1use crate::prelude::{InterfaceGate, InterfaceGateType, SimulatorError};
10use scirs2_core::ndarray::Array1;
11use scirs2_core::Complex64;
12use scirs2_core::parallel_ops::*;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::sync::{Arc, Mutex};
16
17use crate::autodiff_vqe::AutoDiffContext;
18use crate::circuit_interfaces::{CircuitInterface, InterfaceCircuit};
19use crate::error::Result;
20use crate::scirs2_integration::SciRS2Backend;
21
22#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
24pub enum QMLFramework {
25 PyTorch,
27 TensorFlow,
29 JAX,
31 SciRS2,
33 Custom,
35}
36
37#[derive(Debug, Clone)]
39pub struct QMLIntegrationConfig {
40 pub framework: QMLFramework,
42 pub enable_autodiff: bool,
44 pub enable_gradient_optimization: bool,
46 pub batch_size: usize,
48 pub enable_parameter_sharing: bool,
50 pub hardware_aware_optimization: bool,
52 pub gradient_memory_limit: usize,
54 pub enable_distributed_training: bool,
56 pub enable_mixed_precision: bool,
58}
59
60impl Default for QMLIntegrationConfig {
61 fn default() -> Self {
62 Self {
63 framework: QMLFramework::SciRS2,
64 enable_autodiff: true,
65 enable_gradient_optimization: true,
66 batch_size: 32,
67 enable_parameter_sharing: true,
68 hardware_aware_optimization: true,
69 gradient_memory_limit: 8_000_000_000, enable_distributed_training: false,
71 enable_mixed_precision: false,
72 }
73 }
74}
75
76#[derive(Debug, Clone, PartialEq, Eq, Hash)]
78pub enum QMLLayerType {
79 VariationalCircuit,
81 QuantumConvolutional,
83 QuantumRecurrent,
85 QuantumAttention,
87 DataEncoding,
89 Measurement,
91 Classical,
93}
94
95#[derive(Debug, Clone)]
97pub struct QMLLayer {
98 pub layer_type: QMLLayerType,
100 pub name: String,
102 pub num_qubits: usize,
104 pub parameters: Vec<f64>,
106 pub parameter_names: Vec<String>,
108 pub circuit_template: Option<InterfaceCircuit>,
110 pub classical_function: Option<String>,
112 pub config: LayerConfig,
114}
115
116#[derive(Debug, Clone, Default)]
118pub struct LayerConfig {
119 pub repetitions: usize,
121 pub entangling_pattern: Vec<(usize, usize)>,
123 pub activation: Option<String>,
125 pub regularization: Option<RegularizationConfig>,
127 pub hardware_mapping: Option<Vec<usize>>,
129}
130
131#[derive(Debug, Clone)]
133pub struct RegularizationConfig {
134 pub l1_strength: f64,
136 pub l2_strength: f64,
138 pub dropout_prob: f64,
140}
141
142#[derive(Debug, Clone)]
144pub struct QuantumNeuralNetwork {
145 pub layers: Vec<QMLLayer>,
147 pub global_parameters: HashMap<String, f64>,
149 pub metadata: QNNMetadata,
151 pub training_config: TrainingConfig,
153}
154
155#[derive(Debug, Clone, Default)]
157pub struct QNNMetadata {
158 pub name: Option<String>,
160 pub description: Option<String>,
162 pub created_at: Option<std::time::SystemTime>,
164 pub total_parameters: usize,
166 pub trainable_parameters: usize,
168 pub complexity_score: f64,
170}
171
172#[derive(Debug, Clone)]
174pub struct TrainingConfig {
175 pub learning_rate: f64,
177 pub optimizer: OptimizerType,
179 pub loss_function: LossFunction,
181 pub epochs: usize,
183 pub batch_size: usize,
185 pub validation_split: f64,
187 pub early_stopping_patience: Option<usize>,
189 pub lr_scheduler: Option<LRScheduler>,
191}
192
193impl Default for TrainingConfig {
194 fn default() -> Self {
195 Self {
196 learning_rate: 0.01,
197 optimizer: OptimizerType::Adam,
198 loss_function: LossFunction::MeanSquaredError,
199 epochs: 100,
200 batch_size: 32,
201 validation_split: 0.2,
202 early_stopping_patience: Some(10),
203 lr_scheduler: None,
204 }
205 }
206}
207
208#[derive(Debug, Clone, Copy, PartialEq, Eq)]
210pub enum OptimizerType {
211 SGD,
212 Adam,
213 AdamW,
214 RMSprop,
215 LBFGS,
216 NaturalGradient,
217 QuantumNaturalGradient,
218}
219
220#[derive(Debug, Clone, Copy, PartialEq, Eq)]
222pub enum LossFunction {
223 MeanSquaredError,
224 MeanAbsoluteError,
225 CrossEntropy,
226 BinaryCrossEntropy,
227 Hinge,
228 CustomQuantum,
229}
230
231#[derive(Debug, Clone)]
233pub enum LRScheduler {
234 StepLR { step_size: usize, gamma: f64 },
235 ExponentialLR { gamma: f64 },
236 CosineAnnealingLR { t_max: usize },
237 ReduceLROnPlateau { patience: usize, factor: f64 },
238}
239
240pub struct QMLIntegration {
242 config: QMLIntegrationConfig,
244 circuit_interface: CircuitInterface,
246 backend: Option<SciRS2Backend>,
248 autodiff_context: Option<AutoDiffContext>,
250 parameter_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
252 gradient_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
254 stats: QMLTrainingStats,
256}
257
258#[derive(Debug, Clone, Default, Serialize, Deserialize)]
260pub struct QMLTrainingStats {
261 pub total_training_time_ms: f64,
263 pub parameter_updates: usize,
265 pub gradient_computations: usize,
267 pub avg_gradient_time_ms: f64,
269 pub circuit_evaluations: usize,
271 pub avg_circuit_time_ms: f64,
273 pub loss_history: Vec<f64>,
275 pub validation_loss_history: Vec<f64>,
277 pub parameter_norm_history: Vec<f64>,
279 pub gradient_norm_history: Vec<f64>,
281}
282
283impl QMLIntegration {
284 pub fn new(config: QMLIntegrationConfig) -> Result<Self> {
286 let circuit_interface = CircuitInterface::new(Default::default())?;
287
288 Ok(Self {
289 config,
290 circuit_interface,
291 backend: None,
292 autodiff_context: None,
293 parameter_cache: Arc::new(Mutex::new(HashMap::new())),
294 gradient_cache: Arc::new(Mutex::new(HashMap::new())),
295 stats: QMLTrainingStats::default(),
296 })
297 }
298
299 pub fn with_backend(mut self) -> Result<Self> {
301 self.backend = Some(SciRS2Backend::new());
302 self.circuit_interface = self.circuit_interface.with_backend()?;
303
304 if self.config.enable_autodiff {
305 self.autodiff_context = Some(AutoDiffContext::new(
306 Vec::new(),
307 crate::autodiff_vqe::GradientMethod::ParameterShift,
308 ));
309 }
310
311 Ok(self)
312 }
313
314 pub fn train_qnn(
316 &mut self,
317 mut qnn: QuantumNeuralNetwork,
318 training_data: &[TrainingExample],
319 validation_data: Option<&[TrainingExample]>,
320 ) -> Result<TrainingResult> {
321 let start_time = std::time::Instant::now();
322
323 let mut optimizer = self.create_optimizer(&qnn.training_config)?;
325
326 let mut lr_scheduler = qnn.training_config.lr_scheduler.clone();
328
329 let mut best_loss = f64::INFINITY;
330 let mut patience_counter = 0;
331
332 for epoch in 0..qnn.training_config.epochs {
333 let epoch_start = std::time::Instant::now();
334
335 let train_loss = self.train_epoch(&mut qnn, training_data, &mut optimizer)?;
337 self.stats.loss_history.push(train_loss);
338
339 let val_loss = if let Some(val_data) = validation_data {
341 self.validate_epoch(&qnn, val_data)?
342 } else {
343 train_loss
344 };
345 self.stats.validation_loss_history.push(val_loss);
346
347 if let Some(ref mut scheduler) = lr_scheduler {
349 self.update_lr_scheduler(scheduler, val_loss, &mut optimizer)?;
350 }
351
352 if let Some(patience) = qnn.training_config.early_stopping_patience {
354 if val_loss < best_loss {
355 best_loss = val_loss;
356 patience_counter = 0;
357 } else {
358 patience_counter += 1;
359 if patience_counter >= patience {
360 println!("Early stopping at epoch {} due to no improvement", epoch);
361 break;
362 }
363 }
364 }
365
366 let param_norm = self.compute_parameter_norm(&qnn)?;
368 let grad_norm = self.compute_last_gradient_norm()?;
369 self.stats.parameter_norm_history.push(param_norm);
370 self.stats.gradient_norm_history.push(grad_norm);
371
372 println!(
373 "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}ms",
374 epoch,
375 train_loss,
376 val_loss,
377 epoch_start.elapsed().as_secs_f64() * 1000.0
378 );
379 }
380
381 let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
382 self.stats.total_training_time_ms += total_time;
383
384 Ok(TrainingResult {
385 trained_qnn: qnn.clone(),
386 final_loss: *self.stats.loss_history.last().unwrap_or(&0.0),
387 final_validation_loss: *self.stats.validation_loss_history.last().unwrap_or(&0.0),
388 epochs_completed: self.stats.loss_history.len(),
389 total_time_ms: total_time,
390 converged: patience_counter
391 < qnn
392 .training_config
393 .early_stopping_patience
394 .unwrap_or(usize::MAX),
395 })
396 }
397
398 fn train_epoch(
400 &mut self,
401 qnn: &mut QuantumNeuralNetwork,
402 training_data: &[TrainingExample],
403 optimizer: &mut Box<dyn QMLOptimizer>,
404 ) -> Result<f64> {
405 let mut total_loss = 0.0;
406 let batch_size = qnn.training_config.batch_size;
407 let num_batches = (training_data.len() + batch_size - 1) / batch_size;
408
409 for batch_idx in 0..num_batches {
410 let start_idx = batch_idx * batch_size;
411 let end_idx = (start_idx + batch_size).min(training_data.len());
412 let batch = &training_data[start_idx..end_idx];
413
414 let (predictions, loss) = self.forward_pass(qnn, batch)?;
416 total_loss += loss;
417
418 let gradients = self.backward_pass(qnn, batch, &predictions)?;
420
421 optimizer.update_parameters(qnn, &gradients)?;
423
424 self.stats.parameter_updates += 1;
425 }
426
427 Ok(total_loss / num_batches as f64)
428 }
429
430 fn validate_epoch(
432 &mut self,
433 qnn: &QuantumNeuralNetwork,
434 validation_data: &[TrainingExample],
435 ) -> Result<f64> {
436 let mut total_loss = 0.0;
437 let batch_size = qnn.training_config.batch_size;
438 let num_batches = (validation_data.len() + batch_size - 1) / batch_size;
439
440 for batch_idx in 0..num_batches {
441 let start_idx = batch_idx * batch_size;
442 let end_idx = (start_idx + batch_size).min(validation_data.len());
443 let batch = &validation_data[start_idx..end_idx];
444
445 let (_, loss) = self.forward_pass(qnn, batch)?;
446 total_loss += loss;
447 }
448
449 Ok(total_loss / num_batches as f64)
450 }
451
452 fn forward_pass(
454 &mut self,
455 qnn: &QuantumNeuralNetwork,
456 batch: &[TrainingExample],
457 ) -> Result<(Vec<Array1<f64>>, f64)> {
458 let start_time = std::time::Instant::now();
459
460 let mut predictions = Vec::new();
461 let mut total_loss = 0.0;
462
463 for example in batch {
464 let prediction = self.evaluate_qnn(qnn, &example.input)?;
466
467 let loss = self.compute_loss(
469 &prediction,
470 &example.target,
471 &qnn.training_config.loss_function,
472 )?;
473
474 predictions.push(prediction);
475 total_loss += loss;
476 }
477
478 let eval_time = start_time.elapsed().as_secs_f64() * 1000.0;
479 self.stats.avg_circuit_time_ms =
480 (self.stats.avg_circuit_time_ms * self.stats.circuit_evaluations as f64 + eval_time)
481 / (self.stats.circuit_evaluations + batch.len()) as f64;
482 self.stats.circuit_evaluations += batch.len();
483
484 Ok((predictions, total_loss / batch.len() as f64))
485 }
486
487 fn backward_pass(
489 &mut self,
490 qnn: &QuantumNeuralNetwork,
491 batch: &[TrainingExample],
492 predictions: &[Array1<f64>],
493 ) -> Result<HashMap<String, Vec<f64>>> {
494 let start_time = std::time::Instant::now();
495
496 let mut gradients = HashMap::new();
497
498 if self.config.enable_autodiff {
499 gradients = self.compute_gradients_autodiff(qnn, batch, predictions)?;
501 } else {
502 gradients = self.compute_gradients_parameter_shift(qnn, batch)?;
504 }
505
506 let grad_time = start_time.elapsed().as_secs_f64() * 1000.0;
507 self.stats.avg_gradient_time_ms =
508 (self.stats.avg_gradient_time_ms * self.stats.gradient_computations as f64 + grad_time)
509 / (self.stats.gradient_computations + 1) as f64;
510 self.stats.gradient_computations += 1;
511
512 {
514 let mut cache = self.gradient_cache.lock().unwrap();
515 for (param_name, grad) in &gradients {
516 cache.insert(param_name.clone(), grad.clone());
517 }
518 }
519
520 Ok(gradients)
521 }
522
523 fn evaluate_qnn(
525 &mut self,
526 qnn: &QuantumNeuralNetwork,
527 input: &Array1<f64>,
528 ) -> Result<Array1<f64>> {
529 let total_qubits = qnn.layers.iter().map(|l| l.num_qubits).max().unwrap_or(1);
531 let mut state = Array1::zeros(1 << total_qubits);
532 state[0] = Complex64::new(1.0, 0.0); let mut current_output = input.clone();
535
536 for layer in &qnn.layers {
538 current_output = self.evaluate_layer(layer, ¤t_output, &mut state)?;
539 }
540
541 Ok(current_output)
542 }
543
544 fn evaluate_layer(
546 &mut self,
547 layer: &QMLLayer,
548 input: &Array1<f64>,
549 state: &mut Array1<Complex64>,
550 ) -> Result<Array1<f64>> {
551 match layer.layer_type {
552 QMLLayerType::DataEncoding => {
553 self.apply_data_encoding(layer, input, state)?;
554 Ok(input.clone()) }
556 QMLLayerType::VariationalCircuit => {
557 self.apply_variational_circuit(layer, state)?;
558 self.measure_qubits(layer, state)
559 }
560 QMLLayerType::Measurement => self.measure_qubits(layer, state),
561 QMLLayerType::Classical => self.apply_classical_processing(layer, input),
562 _ => {
563 Ok(input.clone())
565 }
566 }
567 }
568
569 fn apply_data_encoding(
571 &mut self,
572 layer: &QMLLayer,
573 input: &Array1<f64>,
574 state: &mut Array1<Complex64>,
575 ) -> Result<()> {
576 for (i, &value) in input.iter().enumerate() {
578 if i < layer.num_qubits {
579 let angle = value * std::f64::consts::PI;
581 self.apply_ry_rotation(i, angle, state)?;
582 }
583 }
584 Ok(())
585 }
586
587 fn apply_variational_circuit(
589 &mut self,
590 layer: &QMLLayer,
591 state: &mut Array1<Complex64>,
592 ) -> Result<()> {
593 if let Some(circuit_template) = &layer.circuit_template {
594 let mut circuit = circuit_template.clone();
596 self.parameterize_circuit(&mut circuit, &layer.parameters)?;
597
598 let compiled = self.circuit_interface.compile_circuit(
600 &circuit,
601 crate::circuit_interfaces::SimulationBackend::StateVector,
602 )?;
603 let result = self
604 .circuit_interface
605 .execute_circuit(&compiled, Some(state.clone()))?;
606
607 if let Some(final_state) = result.final_state {
608 *state = final_state;
609 }
610 }
611 Ok(())
612 }
613
614 fn measure_qubits(&self, layer: &QMLLayer, state: &Array1<Complex64>) -> Result<Array1<f64>> {
616 let mut measurements = Array1::zeros(layer.num_qubits);
617
618 for qubit in 0..layer.num_qubits {
619 let prob = self.compute_measurement_probability(qubit, state)?;
620 measurements[qubit] = prob;
621 }
622
623 Ok(measurements)
624 }
625
626 fn apply_classical_processing(
628 &self,
629 layer: &QMLLayer,
630 input: &Array1<f64>,
631 ) -> Result<Array1<f64>> {
632 Ok(input.clone())
634 }
635
636 fn apply_ry_rotation(
638 &self,
639 qubit: usize,
640 angle: f64,
641 state: &mut Array1<Complex64>,
642 ) -> Result<()> {
643 let qubit_mask = 1 << qubit;
644 let cos_half = (angle / 2.0).cos();
645 let sin_half = (angle / 2.0).sin();
646
647 for i in 0..state.len() {
648 if i & qubit_mask == 0 {
649 let j = i | qubit_mask;
650 if j < state.len() {
651 let amp_0 = state[i];
652 let amp_1 = state[j];
653
654 state[i] = cos_half * amp_0 - sin_half * amp_1;
655 state[j] = sin_half * amp_0 + cos_half * amp_1;
656 }
657 }
658 }
659
660 Ok(())
661 }
662
663 fn parameterize_circuit(
665 &self,
666 circuit: &mut InterfaceCircuit,
667 parameters: &[f64],
668 ) -> Result<()> {
669 let mut param_idx = 0;
670
671 for gate in &mut circuit.gates {
672 match &mut gate.gate_type {
673 InterfaceGateType::RX(ref mut angle)
674 | InterfaceGateType::RY(ref mut angle)
675 | InterfaceGateType::RZ(ref mut angle) => {
676 if param_idx < parameters.len() {
677 *angle = parameters[param_idx];
678 param_idx += 1;
679 }
680 }
681 InterfaceGateType::Phase(ref mut angle) => {
682 if param_idx < parameters.len() {
683 *angle = parameters[param_idx];
684 param_idx += 1;
685 }
686 }
687 _ => {}
688 }
689 }
690
691 Ok(())
692 }
693
694 fn compute_measurement_probability(
696 &self,
697 qubit: usize,
698 state: &Array1<Complex64>,
699 ) -> Result<f64> {
700 let qubit_mask = 1 << qubit;
701 let mut prob_one = 0.0;
702
703 for (i, &litude) in state.iter().enumerate() {
704 if i & qubit_mask != 0 {
705 prob_one += amplitude.norm_sqr();
706 }
707 }
708
709 Ok(prob_one)
710 }
711
712 fn compute_loss(
714 &self,
715 prediction: &Array1<f64>,
716 target: &Array1<f64>,
717 loss_fn: &LossFunction,
718 ) -> Result<f64> {
719 match loss_fn {
720 LossFunction::MeanSquaredError => {
721 let diff = prediction - target;
722 Ok(diff.mapv(|x| x * x).mean().unwrap_or(0.0))
723 }
724 LossFunction::MeanAbsoluteError => {
725 let diff = prediction - target;
726 Ok(diff.mapv(|x| x.abs()).mean().unwrap_or(0.0))
727 }
728 LossFunction::CrossEntropy => {
729 let mut loss = 0.0;
731 for (i, (&pred, &targ)) in prediction.iter().zip(target.iter()).enumerate() {
732 if targ > 0.0 {
733 loss -= targ * pred.ln();
734 }
735 }
736 Ok(loss)
737 }
738 _ => Ok(0.0), }
740 }
741
742 fn compute_gradients_autodiff(
744 &mut self,
745 qnn: &QuantumNeuralNetwork,
746 batch: &[TrainingExample],
747 predictions: &[Array1<f64>],
748 ) -> Result<HashMap<String, Vec<f64>>> {
749 self.compute_gradients_parameter_shift(qnn, batch)
751 }
752
753 fn compute_gradients_parameter_shift(
755 &mut self,
756 qnn: &QuantumNeuralNetwork,
757 batch: &[TrainingExample],
758 ) -> Result<HashMap<String, Vec<f64>>> {
759 let mut gradients = HashMap::new();
760 let shift = std::f64::consts::PI / 2.0;
761
762 let mut all_params = Vec::new();
764 let mut param_names = Vec::new();
765
766 for layer in &qnn.layers {
767 for (i, ¶m) in layer.parameters.iter().enumerate() {
768 all_params.push(param);
769 param_names.push(format!("{}_{}", layer.name, i));
770 }
771 }
772
773 for (param_idx, param_name) in param_names.iter().enumerate() {
774 let mut param_grad = 0.0;
775
776 for example in batch {
777 let mut qnn_plus = qnn.clone();
779 self.shift_parameter(&mut qnn_plus, param_idx, shift)?;
780 let pred_plus = self.evaluate_qnn(&qnn_plus, &example.input)?;
781 let loss_plus = self.compute_loss(
782 &pred_plus,
783 &example.target,
784 &qnn.training_config.loss_function,
785 )?;
786
787 let mut qnn_minus = qnn.clone();
789 self.shift_parameter(&mut qnn_minus, param_idx, -shift)?;
790 let pred_minus = self.evaluate_qnn(&qnn_minus, &example.input)?;
791 let loss_minus = self.compute_loss(
792 &pred_minus,
793 &example.target,
794 &qnn.training_config.loss_function,
795 )?;
796
797 param_grad += (loss_plus - loss_minus) / 2.0;
799 }
800
801 param_grad /= batch.len() as f64;
802 gradients.insert(param_name.clone(), vec![param_grad]);
803 }
804
805 Ok(gradients)
806 }
807
808 fn shift_parameter(
810 &self,
811 qnn: &mut QuantumNeuralNetwork,
812 param_idx: usize,
813 shift: f64,
814 ) -> Result<()> {
815 let mut current_idx = 0;
816
817 for layer in &mut qnn.layers {
818 if current_idx + layer.parameters.len() > param_idx {
819 let local_idx = param_idx - current_idx;
820 layer.parameters[local_idx] += shift;
821 return Ok(());
822 }
823 current_idx += layer.parameters.len();
824 }
825
826 Err(SimulatorError::InvalidInput(format!(
827 "Parameter index {} out of bounds",
828 param_idx
829 )))
830 }
831
832 fn create_optimizer(&self, config: &TrainingConfig) -> Result<Box<dyn QMLOptimizer>> {
834 match config.optimizer {
835 OptimizerType::Adam => Ok(Box::new(AdamOptimizer::new(config.learning_rate))),
836 OptimizerType::SGD => Ok(Box::new(SGDOptimizer::new(config.learning_rate))),
837 _ => Ok(Box::new(AdamOptimizer::new(config.learning_rate))), }
839 }
840
841 fn update_lr_scheduler(
843 &self,
844 scheduler: &mut LRScheduler,
845 current_loss: f64,
846 optimizer: &mut Box<dyn QMLOptimizer>,
847 ) -> Result<()> {
848 match scheduler {
849 LRScheduler::StepLR {
850 step_size: _,
851 gamma,
852 } => {
853 optimizer.update_learning_rate(*gamma);
854 }
855 LRScheduler::ExponentialLR { gamma } => {
856 optimizer.update_learning_rate(*gamma);
857 }
858 LRScheduler::ReduceLROnPlateau {
859 patience: _,
860 factor,
861 } => {
862 optimizer.update_learning_rate(*factor);
864 }
865 _ => {}
866 }
867 Ok(())
868 }
869
870 fn compute_parameter_norm(&self, qnn: &QuantumNeuralNetwork) -> Result<f64> {
872 let mut norm_squared = 0.0;
873
874 for layer in &qnn.layers {
875 for ¶m in &layer.parameters {
876 norm_squared += param * param;
877 }
878 }
879
880 Ok(norm_squared.sqrt())
881 }
882
883 fn compute_last_gradient_norm(&self) -> Result<f64> {
885 let cache = self.gradient_cache.lock().unwrap();
886 let mut norm_squared = 0.0;
887
888 for (_, grads) in cache.iter() {
889 for &grad in grads {
890 norm_squared += grad * grad;
891 }
892 }
893
894 Ok(norm_squared.sqrt())
895 }
896
897 pub fn get_stats(&self) -> &QMLTrainingStats {
899 &self.stats
900 }
901
902 pub fn reset_stats(&mut self) {
904 self.stats = QMLTrainingStats::default();
905 }
906}
907
908#[derive(Debug, Clone)]
910pub struct TrainingExample {
911 pub input: Array1<f64>,
913 pub target: Array1<f64>,
915}
916
917#[derive(Debug, Clone)]
919pub struct TrainingResult {
920 pub trained_qnn: QuantumNeuralNetwork,
922 pub final_loss: f64,
924 pub final_validation_loss: f64,
926 pub epochs_completed: usize,
928 pub total_time_ms: f64,
930 pub converged: bool,
932}
933
934pub trait QMLOptimizer {
936 fn update_parameters(
938 &mut self,
939 qnn: &mut QuantumNeuralNetwork,
940 gradients: &HashMap<String, Vec<f64>>,
941 ) -> Result<()>;
942
943 fn update_learning_rate(&mut self, factor: f64);
945
946 fn get_learning_rate(&self) -> f64;
948}
949
950pub struct AdamOptimizer {
952 learning_rate: f64,
953 beta1: f64,
954 beta2: f64,
955 epsilon: f64,
956 step: usize,
957 m: HashMap<String, Vec<f64>>, v: HashMap<String, Vec<f64>>, }
960
961impl AdamOptimizer {
962 pub fn new(learning_rate: f64) -> Self {
963 Self {
964 learning_rate,
965 beta1: 0.9,
966 beta2: 0.999,
967 epsilon: 1e-8,
968 step: 0,
969 m: HashMap::new(),
970 v: HashMap::new(),
971 }
972 }
973}
974
975impl QMLOptimizer for AdamOptimizer {
976 fn update_parameters(
977 &mut self,
978 qnn: &mut QuantumNeuralNetwork,
979 gradients: &HashMap<String, Vec<f64>>,
980 ) -> Result<()> {
981 self.step += 1;
982
983 for (param_name, grads) in gradients {
984 if !self.m.contains_key(param_name) {
986 self.m.insert(param_name.clone(), vec![0.0; grads.len()]);
987 self.v.insert(param_name.clone(), vec![0.0; grads.len()]);
988 }
989
990 let mut updates = Vec::new();
991
992 {
993 let m = self.m.get_mut(param_name).unwrap();
994 let v = self.v.get_mut(param_name).unwrap();
995
996 for (i, &grad) in grads.iter().enumerate() {
997 m[i] = self.beta1 * m[i] + (1.0 - self.beta1) * grad;
999
1000 v[i] = self.beta2 * v[i] + (1.0 - self.beta2) * grad * grad;
1002
1003 let m_hat = m[i] / (1.0 - self.beta1.powi(self.step as i32));
1005
1006 let v_hat = v[i] / (1.0 - self.beta2.powi(self.step as i32));
1008
1009 let update = self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
1011 updates.push((i, -update));
1012 }
1013 }
1014
1015 for (i, update) in updates {
1017 self.update_qnn_parameter(qnn, param_name, i, update)?;
1018 }
1019 }
1020
1021 Ok(())
1022 }
1023
1024 fn update_learning_rate(&mut self, factor: f64) {
1025 self.learning_rate *= factor;
1026 }
1027
1028 fn get_learning_rate(&self) -> f64 {
1029 self.learning_rate
1030 }
1031}
1032
1033impl AdamOptimizer {
1034 fn update_qnn_parameter(
1035 &self,
1036 qnn: &mut QuantumNeuralNetwork,
1037 param_name: &str,
1038 param_idx: usize,
1039 update: f64,
1040 ) -> Result<()> {
1041 let parts: Vec<&str> = param_name.split('_').collect();
1043 if parts.len() >= 2 {
1044 let layer_name = parts[0];
1045
1046 for layer in &mut qnn.layers {
1047 if layer.name == layer_name && param_idx < layer.parameters.len() {
1048 layer.parameters[param_idx] += update;
1049 return Ok(());
1050 }
1051 }
1052 }
1053
1054 Err(SimulatorError::InvalidInput(format!(
1055 "Parameter {} not found",
1056 param_name
1057 )))
1058 }
1059}
1060
1061pub struct SGDOptimizer {
1063 learning_rate: f64,
1064 momentum: f64,
1065 velocity: HashMap<String, Vec<f64>>,
1066}
1067
1068impl SGDOptimizer {
1069 pub fn new(learning_rate: f64) -> Self {
1070 Self {
1071 learning_rate,
1072 momentum: 0.9,
1073 velocity: HashMap::new(),
1074 }
1075 }
1076}
1077
1078impl QMLOptimizer for SGDOptimizer {
1079 fn update_parameters(
1080 &mut self,
1081 qnn: &mut QuantumNeuralNetwork,
1082 gradients: &HashMap<String, Vec<f64>>,
1083 ) -> Result<()> {
1084 for (param_name, grads) in gradients {
1085 if !self.velocity.contains_key(param_name) {
1087 self.velocity
1088 .insert(param_name.clone(), vec![0.0; grads.len()]);
1089 }
1090
1091 let mut updates = Vec::new();
1092
1093 {
1094 let velocity = self.velocity.get_mut(param_name).unwrap();
1095
1096 for (i, &grad) in grads.iter().enumerate() {
1097 velocity[i] = self.momentum * velocity[i] - self.learning_rate * grad;
1099 updates.push((i, velocity[i]));
1100 }
1101 }
1102
1103 for (i, update) in updates {
1105 self.update_qnn_parameter(qnn, param_name, i, update)?;
1106 }
1107 }
1108
1109 Ok(())
1110 }
1111
1112 fn update_learning_rate(&mut self, factor: f64) {
1113 self.learning_rate *= factor;
1114 }
1115
1116 fn get_learning_rate(&self) -> f64 {
1117 self.learning_rate
1118 }
1119}
1120
1121impl SGDOptimizer {
1122 fn update_qnn_parameter(
1123 &self,
1124 qnn: &mut QuantumNeuralNetwork,
1125 param_name: &str,
1126 param_idx: usize,
1127 update: f64,
1128 ) -> Result<()> {
1129 let parts: Vec<&str> = param_name.split('_').collect();
1131 if parts.len() >= 2 {
1132 let layer_name = parts[0];
1133
1134 for layer in &mut qnn.layers {
1135 if layer.name == layer_name && param_idx < layer.parameters.len() {
1136 layer.parameters[param_idx] += update;
1137 return Ok(());
1138 }
1139 }
1140 }
1141
1142 Err(SimulatorError::InvalidInput(format!(
1143 "Parameter {} not found",
1144 param_name
1145 )))
1146 }
1147}
1148
1149pub struct QMLUtils;
1151
1152impl QMLUtils {
1153 pub fn create_vqc(num_qubits: usize, num_layers: usize) -> QuantumNeuralNetwork {
1155 let mut layers = Vec::new();
1156
1157 layers.push(QMLLayer {
1159 layer_type: QMLLayerType::DataEncoding,
1160 name: "encoding".to_string(),
1161 num_qubits,
1162 parameters: Vec::new(),
1163 parameter_names: Vec::new(),
1164 circuit_template: None,
1165 classical_function: None,
1166 config: LayerConfig::default(),
1167 });
1168
1169 for layer_idx in 0..num_layers {
1171 let num_params = num_qubits * 3; let parameters = (0..num_params)
1173 .map(|_| fastrand::f64() * 2.0 * std::f64::consts::PI)
1174 .collect();
1175 let parameter_names = (0..num_params).map(|i| format!("param_{}", i)).collect();
1176
1177 layers.push(QMLLayer {
1178 layer_type: QMLLayerType::VariationalCircuit,
1179 name: format!("var_layer_{}", layer_idx),
1180 num_qubits,
1181 parameters,
1182 parameter_names,
1183 circuit_template: Some(Self::create_variational_circuit_template(num_qubits)),
1184 classical_function: None,
1185 config: LayerConfig {
1186 repetitions: 1,
1187 entangling_pattern: (0..num_qubits - 1).map(|i| (i, i + 1)).collect(),
1188 ..Default::default()
1189 },
1190 });
1191 }
1192
1193 layers.push(QMLLayer {
1195 layer_type: QMLLayerType::Measurement,
1196 name: "measurement".to_string(),
1197 num_qubits,
1198 parameters: Vec::new(),
1199 parameter_names: Vec::new(),
1200 circuit_template: None,
1201 classical_function: None,
1202 config: LayerConfig::default(),
1203 });
1204
1205 QuantumNeuralNetwork {
1206 layers,
1207 global_parameters: HashMap::new(),
1208 metadata: QNNMetadata {
1209 name: Some("VQC".to_string()),
1210 total_parameters: num_layers * num_qubits * 3,
1211 trainable_parameters: num_layers * num_qubits * 3,
1212 ..Default::default()
1213 },
1214 training_config: TrainingConfig::default(),
1215 }
1216 }
1217
1218 fn create_variational_circuit_template(num_qubits: usize) -> InterfaceCircuit {
1220 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1221
1222 for qubit in 0..num_qubits {
1224 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1225 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1226 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.0), vec![qubit]));
1227 }
1228
1229 for qubit in 0..num_qubits - 1 {
1231 circuit.add_gate(InterfaceGate::new(
1232 InterfaceGateType::CNOT,
1233 vec![qubit, qubit + 1],
1234 ));
1235 }
1236
1237 circuit
1238 }
1239
1240 pub fn create_xor_training_data() -> Vec<TrainingExample> {
1242 vec![
1243 TrainingExample {
1244 input: Array1::from(vec![0.0, 0.0]),
1245 target: Array1::from(vec![0.0]),
1246 },
1247 TrainingExample {
1248 input: Array1::from(vec![0.0, 1.0]),
1249 target: Array1::from(vec![1.0]),
1250 },
1251 TrainingExample {
1252 input: Array1::from(vec![1.0, 0.0]),
1253 target: Array1::from(vec![1.0]),
1254 },
1255 TrainingExample {
1256 input: Array1::from(vec![1.0, 1.0]),
1257 target: Array1::from(vec![0.0]),
1258 },
1259 ]
1260 }
1261
1262 pub fn benchmark_qml_integration() -> Result<QMLBenchmarkResults> {
1264 let mut results = QMLBenchmarkResults::default();
1265
1266 let configs = vec![
1267 QMLIntegrationConfig {
1268 framework: QMLFramework::SciRS2,
1269 enable_autodiff: false,
1270 batch_size: 4,
1271 ..Default::default()
1272 },
1273 QMLIntegrationConfig {
1274 framework: QMLFramework::SciRS2,
1275 enable_autodiff: true,
1276 batch_size: 4,
1277 ..Default::default()
1278 },
1279 ];
1280
1281 for (i, config) in configs.into_iter().enumerate() {
1282 let mut integration = QMLIntegration::new(config)?;
1283 let mut qnn = Self::create_vqc(2, 2);
1284 qnn.training_config.epochs = 10;
1285
1286 let training_data = Self::create_xor_training_data();
1287
1288 let start = std::time::Instant::now();
1289 let _result = integration.train_qnn(qnn, &training_data, None)?;
1290 let time = start.elapsed().as_secs_f64() * 1000.0;
1291
1292 results.training_times.push((format!("config_{}", i), time));
1293 }
1294
1295 Ok(results)
1296 }
1297}
1298
1299#[derive(Debug, Clone, Default)]
1301pub struct QMLBenchmarkResults {
1302 pub training_times: Vec<(String, f64)>,
1304}
1305
1306#[cfg(test)]
1307mod tests {
1308 use super::*;
1309 use approx::assert_abs_diff_eq;
1310
1311 #[test]
1312 fn test_qml_integration_creation() {
1313 let config = QMLIntegrationConfig::default();
1314 let integration = QMLIntegration::new(config);
1315 assert!(integration.is_ok());
1316 }
1317
1318 #[test]
1319 fn test_quantum_neural_network_creation() {
1320 let qnn = QMLUtils::create_vqc(2, 2);
1321 assert_eq!(qnn.layers.len(), 4); assert_eq!(qnn.metadata.total_parameters, 12); }
1324
1325 #[test]
1326 fn test_training_data_creation() {
1327 let data = QMLUtils::create_xor_training_data();
1328 assert_eq!(data.len(), 4);
1329 assert_eq!(data[0].input, Array1::from(vec![0.0, 0.0]));
1330 assert_eq!(data[0].target, Array1::from(vec![0.0]));
1331 }
1332
1333 #[test]
1334 fn test_adam_optimizer() {
1335 let mut optimizer = AdamOptimizer::new(0.01);
1336 assert_eq!(optimizer.get_learning_rate(), 0.01);
1337
1338 optimizer.update_learning_rate(0.5);
1339 assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.005, epsilon = 1e-10);
1340 }
1341
1342 #[test]
1343 fn test_sgd_optimizer() {
1344 let mut optimizer = SGDOptimizer::new(0.1);
1345 assert_eq!(optimizer.get_learning_rate(), 0.1);
1346
1347 optimizer.update_learning_rate(0.9);
1348 assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.09, epsilon = 1e-10);
1349 }
1350
1351 #[test]
1352 fn test_qml_layer_types() {
1353 let layer_types = vec![
1354 QMLLayerType::VariationalCircuit,
1355 QMLLayerType::DataEncoding,
1356 QMLLayerType::Measurement,
1357 QMLLayerType::Classical,
1358 ];
1359 assert_eq!(layer_types.len(), 4);
1360 }
1361
1362 #[test]
1363 fn test_training_config_default() {
1364 let config = TrainingConfig::default();
1365 assert_eq!(config.learning_rate, 0.01);
1366 assert_eq!(config.optimizer, OptimizerType::Adam);
1367 assert_eq!(config.loss_function, LossFunction::MeanSquaredError);
1368 }
1369
1370 #[test]
1371 fn test_measurement_probability_computation() {
1372 let config = QMLIntegrationConfig::default();
1373 let integration = QMLIntegration::new(config).unwrap();
1374
1375 let mut state = Array1::zeros(4);
1377 state[1] = Complex64::new(1.0, 0.0); let prob0 = integration
1380 .compute_measurement_probability(0, &state)
1381 .unwrap();
1382 let prob1 = integration
1383 .compute_measurement_probability(1, &state)
1384 .unwrap();
1385
1386 assert_abs_diff_eq!(prob0, 1.0, epsilon = 1e-10); assert_abs_diff_eq!(prob1, 0.0, epsilon = 1e-10); }
1389
1390 #[test]
1391 fn test_loss_computation() {
1392 let config = QMLIntegrationConfig::default();
1393 let integration = QMLIntegration::new(config).unwrap();
1394
1395 let prediction = Array1::from(vec![0.8, 0.2]);
1396 let target = Array1::from(vec![1.0, 0.0]);
1397
1398 let mse = integration
1399 .compute_loss(&prediction, &target, &LossFunction::MeanSquaredError)
1400 .unwrap();
1401 let mae = integration
1402 .compute_loss(&prediction, &target, &LossFunction::MeanAbsoluteError)
1403 .unwrap();
1404
1405 assert_abs_diff_eq!(mse, 0.04, epsilon = 1e-10); assert_abs_diff_eq!(mae, 0.2, epsilon = 1e-10); }
1408
1409 #[test]
1410 fn test_circuit_template_creation() {
1411 let circuit = QMLUtils::create_variational_circuit_template(3);
1412 assert_eq!(circuit.num_qubits, 3);
1413 assert_eq!(circuit.gates.len(), 11); }
1415}