quantrs2_sim/
qml_integration.rs

1//! Quantum Machine Learning (QML) integration for seamless ML workflows.
2//!
3//! This module provides comprehensive integration between quantum simulation
4//! backends and machine learning frameworks, enabling hybrid classical-quantum
5//! algorithms, variational quantum eigensolvers (VQE), quantum neural networks
6//! (QNN), and other QML applications with automatic differentiation and
7//! hardware-aware optimization.
8
9use crate::prelude::{InterfaceGate, InterfaceGateType, SimulatorError};
10use scirs2_core::ndarray::Array1;
11use scirs2_core::Complex64;
12use scirs2_core::parallel_ops::*;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::sync::{Arc, Mutex};
16
17use crate::autodiff_vqe::AutoDiffContext;
18use crate::circuit_interfaces::{CircuitInterface, InterfaceCircuit};
19use crate::error::Result;
20use crate::scirs2_integration::SciRS2Backend;
21
22/// QML framework types
23#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
24pub enum QMLFramework {
25    /// PyTorch integration
26    PyTorch,
27    /// TensorFlow/Keras integration
28    TensorFlow,
29    /// JAX integration
30    JAX,
31    /// SciRS2 native ML
32    SciRS2,
33    /// Custom framework
34    Custom,
35}
36
37/// QML integration configuration
38#[derive(Debug, Clone)]
39pub struct QMLIntegrationConfig {
40    /// Target ML framework
41    pub framework: QMLFramework,
42    /// Enable automatic differentiation
43    pub enable_autodiff: bool,
44    /// Enable gradient optimization
45    pub enable_gradient_optimization: bool,
46    /// Batch size for circuit evaluation
47    pub batch_size: usize,
48    /// Enable parameter sharing across circuits
49    pub enable_parameter_sharing: bool,
50    /// Enable hardware-aware optimization
51    pub hardware_aware_optimization: bool,
52    /// Memory limit for gradient computation
53    pub gradient_memory_limit: usize,
54    /// Enable distributed training
55    pub enable_distributed_training: bool,
56    /// Enable mixed precision training
57    pub enable_mixed_precision: bool,
58}
59
60impl Default for QMLIntegrationConfig {
61    fn default() -> Self {
62        Self {
63            framework: QMLFramework::SciRS2,
64            enable_autodiff: true,
65            enable_gradient_optimization: true,
66            batch_size: 32,
67            enable_parameter_sharing: true,
68            hardware_aware_optimization: true,
69            gradient_memory_limit: 8_000_000_000, // 8GB
70            enable_distributed_training: false,
71            enable_mixed_precision: false,
72        }
73    }
74}
75
76/// Quantum machine learning layer types
77#[derive(Debug, Clone, PartialEq, Eq, Hash)]
78pub enum QMLLayerType {
79    /// Variational quantum circuit layer
80    VariationalCircuit,
81    /// Quantum convolutional layer
82    QuantumConvolutional,
83    /// Quantum recurrent layer
84    QuantumRecurrent,
85    /// Quantum attention layer
86    QuantumAttention,
87    /// Data encoding layer
88    DataEncoding,
89    /// Measurement layer
90    Measurement,
91    /// Classical processing layer
92    Classical,
93}
94
95/// Quantum ML layer definition
96#[derive(Debug, Clone)]
97pub struct QMLLayer {
98    /// Layer type
99    pub layer_type: QMLLayerType,
100    /// Layer name
101    pub name: String,
102    /// Number of qubits
103    pub num_qubits: usize,
104    /// Trainable parameters
105    pub parameters: Vec<f64>,
106    /// Parameter names for tracking
107    pub parameter_names: Vec<String>,
108    /// Circuit template
109    pub circuit_template: Option<InterfaceCircuit>,
110    /// Classical processing function
111    pub classical_function: Option<String>,
112    /// Layer configuration
113    pub config: LayerConfig,
114}
115
116/// Layer configuration
117#[derive(Debug, Clone, Default)]
118pub struct LayerConfig {
119    /// Number of repetitions (for ansatz layers)
120    pub repetitions: usize,
121    /// Entangling pattern
122    pub entangling_pattern: Vec<(usize, usize)>,
123    /// Activation function
124    pub activation: Option<String>,
125    /// Regularization parameters
126    pub regularization: Option<RegularizationConfig>,
127    /// Hardware mapping
128    pub hardware_mapping: Option<Vec<usize>>,
129}
130
131/// Regularization configuration
132#[derive(Debug, Clone)]
133pub struct RegularizationConfig {
134    /// L1 regularization strength
135    pub l1_strength: f64,
136    /// L2 regularization strength
137    pub l2_strength: f64,
138    /// Dropout probability
139    pub dropout_prob: f64,
140}
141
142/// Quantum neural network model
143#[derive(Debug, Clone)]
144pub struct QuantumNeuralNetwork {
145    /// Network layers
146    pub layers: Vec<QMLLayer>,
147    /// Global parameters
148    pub global_parameters: HashMap<String, f64>,
149    /// Network metadata
150    pub metadata: QNNMetadata,
151    /// Training configuration
152    pub training_config: TrainingConfig,
153}
154
155/// QNN metadata
156#[derive(Debug, Clone, Default)]
157pub struct QNNMetadata {
158    /// Model name
159    pub name: Option<String>,
160    /// Model description
161    pub description: Option<String>,
162    /// Creation timestamp
163    pub created_at: Option<std::time::SystemTime>,
164    /// Total number of parameters
165    pub total_parameters: usize,
166    /// Number of trainable parameters
167    pub trainable_parameters: usize,
168    /// Model complexity score
169    pub complexity_score: f64,
170}
171
172/// Training configuration
173#[derive(Debug, Clone)]
174pub struct TrainingConfig {
175    /// Learning rate
176    pub learning_rate: f64,
177    /// Optimizer type
178    pub optimizer: OptimizerType,
179    /// Loss function
180    pub loss_function: LossFunction,
181    /// Number of epochs
182    pub epochs: usize,
183    /// Batch size
184    pub batch_size: usize,
185    /// Validation split
186    pub validation_split: f64,
187    /// Early stopping patience
188    pub early_stopping_patience: Option<usize>,
189    /// Learning rate scheduler
190    pub lr_scheduler: Option<LRScheduler>,
191}
192
193impl Default for TrainingConfig {
194    fn default() -> Self {
195        Self {
196            learning_rate: 0.01,
197            optimizer: OptimizerType::Adam,
198            loss_function: LossFunction::MeanSquaredError,
199            epochs: 100,
200            batch_size: 32,
201            validation_split: 0.2,
202            early_stopping_patience: Some(10),
203            lr_scheduler: None,
204        }
205    }
206}
207
208/// Optimizer types
209#[derive(Debug, Clone, Copy, PartialEq, Eq)]
210pub enum OptimizerType {
211    SGD,
212    Adam,
213    AdamW,
214    RMSprop,
215    LBFGS,
216    NaturalGradient,
217    QuantumNaturalGradient,
218}
219
220/// Loss functions
221#[derive(Debug, Clone, Copy, PartialEq, Eq)]
222pub enum LossFunction {
223    MeanSquaredError,
224    MeanAbsoluteError,
225    CrossEntropy,
226    BinaryCrossEntropy,
227    Hinge,
228    CustomQuantum,
229}
230
231/// Learning rate schedulers
232#[derive(Debug, Clone)]
233pub enum LRScheduler {
234    StepLR { step_size: usize, gamma: f64 },
235    ExponentialLR { gamma: f64 },
236    CosineAnnealingLR { t_max: usize },
237    ReduceLROnPlateau { patience: usize, factor: f64 },
238}
239
240/// QML integration engine
241pub struct QMLIntegration {
242    /// Configuration
243    config: QMLIntegrationConfig,
244    /// Circuit interface
245    circuit_interface: CircuitInterface,
246    /// SciRS2 backend
247    backend: Option<SciRS2Backend>,
248    /// Autodiff context
249    autodiff_context: Option<AutoDiffContext>,
250    /// Parameter cache
251    parameter_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
252    /// Gradient cache
253    gradient_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
254    /// Training statistics
255    stats: QMLTrainingStats,
256}
257
258/// QML training statistics
259#[derive(Debug, Clone, Default, Serialize, Deserialize)]
260pub struct QMLTrainingStats {
261    /// Total training time
262    pub total_training_time_ms: f64,
263    /// Number of parameter updates
264    pub parameter_updates: usize,
265    /// Number of gradient computations
266    pub gradient_computations: usize,
267    /// Average gradient computation time
268    pub avg_gradient_time_ms: f64,
269    /// Number of circuit evaluations
270    pub circuit_evaluations: usize,
271    /// Average circuit evaluation time
272    pub avg_circuit_time_ms: f64,
273    /// Training loss history
274    pub loss_history: Vec<f64>,
275    /// Validation loss history
276    pub validation_loss_history: Vec<f64>,
277    /// Parameter norm history
278    pub parameter_norm_history: Vec<f64>,
279    /// Gradient norm history
280    pub gradient_norm_history: Vec<f64>,
281}
282
283impl QMLIntegration {
284    /// Create new QML integration
285    pub fn new(config: QMLIntegrationConfig) -> Result<Self> {
286        let circuit_interface = CircuitInterface::new(Default::default())?;
287
288        Ok(Self {
289            config,
290            circuit_interface,
291            backend: None,
292            autodiff_context: None,
293            parameter_cache: Arc::new(Mutex::new(HashMap::new())),
294            gradient_cache: Arc::new(Mutex::new(HashMap::new())),
295            stats: QMLTrainingStats::default(),
296        })
297    }
298
299    /// Initialize with SciRS2 backend
300    pub fn with_backend(mut self) -> Result<Self> {
301        self.backend = Some(SciRS2Backend::new());
302        self.circuit_interface = self.circuit_interface.with_backend()?;
303
304        if self.config.enable_autodiff {
305            self.autodiff_context = Some(AutoDiffContext::new(
306                Vec::new(),
307                crate::autodiff_vqe::GradientMethod::ParameterShift,
308            ));
309        }
310
311        Ok(self)
312    }
313
314    /// Train quantum neural network
315    pub fn train_qnn(
316        &mut self,
317        mut qnn: QuantumNeuralNetwork,
318        training_data: &[TrainingExample],
319        validation_data: Option<&[TrainingExample]>,
320    ) -> Result<TrainingResult> {
321        let start_time = std::time::Instant::now();
322
323        // Initialize optimizer
324        let mut optimizer = self.create_optimizer(&qnn.training_config)?;
325
326        // Initialize learning rate scheduler
327        let mut lr_scheduler = qnn.training_config.lr_scheduler.clone();
328
329        let mut best_loss = f64::INFINITY;
330        let mut patience_counter = 0;
331
332        for epoch in 0..qnn.training_config.epochs {
333            let epoch_start = std::time::Instant::now();
334
335            // Training phase
336            let train_loss = self.train_epoch(&mut qnn, training_data, &mut optimizer)?;
337            self.stats.loss_history.push(train_loss);
338
339            // Validation phase
340            let val_loss = if let Some(val_data) = validation_data {
341                self.validate_epoch(&qnn, val_data)?
342            } else {
343                train_loss
344            };
345            self.stats.validation_loss_history.push(val_loss);
346
347            // Update learning rate scheduler
348            if let Some(ref mut scheduler) = lr_scheduler {
349                self.update_lr_scheduler(scheduler, val_loss, &mut optimizer)?;
350            }
351
352            // Early stopping check
353            if let Some(patience) = qnn.training_config.early_stopping_patience {
354                if val_loss < best_loss {
355                    best_loss = val_loss;
356                    patience_counter = 0;
357                } else {
358                    patience_counter += 1;
359                    if patience_counter >= patience {
360                        println!("Early stopping at epoch {} due to no improvement", epoch);
361                        break;
362                    }
363                }
364            }
365
366            // Compute parameter and gradient norms
367            let param_norm = self.compute_parameter_norm(&qnn)?;
368            let grad_norm = self.compute_last_gradient_norm()?;
369            self.stats.parameter_norm_history.push(param_norm);
370            self.stats.gradient_norm_history.push(grad_norm);
371
372            println!(
373                "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}ms",
374                epoch,
375                train_loss,
376                val_loss,
377                epoch_start.elapsed().as_secs_f64() * 1000.0
378            );
379        }
380
381        let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
382        self.stats.total_training_time_ms += total_time;
383
384        Ok(TrainingResult {
385            trained_qnn: qnn.clone(),
386            final_loss: *self.stats.loss_history.last().unwrap_or(&0.0),
387            final_validation_loss: *self.stats.validation_loss_history.last().unwrap_or(&0.0),
388            epochs_completed: self.stats.loss_history.len(),
389            total_time_ms: total_time,
390            converged: patience_counter
391                < qnn
392                    .training_config
393                    .early_stopping_patience
394                    .unwrap_or(usize::MAX),
395        })
396    }
397
398    /// Train single epoch
399    fn train_epoch(
400        &mut self,
401        qnn: &mut QuantumNeuralNetwork,
402        training_data: &[TrainingExample],
403        optimizer: &mut Box<dyn QMLOptimizer>,
404    ) -> Result<f64> {
405        let mut total_loss = 0.0;
406        let batch_size = qnn.training_config.batch_size;
407        let num_batches = (training_data.len() + batch_size - 1) / batch_size;
408
409        for batch_idx in 0..num_batches {
410            let start_idx = batch_idx * batch_size;
411            let end_idx = (start_idx + batch_size).min(training_data.len());
412            let batch = &training_data[start_idx..end_idx];
413
414            // Forward pass
415            let (predictions, loss) = self.forward_pass(qnn, batch)?;
416            total_loss += loss;
417
418            // Backward pass (compute gradients)
419            let gradients = self.backward_pass(qnn, batch, &predictions)?;
420
421            // Update parameters
422            optimizer.update_parameters(qnn, &gradients)?;
423
424            self.stats.parameter_updates += 1;
425        }
426
427        Ok(total_loss / num_batches as f64)
428    }
429
430    /// Validate single epoch
431    fn validate_epoch(
432        &mut self,
433        qnn: &QuantumNeuralNetwork,
434        validation_data: &[TrainingExample],
435    ) -> Result<f64> {
436        let mut total_loss = 0.0;
437        let batch_size = qnn.training_config.batch_size;
438        let num_batches = (validation_data.len() + batch_size - 1) / batch_size;
439
440        for batch_idx in 0..num_batches {
441            let start_idx = batch_idx * batch_size;
442            let end_idx = (start_idx + batch_size).min(validation_data.len());
443            let batch = &validation_data[start_idx..end_idx];
444
445            let (_, loss) = self.forward_pass(qnn, batch)?;
446            total_loss += loss;
447        }
448
449        Ok(total_loss / num_batches as f64)
450    }
451
452    /// Forward pass through the quantum neural network
453    fn forward_pass(
454        &mut self,
455        qnn: &QuantumNeuralNetwork,
456        batch: &[TrainingExample],
457    ) -> Result<(Vec<Array1<f64>>, f64)> {
458        let start_time = std::time::Instant::now();
459
460        let mut predictions = Vec::new();
461        let mut total_loss = 0.0;
462
463        for example in batch {
464            // Evaluate quantum circuit with current parameters
465            let prediction = self.evaluate_qnn(qnn, &example.input)?;
466
467            // Compute loss
468            let loss = self.compute_loss(
469                &prediction,
470                &example.target,
471                &qnn.training_config.loss_function,
472            )?;
473
474            predictions.push(prediction);
475            total_loss += loss;
476        }
477
478        let eval_time = start_time.elapsed().as_secs_f64() * 1000.0;
479        self.stats.avg_circuit_time_ms =
480            (self.stats.avg_circuit_time_ms * self.stats.circuit_evaluations as f64 + eval_time)
481                / (self.stats.circuit_evaluations + batch.len()) as f64;
482        self.stats.circuit_evaluations += batch.len();
483
484        Ok((predictions, total_loss / batch.len() as f64))
485    }
486
487    /// Backward pass to compute gradients
488    fn backward_pass(
489        &mut self,
490        qnn: &QuantumNeuralNetwork,
491        batch: &[TrainingExample],
492        predictions: &[Array1<f64>],
493    ) -> Result<HashMap<String, Vec<f64>>> {
494        let start_time = std::time::Instant::now();
495
496        let mut gradients = HashMap::new();
497
498        if self.config.enable_autodiff {
499            // Use automatic differentiation
500            gradients = self.compute_gradients_autodiff(qnn, batch, predictions)?;
501        } else {
502            // Use parameter shift rule or finite differences
503            gradients = self.compute_gradients_parameter_shift(qnn, batch)?;
504        }
505
506        let grad_time = start_time.elapsed().as_secs_f64() * 1000.0;
507        self.stats.avg_gradient_time_ms =
508            (self.stats.avg_gradient_time_ms * self.stats.gradient_computations as f64 + grad_time)
509                / (self.stats.gradient_computations + 1) as f64;
510        self.stats.gradient_computations += 1;
511
512        // Cache gradients
513        {
514            let mut cache = self.gradient_cache.lock().unwrap();
515            for (param_name, grad) in &gradients {
516                cache.insert(param_name.clone(), grad.clone());
517            }
518        }
519
520        Ok(gradients)
521    }
522
523    /// Evaluate quantum neural network
524    fn evaluate_qnn(
525        &mut self,
526        qnn: &QuantumNeuralNetwork,
527        input: &Array1<f64>,
528    ) -> Result<Array1<f64>> {
529        // Start with initial state
530        let total_qubits = qnn.layers.iter().map(|l| l.num_qubits).max().unwrap_or(1);
531        let mut state = Array1::zeros(1 << total_qubits);
532        state[0] = Complex64::new(1.0, 0.0); // |0...0⟩
533
534        let mut current_output = input.clone();
535
536        // Process each layer
537        for layer in &qnn.layers {
538            current_output = self.evaluate_layer(layer, &current_output, &mut state)?;
539        }
540
541        Ok(current_output)
542    }
543
544    /// Evaluate single layer
545    fn evaluate_layer(
546        &mut self,
547        layer: &QMLLayer,
548        input: &Array1<f64>,
549        state: &mut Array1<Complex64>,
550    ) -> Result<Array1<f64>> {
551        match layer.layer_type {
552            QMLLayerType::DataEncoding => {
553                self.apply_data_encoding(layer, input, state)?;
554                Ok(input.clone()) // Pass through for now
555            }
556            QMLLayerType::VariationalCircuit => {
557                self.apply_variational_circuit(layer, state)?;
558                self.measure_qubits(layer, state)
559            }
560            QMLLayerType::Measurement => self.measure_qubits(layer, state),
561            QMLLayerType::Classical => self.apply_classical_processing(layer, input),
562            _ => {
563                // Placeholder for other layer types
564                Ok(input.clone())
565            }
566        }
567    }
568
569    /// Apply data encoding layer
570    fn apply_data_encoding(
571        &mut self,
572        layer: &QMLLayer,
573        input: &Array1<f64>,
574        state: &mut Array1<Complex64>,
575    ) -> Result<()> {
576        // Amplitude encoding: encode classical data into quantum amplitudes
577        for (i, &value) in input.iter().enumerate() {
578            if i < layer.num_qubits {
579                // Apply rotation proportional to input value
580                let angle = value * std::f64::consts::PI;
581                self.apply_ry_rotation(i, angle, state)?;
582            }
583        }
584        Ok(())
585    }
586
587    /// Apply variational circuit layer
588    fn apply_variational_circuit(
589        &mut self,
590        layer: &QMLLayer,
591        state: &mut Array1<Complex64>,
592    ) -> Result<()> {
593        if let Some(circuit_template) = &layer.circuit_template {
594            // Create parameterized circuit
595            let mut circuit = circuit_template.clone();
596            self.parameterize_circuit(&mut circuit, &layer.parameters)?;
597
598            // Compile and execute circuit
599            let compiled = self.circuit_interface.compile_circuit(
600                &circuit,
601                crate::circuit_interfaces::SimulationBackend::StateVector,
602            )?;
603            let result = self
604                .circuit_interface
605                .execute_circuit(&compiled, Some(state.clone()))?;
606
607            if let Some(final_state) = result.final_state {
608                *state = final_state;
609            }
610        }
611        Ok(())
612    }
613
614    /// Measure qubits
615    fn measure_qubits(&self, layer: &QMLLayer, state: &Array1<Complex64>) -> Result<Array1<f64>> {
616        let mut measurements = Array1::zeros(layer.num_qubits);
617
618        for qubit in 0..layer.num_qubits {
619            let prob = self.compute_measurement_probability(qubit, state)?;
620            measurements[qubit] = prob;
621        }
622
623        Ok(measurements)
624    }
625
626    /// Apply classical processing
627    fn apply_classical_processing(
628        &self,
629        layer: &QMLLayer,
630        input: &Array1<f64>,
631    ) -> Result<Array1<f64>> {
632        // Simple linear transformation for now
633        Ok(input.clone())
634    }
635
636    /// Apply RY rotation gate
637    fn apply_ry_rotation(
638        &self,
639        qubit: usize,
640        angle: f64,
641        state: &mut Array1<Complex64>,
642    ) -> Result<()> {
643        let qubit_mask = 1 << qubit;
644        let cos_half = (angle / 2.0).cos();
645        let sin_half = (angle / 2.0).sin();
646
647        for i in 0..state.len() {
648            if i & qubit_mask == 0 {
649                let j = i | qubit_mask;
650                if j < state.len() {
651                    let amp_0 = state[i];
652                    let amp_1 = state[j];
653
654                    state[i] = cos_half * amp_0 - sin_half * amp_1;
655                    state[j] = sin_half * amp_0 + cos_half * amp_1;
656                }
657            }
658        }
659
660        Ok(())
661    }
662
663    /// Parameterize circuit with current parameter values
664    fn parameterize_circuit(
665        &self,
666        circuit: &mut InterfaceCircuit,
667        parameters: &[f64],
668    ) -> Result<()> {
669        let mut param_idx = 0;
670
671        for gate in &mut circuit.gates {
672            match &mut gate.gate_type {
673                InterfaceGateType::RX(ref mut angle)
674                | InterfaceGateType::RY(ref mut angle)
675                | InterfaceGateType::RZ(ref mut angle) => {
676                    if param_idx < parameters.len() {
677                        *angle = parameters[param_idx];
678                        param_idx += 1;
679                    }
680                }
681                InterfaceGateType::Phase(ref mut angle) => {
682                    if param_idx < parameters.len() {
683                        *angle = parameters[param_idx];
684                        param_idx += 1;
685                    }
686                }
687                _ => {}
688            }
689        }
690
691        Ok(())
692    }
693
694    /// Compute measurement probability for a qubit
695    fn compute_measurement_probability(
696        &self,
697        qubit: usize,
698        state: &Array1<Complex64>,
699    ) -> Result<f64> {
700        let qubit_mask = 1 << qubit;
701        let mut prob_one = 0.0;
702
703        for (i, &amplitude) in state.iter().enumerate() {
704            if i & qubit_mask != 0 {
705                prob_one += amplitude.norm_sqr();
706            }
707        }
708
709        Ok(prob_one)
710    }
711
712    /// Compute loss
713    fn compute_loss(
714        &self,
715        prediction: &Array1<f64>,
716        target: &Array1<f64>,
717        loss_fn: &LossFunction,
718    ) -> Result<f64> {
719        match loss_fn {
720            LossFunction::MeanSquaredError => {
721                let diff = prediction - target;
722                Ok(diff.mapv(|x| x * x).mean().unwrap_or(0.0))
723            }
724            LossFunction::MeanAbsoluteError => {
725                let diff = prediction - target;
726                Ok(diff.mapv(|x| x.abs()).mean().unwrap_or(0.0))
727            }
728            LossFunction::CrossEntropy => {
729                // Simplified cross-entropy
730                let mut loss = 0.0;
731                for (i, (&pred, &targ)) in prediction.iter().zip(target.iter()).enumerate() {
732                    if targ > 0.0 {
733                        loss -= targ * pred.ln();
734                    }
735                }
736                Ok(loss)
737            }
738            _ => Ok(0.0), // Placeholder for other loss functions
739        }
740    }
741
742    /// Compute gradients using automatic differentiation
743    fn compute_gradients_autodiff(
744        &mut self,
745        qnn: &QuantumNeuralNetwork,
746        batch: &[TrainingExample],
747        predictions: &[Array1<f64>],
748    ) -> Result<HashMap<String, Vec<f64>>> {
749        // Placeholder for autodiff implementation
750        self.compute_gradients_parameter_shift(qnn, batch)
751    }
752
753    /// Compute gradients using parameter shift rule
754    fn compute_gradients_parameter_shift(
755        &mut self,
756        qnn: &QuantumNeuralNetwork,
757        batch: &[TrainingExample],
758    ) -> Result<HashMap<String, Vec<f64>>> {
759        let mut gradients = HashMap::new();
760        let shift = std::f64::consts::PI / 2.0;
761
762        // Collect all parameters
763        let mut all_params = Vec::new();
764        let mut param_names = Vec::new();
765
766        for layer in &qnn.layers {
767            for (i, &param) in layer.parameters.iter().enumerate() {
768                all_params.push(param);
769                param_names.push(format!("{}_{}", layer.name, i));
770            }
771        }
772
773        for (param_idx, param_name) in param_names.iter().enumerate() {
774            let mut param_grad = 0.0;
775
776            for example in batch {
777                // Evaluate with positive shift
778                let mut qnn_plus = qnn.clone();
779                self.shift_parameter(&mut qnn_plus, param_idx, shift)?;
780                let pred_plus = self.evaluate_qnn(&qnn_plus, &example.input)?;
781                let loss_plus = self.compute_loss(
782                    &pred_plus,
783                    &example.target,
784                    &qnn.training_config.loss_function,
785                )?;
786
787                // Evaluate with negative shift
788                let mut qnn_minus = qnn.clone();
789                self.shift_parameter(&mut qnn_minus, param_idx, -shift)?;
790                let pred_minus = self.evaluate_qnn(&qnn_minus, &example.input)?;
791                let loss_minus = self.compute_loss(
792                    &pred_minus,
793                    &example.target,
794                    &qnn.training_config.loss_function,
795                )?;
796
797                // Compute gradient using parameter shift rule
798                param_grad += (loss_plus - loss_minus) / 2.0;
799            }
800
801            param_grad /= batch.len() as f64;
802            gradients.insert(param_name.clone(), vec![param_grad]);
803        }
804
805        Ok(gradients)
806    }
807
808    /// Shift a parameter in the QNN
809    fn shift_parameter(
810        &self,
811        qnn: &mut QuantumNeuralNetwork,
812        param_idx: usize,
813        shift: f64,
814    ) -> Result<()> {
815        let mut current_idx = 0;
816
817        for layer in &mut qnn.layers {
818            if current_idx + layer.parameters.len() > param_idx {
819                let local_idx = param_idx - current_idx;
820                layer.parameters[local_idx] += shift;
821                return Ok(());
822            }
823            current_idx += layer.parameters.len();
824        }
825
826        Err(SimulatorError::InvalidInput(format!(
827            "Parameter index {} out of bounds",
828            param_idx
829        )))
830    }
831
832    /// Create optimizer
833    fn create_optimizer(&self, config: &TrainingConfig) -> Result<Box<dyn QMLOptimizer>> {
834        match config.optimizer {
835            OptimizerType::Adam => Ok(Box::new(AdamOptimizer::new(config.learning_rate))),
836            OptimizerType::SGD => Ok(Box::new(SGDOptimizer::new(config.learning_rate))),
837            _ => Ok(Box::new(AdamOptimizer::new(config.learning_rate))), // Default to Adam
838        }
839    }
840
841    /// Update learning rate scheduler
842    fn update_lr_scheduler(
843        &self,
844        scheduler: &mut LRScheduler,
845        current_loss: f64,
846        optimizer: &mut Box<dyn QMLOptimizer>,
847    ) -> Result<()> {
848        match scheduler {
849            LRScheduler::StepLR {
850                step_size: _,
851                gamma,
852            } => {
853                optimizer.update_learning_rate(*gamma);
854            }
855            LRScheduler::ExponentialLR { gamma } => {
856                optimizer.update_learning_rate(*gamma);
857            }
858            LRScheduler::ReduceLROnPlateau {
859                patience: _,
860                factor,
861            } => {
862                // Simple implementation - reduce LR if loss plateaus
863                optimizer.update_learning_rate(*factor);
864            }
865            _ => {}
866        }
867        Ok(())
868    }
869
870    /// Compute parameter norm
871    fn compute_parameter_norm(&self, qnn: &QuantumNeuralNetwork) -> Result<f64> {
872        let mut norm_squared = 0.0;
873
874        for layer in &qnn.layers {
875            for &param in &layer.parameters {
876                norm_squared += param * param;
877            }
878        }
879
880        Ok(norm_squared.sqrt())
881    }
882
883    /// Compute last gradient norm
884    fn compute_last_gradient_norm(&self) -> Result<f64> {
885        let cache = self.gradient_cache.lock().unwrap();
886        let mut norm_squared = 0.0;
887
888        for (_, grads) in cache.iter() {
889            for &grad in grads {
890                norm_squared += grad * grad;
891            }
892        }
893
894        Ok(norm_squared.sqrt())
895    }
896
897    /// Get training statistics
898    pub fn get_stats(&self) -> &QMLTrainingStats {
899        &self.stats
900    }
901
902    /// Reset training statistics
903    pub fn reset_stats(&mut self) {
904        self.stats = QMLTrainingStats::default();
905    }
906}
907
908/// Training example
909#[derive(Debug, Clone)]
910pub struct TrainingExample {
911    /// Input data
912    pub input: Array1<f64>,
913    /// Target output
914    pub target: Array1<f64>,
915}
916
917/// Training result
918#[derive(Debug, Clone)]
919pub struct TrainingResult {
920    /// Trained QNN
921    pub trained_qnn: QuantumNeuralNetwork,
922    /// Final training loss
923    pub final_loss: f64,
924    /// Final validation loss
925    pub final_validation_loss: f64,
926    /// Number of epochs completed
927    pub epochs_completed: usize,
928    /// Total training time
929    pub total_time_ms: f64,
930    /// Whether training converged
931    pub converged: bool,
932}
933
934/// QML optimizer trait
935pub trait QMLOptimizer {
936    /// Update parameters using computed gradients
937    fn update_parameters(
938        &mut self,
939        qnn: &mut QuantumNeuralNetwork,
940        gradients: &HashMap<String, Vec<f64>>,
941    ) -> Result<()>;
942
943    /// Update learning rate
944    fn update_learning_rate(&mut self, factor: f64);
945
946    /// Get current learning rate
947    fn get_learning_rate(&self) -> f64;
948}
949
950/// Adam optimizer implementation
951pub struct AdamOptimizer {
952    learning_rate: f64,
953    beta1: f64,
954    beta2: f64,
955    epsilon: f64,
956    step: usize,
957    m: HashMap<String, Vec<f64>>, // First moment estimates
958    v: HashMap<String, Vec<f64>>, // Second moment estimates
959}
960
961impl AdamOptimizer {
962    pub fn new(learning_rate: f64) -> Self {
963        Self {
964            learning_rate,
965            beta1: 0.9,
966            beta2: 0.999,
967            epsilon: 1e-8,
968            step: 0,
969            m: HashMap::new(),
970            v: HashMap::new(),
971        }
972    }
973}
974
975impl QMLOptimizer for AdamOptimizer {
976    fn update_parameters(
977        &mut self,
978        qnn: &mut QuantumNeuralNetwork,
979        gradients: &HashMap<String, Vec<f64>>,
980    ) -> Result<()> {
981        self.step += 1;
982
983        for (param_name, grads) in gradients {
984            // Initialize moments if needed
985            if !self.m.contains_key(param_name) {
986                self.m.insert(param_name.clone(), vec![0.0; grads.len()]);
987                self.v.insert(param_name.clone(), vec![0.0; grads.len()]);
988            }
989
990            let mut updates = Vec::new();
991
992            {
993                let m = self.m.get_mut(param_name).unwrap();
994                let v = self.v.get_mut(param_name).unwrap();
995
996                for (i, &grad) in grads.iter().enumerate() {
997                    // Update biased first moment estimate
998                    m[i] = self.beta1 * m[i] + (1.0 - self.beta1) * grad;
999
1000                    // Update biased second moment estimate
1001                    v[i] = self.beta2 * v[i] + (1.0 - self.beta2) * grad * grad;
1002
1003                    // Compute bias-corrected first moment estimate
1004                    let m_hat = m[i] / (1.0 - self.beta1.powi(self.step as i32));
1005
1006                    // Compute bias-corrected second moment estimate
1007                    let v_hat = v[i] / (1.0 - self.beta2.powi(self.step as i32));
1008
1009                    // Update parameter
1010                    let update = self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
1011                    updates.push((i, -update));
1012                }
1013            }
1014
1015            // Apply updates
1016            for (i, update) in updates {
1017                self.update_qnn_parameter(qnn, param_name, i, update)?;
1018            }
1019        }
1020
1021        Ok(())
1022    }
1023
1024    fn update_learning_rate(&mut self, factor: f64) {
1025        self.learning_rate *= factor;
1026    }
1027
1028    fn get_learning_rate(&self) -> f64 {
1029        self.learning_rate
1030    }
1031}
1032
1033impl AdamOptimizer {
1034    fn update_qnn_parameter(
1035        &self,
1036        qnn: &mut QuantumNeuralNetwork,
1037        param_name: &str,
1038        param_idx: usize,
1039        update: f64,
1040    ) -> Result<()> {
1041        // Parse parameter name to find the layer and parameter index
1042        let parts: Vec<&str> = param_name.split('_').collect();
1043        if parts.len() >= 2 {
1044            let layer_name = parts[0];
1045
1046            for layer in &mut qnn.layers {
1047                if layer.name == layer_name && param_idx < layer.parameters.len() {
1048                    layer.parameters[param_idx] += update;
1049                    return Ok(());
1050                }
1051            }
1052        }
1053
1054        Err(SimulatorError::InvalidInput(format!(
1055            "Parameter {} not found",
1056            param_name
1057        )))
1058    }
1059}
1060
1061/// SGD optimizer implementation
1062pub struct SGDOptimizer {
1063    learning_rate: f64,
1064    momentum: f64,
1065    velocity: HashMap<String, Vec<f64>>,
1066}
1067
1068impl SGDOptimizer {
1069    pub fn new(learning_rate: f64) -> Self {
1070        Self {
1071            learning_rate,
1072            momentum: 0.9,
1073            velocity: HashMap::new(),
1074        }
1075    }
1076}
1077
1078impl QMLOptimizer for SGDOptimizer {
1079    fn update_parameters(
1080        &mut self,
1081        qnn: &mut QuantumNeuralNetwork,
1082        gradients: &HashMap<String, Vec<f64>>,
1083    ) -> Result<()> {
1084        for (param_name, grads) in gradients {
1085            // Initialize velocity if needed
1086            if !self.velocity.contains_key(param_name) {
1087                self.velocity
1088                    .insert(param_name.clone(), vec![0.0; grads.len()]);
1089            }
1090
1091            let mut updates = Vec::new();
1092
1093            {
1094                let velocity = self.velocity.get_mut(param_name).unwrap();
1095
1096                for (i, &grad) in grads.iter().enumerate() {
1097                    // Update velocity with momentum
1098                    velocity[i] = self.momentum * velocity[i] - self.learning_rate * grad;
1099                    updates.push((i, velocity[i]));
1100                }
1101            }
1102
1103            // Apply updates
1104            for (i, update) in updates {
1105                self.update_qnn_parameter(qnn, param_name, i, update)?;
1106            }
1107        }
1108
1109        Ok(())
1110    }
1111
1112    fn update_learning_rate(&mut self, factor: f64) {
1113        self.learning_rate *= factor;
1114    }
1115
1116    fn get_learning_rate(&self) -> f64 {
1117        self.learning_rate
1118    }
1119}
1120
1121impl SGDOptimizer {
1122    fn update_qnn_parameter(
1123        &self,
1124        qnn: &mut QuantumNeuralNetwork,
1125        param_name: &str,
1126        param_idx: usize,
1127        update: f64,
1128    ) -> Result<()> {
1129        // Parse parameter name to find the layer and parameter index
1130        let parts: Vec<&str> = param_name.split('_').collect();
1131        if parts.len() >= 2 {
1132            let layer_name = parts[0];
1133
1134            for layer in &mut qnn.layers {
1135                if layer.name == layer_name && param_idx < layer.parameters.len() {
1136                    layer.parameters[param_idx] += update;
1137                    return Ok(());
1138                }
1139            }
1140        }
1141
1142        Err(SimulatorError::InvalidInput(format!(
1143            "Parameter {} not found",
1144            param_name
1145        )))
1146    }
1147}
1148
1149/// QML utilities
1150pub struct QMLUtils;
1151
1152impl QMLUtils {
1153    /// Create a simple variational quantum classifier
1154    pub fn create_vqc(num_qubits: usize, num_layers: usize) -> QuantumNeuralNetwork {
1155        let mut layers = Vec::new();
1156
1157        // Data encoding layer
1158        layers.push(QMLLayer {
1159            layer_type: QMLLayerType::DataEncoding,
1160            name: "encoding".to_string(),
1161            num_qubits,
1162            parameters: Vec::new(),
1163            parameter_names: Vec::new(),
1164            circuit_template: None,
1165            classical_function: None,
1166            config: LayerConfig::default(),
1167        });
1168
1169        // Variational layers
1170        for layer_idx in 0..num_layers {
1171            let num_params = num_qubits * 3; // 3 parameters per qubit (RX, RY, RZ)
1172            let parameters = (0..num_params)
1173                .map(|_| fastrand::f64() * 2.0 * std::f64::consts::PI)
1174                .collect();
1175            let parameter_names = (0..num_params).map(|i| format!("param_{}", i)).collect();
1176
1177            layers.push(QMLLayer {
1178                layer_type: QMLLayerType::VariationalCircuit,
1179                name: format!("var_layer_{}", layer_idx),
1180                num_qubits,
1181                parameters,
1182                parameter_names,
1183                circuit_template: Some(Self::create_variational_circuit_template(num_qubits)),
1184                classical_function: None,
1185                config: LayerConfig {
1186                    repetitions: 1,
1187                    entangling_pattern: (0..num_qubits - 1).map(|i| (i, i + 1)).collect(),
1188                    ..Default::default()
1189                },
1190            });
1191        }
1192
1193        // Measurement layer
1194        layers.push(QMLLayer {
1195            layer_type: QMLLayerType::Measurement,
1196            name: "measurement".to_string(),
1197            num_qubits,
1198            parameters: Vec::new(),
1199            parameter_names: Vec::new(),
1200            circuit_template: None,
1201            classical_function: None,
1202            config: LayerConfig::default(),
1203        });
1204
1205        QuantumNeuralNetwork {
1206            layers,
1207            global_parameters: HashMap::new(),
1208            metadata: QNNMetadata {
1209                name: Some("VQC".to_string()),
1210                total_parameters: num_layers * num_qubits * 3,
1211                trainable_parameters: num_layers * num_qubits * 3,
1212                ..Default::default()
1213            },
1214            training_config: TrainingConfig::default(),
1215        }
1216    }
1217
1218    /// Create variational circuit template
1219    fn create_variational_circuit_template(num_qubits: usize) -> InterfaceCircuit {
1220        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1221
1222        // Add parameterized rotation gates
1223        for qubit in 0..num_qubits {
1224            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1225            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1226            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.0), vec![qubit]));
1227        }
1228
1229        // Add entangling gates
1230        for qubit in 0..num_qubits - 1 {
1231            circuit.add_gate(InterfaceGate::new(
1232                InterfaceGateType::CNOT,
1233                vec![qubit, qubit + 1],
1234            ));
1235        }
1236
1237        circuit
1238    }
1239
1240    /// Create training data for XOR problem
1241    pub fn create_xor_training_data() -> Vec<TrainingExample> {
1242        vec![
1243            TrainingExample {
1244                input: Array1::from(vec![0.0, 0.0]),
1245                target: Array1::from(vec![0.0]),
1246            },
1247            TrainingExample {
1248                input: Array1::from(vec![0.0, 1.0]),
1249                target: Array1::from(vec![1.0]),
1250            },
1251            TrainingExample {
1252                input: Array1::from(vec![1.0, 0.0]),
1253                target: Array1::from(vec![1.0]),
1254            },
1255            TrainingExample {
1256                input: Array1::from(vec![1.0, 1.0]),
1257                target: Array1::from(vec![0.0]),
1258            },
1259        ]
1260    }
1261
1262    /// Benchmark QML integration
1263    pub fn benchmark_qml_integration() -> Result<QMLBenchmarkResults> {
1264        let mut results = QMLBenchmarkResults::default();
1265
1266        let configs = vec![
1267            QMLIntegrationConfig {
1268                framework: QMLFramework::SciRS2,
1269                enable_autodiff: false,
1270                batch_size: 4,
1271                ..Default::default()
1272            },
1273            QMLIntegrationConfig {
1274                framework: QMLFramework::SciRS2,
1275                enable_autodiff: true,
1276                batch_size: 4,
1277                ..Default::default()
1278            },
1279        ];
1280
1281        for (i, config) in configs.into_iter().enumerate() {
1282            let mut integration = QMLIntegration::new(config)?;
1283            let mut qnn = Self::create_vqc(2, 2);
1284            qnn.training_config.epochs = 10;
1285
1286            let training_data = Self::create_xor_training_data();
1287
1288            let start = std::time::Instant::now();
1289            let _result = integration.train_qnn(qnn, &training_data, None)?;
1290            let time = start.elapsed().as_secs_f64() * 1000.0;
1291
1292            results.training_times.push((format!("config_{}", i), time));
1293        }
1294
1295        Ok(results)
1296    }
1297}
1298
1299/// QML benchmark results
1300#[derive(Debug, Clone, Default)]
1301pub struct QMLBenchmarkResults {
1302    /// Training times by configuration
1303    pub training_times: Vec<(String, f64)>,
1304}
1305
1306#[cfg(test)]
1307mod tests {
1308    use super::*;
1309    use approx::assert_abs_diff_eq;
1310
1311    #[test]
1312    fn test_qml_integration_creation() {
1313        let config = QMLIntegrationConfig::default();
1314        let integration = QMLIntegration::new(config);
1315        assert!(integration.is_ok());
1316    }
1317
1318    #[test]
1319    fn test_quantum_neural_network_creation() {
1320        let qnn = QMLUtils::create_vqc(2, 2);
1321        assert_eq!(qnn.layers.len(), 4); // encoding + 2 variational + measurement
1322        assert_eq!(qnn.metadata.total_parameters, 12); // 2 layers * 2 qubits * 3 params
1323    }
1324
1325    #[test]
1326    fn test_training_data_creation() {
1327        let data = QMLUtils::create_xor_training_data();
1328        assert_eq!(data.len(), 4);
1329        assert_eq!(data[0].input, Array1::from(vec![0.0, 0.0]));
1330        assert_eq!(data[0].target, Array1::from(vec![0.0]));
1331    }
1332
1333    #[test]
1334    fn test_adam_optimizer() {
1335        let mut optimizer = AdamOptimizer::new(0.01);
1336        assert_eq!(optimizer.get_learning_rate(), 0.01);
1337
1338        optimizer.update_learning_rate(0.5);
1339        assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.005, epsilon = 1e-10);
1340    }
1341
1342    #[test]
1343    fn test_sgd_optimizer() {
1344        let mut optimizer = SGDOptimizer::new(0.1);
1345        assert_eq!(optimizer.get_learning_rate(), 0.1);
1346
1347        optimizer.update_learning_rate(0.9);
1348        assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.09, epsilon = 1e-10);
1349    }
1350
1351    #[test]
1352    fn test_qml_layer_types() {
1353        let layer_types = vec![
1354            QMLLayerType::VariationalCircuit,
1355            QMLLayerType::DataEncoding,
1356            QMLLayerType::Measurement,
1357            QMLLayerType::Classical,
1358        ];
1359        assert_eq!(layer_types.len(), 4);
1360    }
1361
1362    #[test]
1363    fn test_training_config_default() {
1364        let config = TrainingConfig::default();
1365        assert_eq!(config.learning_rate, 0.01);
1366        assert_eq!(config.optimizer, OptimizerType::Adam);
1367        assert_eq!(config.loss_function, LossFunction::MeanSquaredError);
1368    }
1369
1370    #[test]
1371    fn test_measurement_probability_computation() {
1372        let config = QMLIntegrationConfig::default();
1373        let integration = QMLIntegration::new(config).unwrap();
1374
1375        // Create a simple state |01⟩
1376        let mut state = Array1::zeros(4);
1377        state[1] = Complex64::new(1.0, 0.0); // |01⟩
1378
1379        let prob0 = integration
1380            .compute_measurement_probability(0, &state)
1381            .unwrap();
1382        let prob1 = integration
1383            .compute_measurement_probability(1, &state)
1384            .unwrap();
1385
1386        assert_abs_diff_eq!(prob0, 1.0, epsilon = 1e-10); // Qubit 0 is in |1⟩
1387        assert_abs_diff_eq!(prob1, 0.0, epsilon = 1e-10); // Qubit 1 is in |0⟩
1388    }
1389
1390    #[test]
1391    fn test_loss_computation() {
1392        let config = QMLIntegrationConfig::default();
1393        let integration = QMLIntegration::new(config).unwrap();
1394
1395        let prediction = Array1::from(vec![0.8, 0.2]);
1396        let target = Array1::from(vec![1.0, 0.0]);
1397
1398        let mse = integration
1399            .compute_loss(&prediction, &target, &LossFunction::MeanSquaredError)
1400            .unwrap();
1401        let mae = integration
1402            .compute_loss(&prediction, &target, &LossFunction::MeanAbsoluteError)
1403            .unwrap();
1404
1405        assert_abs_diff_eq!(mse, 0.04, epsilon = 1e-10); // ((0.8-1.0)^2 + (0.2-0.0)^2) / 2 = (0.04 + 0.04) / 2
1406        assert_abs_diff_eq!(mae, 0.2, epsilon = 1e-10); // (0.2 + 0.2) / 2
1407    }
1408
1409    #[test]
1410    fn test_circuit_template_creation() {
1411        let circuit = QMLUtils::create_variational_circuit_template(3);
1412        assert_eq!(circuit.num_qubits, 3);
1413        assert_eq!(circuit.gates.len(), 11); // 3*3 rotation gates + 2 CNOT gates
1414    }
1415}