrix.column(node_id).indexed_iter() {
540                    if connected && var_idx != var_id {
541                        if visited_vars.contains(&var_idx) {
542                            return dist * 2 + 1; // Found cycle
543                        }
544                        visited_vars.insert(var_idx);
545                        queue.push_back((var_idx, dist + 1, true));
546                    }
547                }
548            }
549        }
550
551        12 // Default large girth if no cycle found
552    }
553
554    /// Construct Gallager LDPC code
555    fn construct_gallager(config: &LDPCConfig) -> Result<TannerGraph> {
556        // For simplicity, use random regular construction
557        // Real Gallager construction would be more sophisticated
558        Self::construct_random_regular(config)
559    }
560
561    /// Construct `MacKay` LDPC code
562    fn construct_mackay(config: &LDPCConfig) -> Result<TannerGraph> {
563        // For simplicity, use PEG construction
564        // Real MacKay construction would use specific algorithms
565        Self::construct_peg(config)
566    }
567
568    /// Construct quantum bicycle code
569    fn construct_quantum_bicycle(config: &LDPCConfig) -> Result<TannerGraph> {
570        // Simplified bicycle code construction
571        let mut variable_nodes = Vec::with_capacity(config.n);
572        let mut check_nodes = Vec::with_capacity(config.m);
573        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
574
575        // Initialize nodes
576        for i in 0..config.n {
577            variable_nodes.push(VariableNode::new(i));
578        }
579        for i in 0..config.m {
580            check_nodes.push(CheckNode::new(i));
581        }
582
583        // Bicycle code structure: cyclic connections
584        let l = config.n / 2;
585        for i in 0..l {
586            for j in 0..config.dv {
587                let check_id = (i + j * l / config.dv) % config.m;
588
589                // Connect variable i to check_id
590                variable_nodes[i].connected_checks.push(check_id);
591                check_nodes[check_id].connected_variables.push(i);
592                adjacency_matrix[[i, check_id]] = true;
593
594                // Connect variable i+l to check_id (bicycle structure)
595                if i + l < config.n {
596                    variable_nodes[i + l].connected_checks.push(check_id);
597                    check_nodes[check_id].connected_variables.push(i + l);
598                    adjacency_matrix[[i + l, check_id]] = true;
599                }
600            }
601        }
602
603        // Create parity check matrix
604        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
605        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
606            if *check_id {
607                parity_check_matrix[[var_id.1, var_id.0]] = 1;
608            }
609        }
610
611        Ok(TannerGraph {
612            variable_nodes,
613            check_nodes,
614            adjacency_matrix,
615            parity_check_matrix,
616        })
617    }
618
619    /// Construct surface code as LDPC
620    fn construct_surface_code(config: &LDPCConfig) -> Result<TannerGraph> {
621        // Simplified surface code construction
622        let d = (config.n as f64).sqrt() as usize; // Assume square lattice
623        let mut variable_nodes = Vec::with_capacity(config.n);
624        let mut check_nodes = Vec::with_capacity(config.m);
625        let mut adjacency_matrix = Array2::from_elem((config.n, config.m), false);
626
627        // Initialize nodes
628        for i in 0..config.n {
629            variable_nodes.push(VariableNode::new(i));
630        }
631        for i in 0..config.m {
632            check_nodes.push(CheckNode::new(i));
633        }
634
635        // Surface code structure: each stabilizer connects to 4 neighboring qubits
636        for check_id in 0..config.m {
637            let row = check_id / d;
638            let col = check_id % d;
639
640            // Connect to neighboring qubits (up, down, left, right)
641            let neighbors = [
642                (row.wrapping_sub(1), col),
643                (row + 1, col),
644                (row, col.wrapping_sub(1)),
645                (row, col + 1),
646            ];
647
648            for (r, c) in &neighbors {
649                if *r < d && *c < d {
650                    let var_id = r * d + c;
651                    if var_id < config.n {
652                        variable_nodes[var_id].connected_checks.push(check_id);
653                        check_nodes[check_id].connected_variables.push(var_id);
654                        adjacency_matrix[[var_id, check_id]] = true;
655                    }
656                }
657            }
658        }
659
660        // Create parity check matrix
661        let mut parity_check_matrix = Array2::zeros((config.m, config.n));
662        for (var_id, check_id) in adjacency_matrix.indexed_iter() {
663            if *check_id {
664                parity_check_matrix[[var_id.1, var_id.0]] = 1;
665            }
666        }
667
668        Ok(TannerGraph {
669            variable_nodes,
670            check_nodes,
671            adjacency_matrix,
672            parity_check_matrix,
673        })
674    }
675
676    /// Generate stabilizer matrices for quantum LDPC code
677    fn generate_stabilizer_matrices(
678        _config: &LDPCConfig,
679        tanner_graph: &TannerGraph,
680    ) -> Result<(Array2<u8>, Array2<u8>)> {
681        // For CSS codes, X and Z stabilizers are independent
682        let x_stabilizers = tanner_graph.parity_check_matrix.clone();
683        let z_stabilizers = tanner_graph.parity_check_matrix.clone();
684
685        Ok((x_stabilizers, z_stabilizers))
686    }
687
688    /// Generate logical operators
689    fn generate_logical_operators(
690        config: &LDPCConfig,
691        _x_stabilizers: &Array2<u8>,
692        _z_stabilizers: &Array2<u8>,
693    ) -> Result<(Array2<u8>, Array2<u8>)> {
694        let k = config.k;
695        let n = config.n;
696
697        // Simplified logical operator generation
698        let mut logical_x_ops = Array2::zeros((k, n));
699        let mut logical_z_ops = Array2::zeros((k, n));
700
701        // For demonstration, create simple logical operators
702        for i in 0..k.min(n) {
703            logical_x_ops[[i, i]] = 1;
704            logical_z_ops[[i, i]] = 1;
705        }
706
707        Ok((logical_x_ops, logical_z_ops))
708    }
709
710    /// Perform belief propagation decoding
711    pub fn decode_belief_propagation(
712        &mut self,
713        received_llrs: &[f64],
714        syndrome: &[bool],
715    ) -> Result<BPDecodingResult> {
716        let start_time = std::time::Instant::now();
717
718        // Initialize channel LLRs
719        for (i, &llr) in received_llrs.iter().enumerate() {
720            if i < self.tanner_graph.variable_nodes.len() {
721                self.tanner_graph.variable_nodes[i].channel_llr = llr;
722            }
723        }
724
725        // Set syndromes
726        for (i, &syn) in syndrome.iter().enumerate() {
727            if i < self.tanner_graph.check_nodes.len() {
728                self.tanner_graph.check_nodes[i].syndrome = syn;
729            }
730        }
731
732        let mut converged = false;
733        let mut iteration = 0;
734
735        // Belief propagation iterations
736        while iteration < self.config.max_bp_iterations && !converged {
737            // Variable to check messages
738            self.update_variable_to_check_messages();
739
740            // Check to variable messages
741            self.update_check_to_variable_messages();
742
743            // Update variable beliefs
744            self.update_variable_beliefs();
745
746            // Check convergence
747            converged = self.check_convergence();
748
749            if self.config.early_termination && converged {
750                break;
751            }
752
753            iteration += 1;
754        }
755
756        // Extract final decoded bits
757        let decoded_bits = self.extract_decoded_bits();
758
759        // Calculate final syndrome
760        let final_syndrome = self.calculate_syndrome(&decoded_bits);
761
762        // Check if decoding was successful
763        let success = final_syndrome.iter().all(|&s| !s);
764
765        let decoding_time_ms = start_time.elapsed().as_secs_f64() * 1000.0;
766
767        // Update statistics
768        self.stats
769            .update_after_decoding(success, iteration, decoding_time_ms);
770
771        // Extract final LLRs
772        let final_llrs: Vec<f64> = self
773            .tanner_graph
774            .variable_nodes
775            .iter()
776            .map(|node| node.belief)
777            .collect();
778
779        Ok(BPDecodingResult {
780            decoded_bits,
781            final_syndrome,
782            iterations: iteration,
783            converged,
784            final_llrs,
785            decoding_time_ms,
786            success,
787        })
788    }
789
790    /// Update variable to check messages
791    fn update_variable_to_check_messages(&mut self) {
792        for var_node in &mut self.tanner_graph.variable_nodes {
793            for &check_id in &var_node.connected_checks.clone() {
794                let message = var_node.compute_outgoing_message(check_id);
795
796                // Apply damping
797                let old_message = self.tanner_graph.check_nodes[check_id]
798                    .incoming_messages
799                    .get(&var_node.id)
800                    .unwrap_or(&0.0);
801
802                let damped_message = self
803                    .config
804                    .damping_factor
805                    .mul_add(message, (1.0 - self.config.damping_factor) * old_message);
806
807                self.tanner_graph.check_nodes[check_id]
808                    .incoming_messages
809                    .insert(var_node.id, damped_message);
810            }
811        }
812    }
813
814    /// Update check to variable messages
815    fn update_check_to_variable_messages(&mut self) {
816        for check_node in &mut self.tanner_graph.check_nodes {
817            for &var_id in &check_node.connected_variables.clone() {
818                let message = match self.config.bp_algorithm {
819                    BeliefPropagationAlgorithm::SumProduct => {
820                        check_node.compute_outgoing_message_sum_product(var_id)
821                    }
822                    BeliefPropagationAlgorithm::MinSum => {
823                        check_node.compute_outgoing_message_min_sum(var_id)
824                    }
825                    BeliefPropagationAlgorithm::NormalizedMinSum => {
826                        let min_sum_msg = check_node.compute_outgoing_message_min_sum(var_id);
827                        min_sum_msg * 0.75 // Normalization factor
828                    }
829                    BeliefPropagationAlgorithm::OffsetMinSum => {
830                        let min_sum_msg = check_node.compute_outgoing_message_min_sum(var_id);
831                        let offset = 0.1;
832                        if min_sum_msg.abs() > offset {
833                            min_sum_msg.signum() * (min_sum_msg.abs() - offset)
834                        } else {
835                            0.0
836                        }
837                    }
838                    BeliefPropagationAlgorithm::LayeredBP => {
839                        // Simplified layered BP
840                        check_node.compute_outgoing_message_sum_product(var_id)
841                    }
842                };
843
844                // Apply damping
845                let old_message = self.tanner_graph.variable_nodes[var_id]
846                    .incoming_messages
847                    .get(&check_node.id)
848                    .unwrap_or(&0.0);
849
850                let damped_message = self
851                    .config
852                    .damping_factor
853                    .mul_add(message, (1.0 - self.config.damping_factor) * old_message);
854
855                self.tanner_graph.variable_nodes[var_id]
856                    .incoming_messages
857                    .insert(check_node.id, damped_message);
858            }
859        }
860    }
861
862    /// Update variable node beliefs
863    fn update_variable_beliefs(&mut self) {
864        for var_node in &mut self.tanner_graph.variable_nodes {
865            var_node.update_belief();
866        }
867    }
868
869    /// Check convergence of belief propagation
870    fn check_convergence(&self) -> bool {
871        // Check if syndrome is satisfied
872        let decoded_bits = self.extract_decoded_bits();
873        let syndrome = self.calculate_syndrome(&decoded_bits);
874
875        syndrome.iter().all(|&s| !s)
876    }
877
878    /// Extract decoded bits from current beliefs
879    fn extract_decoded_bits(&self) -> Vec<bool> {
880        self.tanner_graph
881            .variable_nodes
882            .iter()
883            .map(|node| node.belief < 0.0)
884            .collect()
885    }
886
887    /// Calculate syndrome for given codeword
888    fn calculate_syndrome(&self, codeword: &[bool]) -> Vec<bool> {
889        let mut syndrome = vec![false; self.tanner_graph.check_nodes.len()];
890
891        for (check_id, check_node) in self.tanner_graph.check_nodes.iter().enumerate() {
892            let mut parity = false;
893            for &var_id in &check_node.connected_variables {
894                if var_id < codeword.len() && codeword[var_id] {
895                    parity = !parity;
896                }
897            }
898            syndrome[check_id] = parity;
899        }
900
901        syndrome
902    }
903
904    /// Generate syndrome extraction circuit
905    pub fn syndrome_circuit(&self) -> Result<InterfaceCircuit> {
906        let num_data_qubits = self.config.n;
907        let num_syndrome_qubits = self.config.m;
908        let total_qubits = num_data_qubits + num_syndrome_qubits;
909
910        let mut circuit = InterfaceCircuit::new(total_qubits, num_syndrome_qubits);
911
912        // Add syndrome extraction gates based on parity check matrix
913        for (check_id, check_node) in self.tanner_graph.check_nodes.iter().enumerate() {
914            let syndrome_qubit = num_data_qubits + check_id;
915
916            for &var_id in &check_node.connected_variables {
917                if var_id < num_data_qubits {
918                    circuit.add_gate(InterfaceGate::new(
919                        InterfaceGateType::CNOT,
920                        vec![var_id, syndrome_qubit],
921                    ));
922                }
923            }
924        }
925
926        Ok(circuit)
927    }
928
929    /// Estimate error threshold
930    pub fn estimate_threshold(
931        &mut self,
932        noise_range: (f64, f64),
933        num_trials: usize,
934    ) -> Result<f64> {
935        let (min_noise, max_noise) = noise_range;
936        let mut threshold = f64::midpoint(min_noise, max_noise);
937        let mut search_range = max_noise - min_noise;
938
939        // Binary search for threshold
940        while search_range > 0.001 {
941            self.config.noise_variance = threshold;
942
943            let mut successes = 0;
944            for _ in 0..num_trials {
945                // Generate random errors
946                let errors: Vec<bool> = (0..self.config.n)
947                    .map(|_| fastrand::f64() < threshold)
948                    .collect();
949
950                // Generate LLRs from errors
951                let llrs: Vec<f64> = errors
952                    .iter()
953                    .map(|&error| {
954                        if error {
955                            -2.0 / self.config.noise_variance
956                        } else {
957                            2.0 / self.config.noise_variance
958                        }
959                    })
960                    .collect();
961
962                // Calculate syndrome
963                let syndrome = self.calculate_syndrome(&errors);
964
965                // Attempt decoding
966                if let Ok(result) = self.decode_belief_propagation(&llrs, &syndrome) {
967                    if result.success {
968                        successes += 1;
969                    }
970                }
971            }
972
973            let success_rate = f64::from(successes) / num_trials as f64;
974
975            if success_rate > 0.5 {
976                threshold = f64::midpoint(threshold, max_noise);
977            } else {
978                threshold = f64::midpoint(min_noise, threshold);
979            }
980
981            search_range /= 2.0;
982        }
983
984        self.stats.threshold_estimate = threshold;
985        Ok(threshold)
986    }
987
988    /// Get current statistics
989    #[must_use]
990    pub const fn get_stats(&self) -> &LDPCStats {
991        &self.stats
992    }
993
994    /// Reset statistics
995    pub fn reset_stats(&mut self) {
996        self.stats = LDPCStats::default();
997    }
998
999    /// Get code parameters
1000    #[must_use]
1001    pub const fn get_parameters(&self) -> (usize, usize, usize) {
1002        (self.config.n, self.config.k, self.config.m)
1003    }
1004
1005    /// Get Tanner graph
1006    #[must_use]
1007    pub const fn get_tanner_graph(&self) -> &TannerGraph {
1008        &self.tanner_graph
1009    }
1010}
1011
1012/// Benchmark quantum LDPC codes performance
1013pub fn benchmark_quantum_ldpc_codes() -> Result<HashMap<String, f64>> {
1014    let mut results = HashMap::new();
1015
1016    // Test different LDPC configurations
1017    let configs = vec![
1018        LDPCConfig {
1019            k: 10,
1020            n: 20,
1021            m: 10,
1022            construction_method: LDPCConstructionMethod::RandomRegular,
1023            bp_algorithm: BeliefPropagationAlgorithm::SumProduct,
1024            ..Default::default()
1025        },
1026        LDPCConfig {
1027            k: 15,
1028            n: 30,
1029            m: 15,
1030            construction_method: LDPCConstructionMethod::ProgressiveEdgeGrowth,
1031            bp_algorithm: BeliefPropagationAlgorithm::MinSum,
1032            ..Default::default()
1033        },
1034        LDPCConfig {
1035            k: 20,
1036            n: 40,
1037            m: 20,
1038            construction_method: LDPCConstructionMethod::QuantumBicycle,
1039            bp_algorithm: BeliefPropagationAlgorithm::NormalizedMinSum,
1040            ..Default::default()
1041        },
1042    ];
1043
1044    for (i, config) in configs.into_iter().enumerate() {
1045        let start = std::time::Instant::now();
1046
1047        let mut ldpc_code = QuantumLDPCCode::new(config)?;
1048
1049        // Perform multiple decoding tests
1050        for _ in 0..50 {
1051            // Generate test errors
1052            let errors: Vec<bool> = (0..ldpc_code.config.n)
1053                .map(|_| fastrand::f64() < 0.05)
1054                .collect();
1055
1056            // Generate LLRs
1057            let llrs: Vec<f64> = errors
1058                .iter()
1059                .map(|&error| if error { -1.0 } else { 1.0 })
1060                .collect();
1061
1062            // Calculate syndrome
1063            let syndrome = ldpc_code.calculate_syndrome(&errors);
1064
1065            // Decode
1066            let _result = ldpc_code.decode_belief_propagation(&llrs, &syndrome)?;
1067        }
1068
1069        let time = start.elapsed().as_secs_f64() * 1000.0;
1070        results.insert(format!("config_{i}"), time);
1071
1072        // Add performance metrics
1073        let stats = ldpc_code.get_stats();
1074        results.insert(format!("config_{i}_success_rate"), stats.convergence_rate);
1075        results.insert(
1076            format!("config_{i}_avg_iterations"),
1077            stats.avg_bp_iterations,
1078        );
1079    }
1080
1081    Ok(results)
1082}
1083
1084#[cfg(test)]
1085mod tests {
1086    use super::*;
1087    use approx::assert_abs_diff_eq;
1088
1089    #[test]
1090    fn test_ldpc_code_creation() {
1091        let config = LDPCConfig::default();
1092        let ldpc_code = QuantumLDPCCode::new(config);
1093        assert!(ldpc_code.is_ok());
1094    }
1095
1096    #[test]
1097    fn test_tanner_graph_construction() {
1098        let config = LDPCConfig {
1099            k: 5,
1100            n: 10,
1101            m: 5,
1102            dv: 2,
1103            dc: 4,
1104            ..Default::default()
1105        };
1106
1107        let tanner_graph = QuantumLDPCCode::construct_random_regular(&config);
1108        assert!(tanner_graph.is_ok());
1109
1110        let graph = tanner_graph.expect("tanner_graph construction should succeed");
1111        assert_eq!(graph.variable_nodes.len(), 10);
1112        assert_eq!(graph.check_nodes.len(), 5);
1113    }
1114
1115    #[test]
1116    fn test_variable_node_operations() {
1117        let mut var_node = VariableNode::new(0);
1118        var_node.channel_llr = 1.0;
1119        var_node.incoming_messages.insert(1, 0.5);
1120        var_node.incoming_messages.insert(2, -0.3);
1121
1122        var_node.update_belief();
1123        assert_abs_diff_eq!(var_node.belief, 1.2, epsilon = 1e-10);
1124
1125        let outgoing = var_node.compute_outgoing_message(1);
1126        assert_abs_diff_eq!(outgoing, 0.7, epsilon = 1e-10);
1127    }
1128
1129    #[test]
1130    fn test_check_node_operations() {
1131        let mut check_node = CheckNode::new(0);
1132        check_node.incoming_messages.insert(1, 0.8);
1133        check_node.incoming_messages.insert(2, -0.6);
1134        check_node.incoming_messages.insert(3, 1.2);
1135
1136        let sum_product_msg = check_node.compute_outgoing_message_sum_product(1);
1137        assert!(sum_product_msg.is_finite());
1138
1139        let min_sum_msg = check_node.compute_outgoing_message_min_sum(1);
1140        assert_abs_diff_eq!(min_sum_msg.abs(), 0.6, epsilon = 1e-10);
1141    }
1142
1143    #[test]
1144    fn test_belief_propagation_decoding() {
1145        let config = LDPCConfig {
1146            k: 3,
1147            n: 6,
1148            m: 3,
1149            max_bp_iterations: 10,
1150            ..Default::default()
1151        };
1152
1153        let mut ldpc_code =
1154            QuantumLDPCCode::new(config).expect("LDPC code creation should succeed");
1155
1156        let llrs = vec![1.0, -1.0, 1.0, 1.0, -1.0, 1.0];
1157        let syndrome = vec![false, true, false];
1158
1159        let result = ldpc_code.decode_belief_propagation(&llrs, &syndrome);
1160        assert!(result.is_ok());
1161
1162        let bp_result = result.expect("decode_belief_propagation should succeed");
1163        assert_eq!(bp_result.decoded_bits.len(), 6);
1164        assert!(bp_result.iterations <= 10);
1165    }
1166
1167    #[test]
1168    fn test_syndrome_calculation() {
1169        let config = LDPCConfig {
1170            k: 2,
1171            n: 4,
1172            m: 2,
1173            ..Default::default()
1174        };
1175
1176        let ldpc_code = QuantumLDPCCode::new(config).expect("LDPC code creation should succeed");
1177
1178        let codeword = vec![false, true, false, true];
1179        let syndrome = ldpc_code.calculate_syndrome(&codeword);
1180
1181        assert_eq!(syndrome.len(), 2);
1182    }
1183
1184    #[test]
1185    fn test_syndrome_circuit_generation() {
1186        let config = LDPCConfig {
1187            k: 3,
1188            n: 6,
1189            m: 3,
1190            ..Default::default()
1191        };
1192
1193        let ldpc_code = QuantumLDPCCode::new(config).expect("LDPC code creation should succeed");
1194        let circuit = ldpc_code.syndrome_circuit();
1195
1196        assert!(circuit.is_ok());
1197        let syndrome_circuit = circuit.expect("syndrome_circuit should succeed");
1198        assert_eq!(syndrome_circuit.num_qubits, 9); // 6 data + 3 syndrome
1199    }
1200
1201    #[test]
1202    fn test_different_construction_methods() {
1203        let base_config = LDPCConfig {
1204            k: 3,
1205            n: 6,
1206            m: 3,
1207            ..Default::default()
1208        };
1209
1210        let methods = vec![
1211            LDPCConstructionMethod::RandomRegular,
1212            LDPCConstructionMethod::ProgressiveEdgeGrowth,
1213            LDPCConstructionMethod::QuantumBicycle,
1214            LDPCConstructionMethod::SurfaceCode,
1215        ];
1216
1217        for method in methods {
1218            let mut config = base_config.clone();
1219            config.construction_method = method;
1220
1221            let ldpc_code = QuantumLDPCCode::new(config);
1222            assert!(ldpc_code.is_ok(), "Failed for method: {method:?}");
1223        }
1224    }
1225
1226    #[test]
1227    fn test_different_bp_algorithms() {
1228        let base_config = LDPCConfig {
1229            k: 3,
1230            n: 6,
1231            m: 3,
1232            ..Default::default()
1233        };
1234
1235        let algorithms = vec![
1236            BeliefPropagationAlgorithm::SumProduct,
1237            BeliefPropagationAlgorithm::MinSum,
1238            BeliefPropagationAlgorithm::NormalizedMinSum,
1239            BeliefPropagationAlgorithm::OffsetMinSum,
1240        ];
1241
1242        for algorithm in algorithms {
1243            let mut config = base_config.clone();
1244            config.bp_algorithm = algorithm;
1245
1246            let mut ldpc_code =
1247                QuantumLDPCCode::new(config).expect("LDPC code creation should succeed");
1248
1249            let llrs = vec![1.0, -1.0, 1.0, 1.0, -1.0, 1.0];
1250            let syndrome = vec![false, true, false];
1251
1252            let result = ldpc_code.decode_belief_propagation(&llrs, &syndrome);
1253            assert!(result.is_ok(), "Failed for algorithm: {algorithm:?}");
1254        }
1255    }
1256
1257    #[test]
1258    fn test_stats_updates() {
1259        let mut stats = LDPCStats::default();
1260
1261        stats.update_after_decoding(true, 5, 10.0);
1262        assert_eq!(stats.total_decodings, 1);
1263        assert_eq!(stats.successful_decodings, 1);
1264        assert_abs_diff_eq!(stats.avg_bp_iterations, 5.0, epsilon = 1e-10);
1265        assert_abs_diff_eq!(stats.block_error_rate, 0.0, epsilon = 1e-10);
1266
1267        stats.update_after_decoding(false, 8, 15.0);
1268        assert_eq!(stats.total_decodings, 2);
1269        assert_eq!(stats.successful_decodings, 1);
1270        assert_abs_diff_eq!(stats.avg_bp_iterations, 6.5, epsilon = 1e-10);
1271        assert_abs_diff_eq!(stats.block_error_rate, 0.5, epsilon = 1e-10);
1272    }
1273}