quantrs2_sim/
qml_integration.rs

1//! Quantum Machine Learning (QML) integration for seamless ML workflows.
2//!
3//! This module provides comprehensive integration between quantum simulation
4//! backends and machine learning frameworks, enabling hybrid classical-quantum
5//! algorithms, variational quantum eigensolvers (VQE), quantum neural networks
6//! (QNN), and other QML applications with automatic differentiation and
7//! hardware-aware optimization.
8
9use crate::prelude::{InterfaceGate, InterfaceGateType, SimulatorError};
10use scirs2_core::ndarray::Array1;
11use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::sync::{Arc, Mutex};
16
17use crate::autodiff_vqe::AutoDiffContext;
18use crate::circuit_interfaces::{CircuitInterface, InterfaceCircuit};
19use crate::error::Result;
20use crate::scirs2_integration::SciRS2Backend;
21
22/// QML framework types
23#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
24pub enum QMLFramework {
25    /// `PyTorch` integration
26    PyTorch,
27    /// TensorFlow/Keras integration
28    TensorFlow,
29    /// JAX integration
30    JAX,
31    /// `SciRS2` native ML
32    SciRS2,
33    /// Custom framework
34    Custom,
35}
36
37/// QML integration configuration
38#[derive(Debug, Clone)]
39pub struct QMLIntegrationConfig {
40    /// Target ML framework
41    pub framework: QMLFramework,
42    /// Enable automatic differentiation
43    pub enable_autodiff: bool,
44    /// Enable gradient optimization
45    pub enable_gradient_optimization: bool,
46    /// Batch size for circuit evaluation
47    pub batch_size: usize,
48    /// Enable parameter sharing across circuits
49    pub enable_parameter_sharing: bool,
50    /// Enable hardware-aware optimization
51    pub hardware_aware_optimization: bool,
52    /// Memory limit for gradient computation
53    pub gradient_memory_limit: usize,
54    /// Enable distributed training
55    pub enable_distributed_training: bool,
56    /// Enable mixed precision training
57    pub enable_mixed_precision: bool,
58}
59
60impl Default for QMLIntegrationConfig {
61    fn default() -> Self {
62        Self {
63            framework: QMLFramework::SciRS2,
64            enable_autodiff: true,
65            enable_gradient_optimization: true,
66            batch_size: 32,
67            enable_parameter_sharing: true,
68            hardware_aware_optimization: true,
69            gradient_memory_limit: 8_000_000_000, // 8GB
70            enable_distributed_training: false,
71            enable_mixed_precision: false,
72        }
73    }
74}
75
76/// Quantum machine learning layer types
77#[derive(Debug, Clone, PartialEq, Eq, Hash)]
78pub enum QMLLayerType {
79    /// Variational quantum circuit layer
80    VariationalCircuit,
81    /// Quantum convolutional layer
82    QuantumConvolutional,
83    /// Quantum recurrent layer
84    QuantumRecurrent,
85    /// Quantum attention layer
86    QuantumAttention,
87    /// Data encoding layer
88    DataEncoding,
89    /// Measurement layer
90    Measurement,
91    /// Classical processing layer
92    Classical,
93}
94
95/// Quantum ML layer definition
96#[derive(Debug, Clone)]
97pub struct QMLLayer {
98    /// Layer type
99    pub layer_type: QMLLayerType,
100    /// Layer name
101    pub name: String,
102    /// Number of qubits
103    pub num_qubits: usize,
104    /// Trainable parameters
105    pub parameters: Vec<f64>,
106    /// Parameter names for tracking
107    pub parameter_names: Vec<String>,
108    /// Circuit template
109    pub circuit_template: Option<InterfaceCircuit>,
110    /// Classical processing function
111    pub classical_function: Option<String>,
112    /// Layer configuration
113    pub config: LayerConfig,
114}
115
116/// Layer configuration
117#[derive(Debug, Clone, Default)]
118pub struct LayerConfig {
119    /// Number of repetitions (for ansatz layers)
120    pub repetitions: usize,
121    /// Entangling pattern
122    pub entangling_pattern: Vec<(usize, usize)>,
123    /// Activation function
124    pub activation: Option<String>,
125    /// Regularization parameters
126    pub regularization: Option<RegularizationConfig>,
127    /// Hardware mapping
128    pub hardware_mapping: Option<Vec<usize>>,
129}
130
131/// Regularization configuration
132#[derive(Debug, Clone)]
133pub struct RegularizationConfig {
134    /// L1 regularization strength
135    pub l1_strength: f64,
136    /// L2 regularization strength
137    pub l2_strength: f64,
138    /// Dropout probability
139    pub dropout_prob: f64,
140}
141
142/// Quantum neural network model
143#[derive(Debug, Clone)]
144pub struct QuantumNeuralNetwork {
145    /// Network layers
146    pub layers: Vec<QMLLayer>,
147    /// Global parameters
148    pub global_parameters: HashMap<String, f64>,
149    /// Network metadata
150    pub metadata: QNNMetadata,
151    /// Training configuration
152    pub training_config: TrainingConfig,
153}
154
155/// QNN metadata
156#[derive(Debug, Clone, Default)]
157pub struct QNNMetadata {
158    /// Model name
159    pub name: Option<String>,
160    /// Model description
161    pub description: Option<String>,
162    /// Creation timestamp
163    pub created_at: Option<std::time::SystemTime>,
164    /// Total number of parameters
165    pub total_parameters: usize,
166    /// Number of trainable parameters
167    pub trainable_parameters: usize,
168    /// Model complexity score
169    pub complexity_score: f64,
170}
171
172/// Training configuration
173#[derive(Debug, Clone)]
174pub struct TrainingConfig {
175    /// Learning rate
176    pub learning_rate: f64,
177    /// Optimizer type
178    pub optimizer: OptimizerType,
179    /// Loss function
180    pub loss_function: LossFunction,
181    /// Number of epochs
182    pub epochs: usize,
183    /// Batch size
184    pub batch_size: usize,
185    /// Validation split
186    pub validation_split: f64,
187    /// Early stopping patience
188    pub early_stopping_patience: Option<usize>,
189    /// Learning rate scheduler
190    pub lr_scheduler: Option<LRScheduler>,
191}
192
193impl Default for TrainingConfig {
194    fn default() -> Self {
195        Self {
196            learning_rate: 0.01,
197            optimizer: OptimizerType::Adam,
198            loss_function: LossFunction::MeanSquaredError,
199            epochs: 100,
200            batch_size: 32,
201            validation_split: 0.2,
202            early_stopping_patience: Some(10),
203            lr_scheduler: None,
204        }
205    }
206}
207
208/// Optimizer types
209#[derive(Debug, Clone, Copy, PartialEq, Eq)]
210pub enum OptimizerType {
211    SGD,
212    Adam,
213    AdamW,
214    RMSprop,
215    LBFGS,
216    NaturalGradient,
217    QuantumNaturalGradient,
218}
219
220/// Loss functions
221#[derive(Debug, Clone, Copy, PartialEq, Eq)]
222pub enum LossFunction {
223    MeanSquaredError,
224    MeanAbsoluteError,
225    CrossEntropy,
226    BinaryCrossEntropy,
227    Hinge,
228    CustomQuantum,
229}
230
231/// Learning rate schedulers
232#[derive(Debug, Clone)]
233pub enum LRScheduler {
234    StepLR { step_size: usize, gamma: f64 },
235    ExponentialLR { gamma: f64 },
236    CosineAnnealingLR { t_max: usize },
237    ReduceLROnPlateau { patience: usize, factor: f64 },
238}
239
240/// QML integration engine
241pub struct QMLIntegration {
242    /// Configuration
243    config: QMLIntegrationConfig,
244    /// Circuit interface
245    circuit_interface: CircuitInterface,
246    /// `SciRS2` backend
247    backend: Option<SciRS2Backend>,
248    /// Autodiff context
249    autodiff_context: Option<AutoDiffContext>,
250    /// Parameter cache
251    parameter_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
252    /// Gradient cache
253    gradient_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
254    /// Training statistics
255    stats: QMLTrainingStats,
256}
257
258/// QML training statistics
259#[derive(Debug, Clone, Default, Serialize, Deserialize)]
260pub struct QMLTrainingStats {
261    /// Total training time
262    pub total_training_time_ms: f64,
263    /// Number of parameter updates
264    pub parameter_updates: usize,
265    /// Number of gradient computations
266    pub gradient_computations: usize,
267    /// Average gradient computation time
268    pub avg_gradient_time_ms: f64,
269    /// Number of circuit evaluations
270    pub circuit_evaluations: usize,
271    /// Average circuit evaluation time
272    pub avg_circuit_time_ms: f64,
273    /// Training loss history
274    pub loss_history: Vec<f64>,
275    /// Validation loss history
276    pub validation_loss_history: Vec<f64>,
277    /// Parameter norm history
278    pub parameter_norm_history: Vec<f64>,
279    /// Gradient norm history
280    pub gradient_norm_history: Vec<f64>,
281}
282
283impl QMLIntegration {
284    /// Create new QML integration
285    pub fn new(config: QMLIntegrationConfig) -> Result<Self> {
286        let circuit_interface = CircuitInterface::new(Default::default())?;
287
288        Ok(Self {
289            config,
290            circuit_interface,
291            backend: None,
292            autodiff_context: None,
293            parameter_cache: Arc::new(Mutex::new(HashMap::new())),
294            gradient_cache: Arc::new(Mutex::new(HashMap::new())),
295            stats: QMLTrainingStats::default(),
296        })
297    }
298
299    /// Initialize with `SciRS2` backend
300    pub fn with_backend(mut self) -> Result<Self> {
301        self.backend = Some(SciRS2Backend::new());
302        self.circuit_interface = self.circuit_interface.with_backend()?;
303
304        if self.config.enable_autodiff {
305            self.autodiff_context = Some(AutoDiffContext::new(
306                Vec::new(),
307                crate::autodiff_vqe::GradientMethod::ParameterShift,
308            ));
309        }
310
311        Ok(self)
312    }
313
314    /// Train quantum neural network
315    pub fn train_qnn(
316        &mut self,
317        mut qnn: QuantumNeuralNetwork,
318        training_data: &[TrainingExample],
319        validation_data: Option<&[TrainingExample]>,
320    ) -> Result<TrainingResult> {
321        let start_time = std::time::Instant::now();
322
323        // Initialize optimizer
324        let mut optimizer = self.create_optimizer(&qnn.training_config)?;
325
326        // Initialize learning rate scheduler
327        let mut lr_scheduler = qnn.training_config.lr_scheduler.clone();
328
329        let mut best_loss = f64::INFINITY;
330        let mut patience_counter = 0;
331
332        for epoch in 0..qnn.training_config.epochs {
333            let epoch_start = std::time::Instant::now();
334
335            // Training phase
336            let train_loss = self.train_epoch(&mut qnn, training_data, &mut optimizer)?;
337            self.stats.loss_history.push(train_loss);
338
339            // Validation phase
340            let val_loss = if let Some(val_data) = validation_data {
341                self.validate_epoch(&qnn, val_data)?
342            } else {
343                train_loss
344            };
345            self.stats.validation_loss_history.push(val_loss);
346
347            // Update learning rate scheduler
348            if let Some(ref mut scheduler) = lr_scheduler {
349                self.update_lr_scheduler(scheduler, val_loss, &mut optimizer)?;
350            }
351
352            // Early stopping check
353            if let Some(patience) = qnn.training_config.early_stopping_patience {
354                if val_loss < best_loss {
355                    best_loss = val_loss;
356                    patience_counter = 0;
357                } else {
358                    patience_counter += 1;
359                    if patience_counter >= patience {
360                        println!("Early stopping at epoch {epoch} due to no improvement");
361                        break;
362                    }
363                }
364            }
365
366            // Compute parameter and gradient norms
367            let param_norm = self.compute_parameter_norm(&qnn)?;
368            let grad_norm = self.compute_last_gradient_norm()?;
369            self.stats.parameter_norm_history.push(param_norm);
370            self.stats.gradient_norm_history.push(grad_norm);
371
372            println!(
373                "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}ms",
374                epoch,
375                train_loss,
376                val_loss,
377                epoch_start.elapsed().as_secs_f64() * 1000.0
378            );
379        }
380
381        let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
382        self.stats.total_training_time_ms += total_time;
383
384        Ok(TrainingResult {
385            trained_qnn: qnn.clone(),
386            final_loss: *self.stats.loss_history.last().unwrap_or(&0.0),
387            final_validation_loss: *self.stats.validation_loss_history.last().unwrap_or(&0.0),
388            epochs_completed: self.stats.loss_history.len(),
389            total_time_ms: total_time,
390            converged: patience_counter
391                < qnn
392                    .training_config
393                    .early_stopping_patience
394                    .unwrap_or(usize::MAX),
395        })
396    }
397
398    /// Train single epoch
399    fn train_epoch(
400        &mut self,
401        qnn: &mut QuantumNeuralNetwork,
402        training_data: &[TrainingExample],
403        optimizer: &mut Box<dyn QMLOptimizer>,
404    ) -> Result<f64> {
405        let mut total_loss = 0.0;
406        let batch_size = qnn.training_config.batch_size;
407        let num_batches = training_data.len().div_ceil(batch_size);
408
409        for batch_idx in 0..num_batches {
410            let start_idx = batch_idx * batch_size;
411            let end_idx = (start_idx + batch_size).min(training_data.len());
412            let batch = &training_data[start_idx..end_idx];
413
414            // Forward pass
415            let (predictions, loss) = self.forward_pass(qnn, batch)?;
416            total_loss += loss;
417
418            // Backward pass (compute gradients)
419            let gradients = self.backward_pass(qnn, batch, &predictions)?;
420
421            // Update parameters
422            optimizer.update_parameters(qnn, &gradients)?;
423
424            self.stats.parameter_updates += 1;
425        }
426
427        Ok(total_loss / num_batches as f64)
428    }
429
430    /// Validate single epoch
431    fn validate_epoch(
432        &mut self,
433        qnn: &QuantumNeuralNetwork,
434        validation_data: &[TrainingExample],
435    ) -> Result<f64> {
436        let mut total_loss = 0.0;
437        let batch_size = qnn.training_config.batch_size;
438        let num_batches = validation_data.len().div_ceil(batch_size);
439
440        for batch_idx in 0..num_batches {
441            let start_idx = batch_idx * batch_size;
442            let end_idx = (start_idx + batch_size).min(validation_data.len());
443            let batch = &validation_data[start_idx..end_idx];
444
445            let (_, loss) = self.forward_pass(qnn, batch)?;
446            total_loss += loss;
447        }
448
449        Ok(total_loss / num_batches as f64)
450    }
451
452    /// Forward pass through the quantum neural network
453    fn forward_pass(
454        &mut self,
455        qnn: &QuantumNeuralNetwork,
456        batch: &[TrainingExample],
457    ) -> Result<(Vec<Array1<f64>>, f64)> {
458        let start_time = std::time::Instant::now();
459
460        let mut predictions = Vec::new();
461        let mut total_loss = 0.0;
462
463        for example in batch {
464            // Evaluate quantum circuit with current parameters
465            let prediction = self.evaluate_qnn(qnn, &example.input)?;
466
467            // Compute loss
468            let loss = self.compute_loss(
469                &prediction,
470                &example.target,
471                &qnn.training_config.loss_function,
472            )?;
473
474            predictions.push(prediction);
475            total_loss += loss;
476        }
477
478        let eval_time = start_time.elapsed().as_secs_f64() * 1000.0;
479        self.stats.avg_circuit_time_ms = self
480            .stats
481            .avg_circuit_time_ms
482            .mul_add(self.stats.circuit_evaluations as f64, eval_time)
483            / (self.stats.circuit_evaluations + batch.len()) as f64;
484        self.stats.circuit_evaluations += batch.len();
485
486        Ok((predictions, total_loss / batch.len() as f64))
487    }
488
489    /// Backward pass to compute gradients
490    fn backward_pass(
491        &mut self,
492        qnn: &QuantumNeuralNetwork,
493        batch: &[TrainingExample],
494        predictions: &[Array1<f64>],
495    ) -> Result<HashMap<String, Vec<f64>>> {
496        let start_time = std::time::Instant::now();
497
498        let mut gradients = if self.config.enable_autodiff {
499            // Use automatic differentiation
500            self.compute_gradients_autodiff(qnn, batch, predictions)?
501        } else {
502            // Use parameter shift rule or finite differences
503            self.compute_gradients_parameter_shift(qnn, batch)?
504        };
505
506        let grad_time = start_time.elapsed().as_secs_f64() * 1000.0;
507        self.stats.avg_gradient_time_ms = self
508            .stats
509            .avg_gradient_time_ms
510            .mul_add(self.stats.gradient_computations as f64, grad_time)
511            / (self.stats.gradient_computations + 1) as f64;
512        self.stats.gradient_computations += 1;
513
514        // Cache gradients
515        {
516            let mut cache = self.gradient_cache.lock().map_err(|e| {
517                SimulatorError::InvalidOperation(format!("Gradient cache lock poisoned: {e}"))
518            })?;
519            for (param_name, grad) in &gradients {
520                cache.insert(param_name.clone(), grad.clone());
521            }
522        }
523
524        Ok(gradients)
525    }
526
527    /// Evaluate quantum neural network
528    fn evaluate_qnn(
529        &mut self,
530        qnn: &QuantumNeuralNetwork,
531        input: &Array1<f64>,
532    ) -> Result<Array1<f64>> {
533        // Start with initial state
534        let total_qubits = qnn.layers.iter().map(|l| l.num_qubits).max().unwrap_or(1);
535        let mut state = Array1::zeros(1 << total_qubits);
536        state[0] = Complex64::new(1.0, 0.0); // |0...0⟩
537
538        let mut current_output = input.clone();
539
540        // Process each layer
541        for layer in &qnn.layers {
542            current_output = self.evaluate_layer(layer, &current_output, &mut state)?;
543        }
544
545        Ok(current_output)
546    }
547
548    /// Evaluate single layer
549    fn evaluate_layer(
550        &mut self,
551        layer: &QMLLayer,
552        input: &Array1<f64>,
553        state: &mut Array1<Complex64>,
554    ) -> Result<Array1<f64>> {
555        match layer.layer_type {
556            QMLLayerType::DataEncoding => {
557                self.apply_data_encoding(layer, input, state)?;
558                Ok(input.clone()) // Pass through for now
559            }
560            QMLLayerType::VariationalCircuit => {
561                self.apply_variational_circuit(layer, state)?;
562                self.measure_qubits(layer, state)
563            }
564            QMLLayerType::Measurement => self.measure_qubits(layer, state),
565            QMLLayerType::Classical => self.apply_classical_processing(layer, input),
566            _ => {
567                // Placeholder for other layer types
568                Ok(input.clone())
569            }
570        }
571    }
572
573    /// Apply data encoding layer
574    fn apply_data_encoding(
575        &self,
576        layer: &QMLLayer,
577        input: &Array1<f64>,
578        state: &mut Array1<Complex64>,
579    ) -> Result<()> {
580        // Amplitude encoding: encode classical data into quantum amplitudes
581        for (i, &value) in input.iter().enumerate() {
582            if i < layer.num_qubits {
583                // Apply rotation proportional to input value
584                let angle = value * std::f64::consts::PI;
585                self.apply_ry_rotation(i, angle, state)?;
586            }
587        }
588        Ok(())
589    }
590
591    /// Apply variational circuit layer
592    fn apply_variational_circuit(
593        &mut self,
594        layer: &QMLLayer,
595        state: &mut Array1<Complex64>,
596    ) -> Result<()> {
597        if let Some(circuit_template) = &layer.circuit_template {
598            // Create parameterized circuit
599            let mut circuit = circuit_template.clone();
600            self.parameterize_circuit(&mut circuit, &layer.parameters)?;
601
602            // Compile and execute circuit
603            let compiled = self.circuit_interface.compile_circuit(
604                &circuit,
605                crate::circuit_interfaces::SimulationBackend::StateVector,
606            )?;
607            let result = self
608                .circuit_interface
609                .execute_circuit(&compiled, Some(state.clone()))?;
610
611            if let Some(final_state) = result.final_state {
612                *state = final_state;
613            }
614        }
615        Ok(())
616    }
617
618    /// Measure qubits
619    fn measure_qubits(&self, layer: &QMLLayer, state: &Array1<Complex64>) -> Result<Array1<f64>> {
620        let mut measurements = Array1::zeros(layer.num_qubits);
621
622        for qubit in 0..layer.num_qubits {
623            let prob = self.compute_measurement_probability(qubit, state)?;
624            measurements[qubit] = prob;
625        }
626
627        Ok(measurements)
628    }
629
630    /// Apply classical processing
631    fn apply_classical_processing(
632        &self,
633        layer: &QMLLayer,
634        input: &Array1<f64>,
635    ) -> Result<Array1<f64>> {
636        // Simple linear transformation for now
637        Ok(input.clone())
638    }
639
640    /// Apply RY rotation gate
641    fn apply_ry_rotation(
642        &self,
643        qubit: usize,
644        angle: f64,
645        state: &mut Array1<Complex64>,
646    ) -> Result<()> {
647        let qubit_mask = 1 << qubit;
648        let cos_half = (angle / 2.0).cos();
649        let sin_half = (angle / 2.0).sin();
650
651        for i in 0..state.len() {
652            if i & qubit_mask == 0 {
653                let j = i | qubit_mask;
654                if j < state.len() {
655                    let amp_0 = state[i];
656                    let amp_1 = state[j];
657
658                    state[i] = cos_half * amp_0 - sin_half * amp_1;
659                    state[j] = sin_half * amp_0 + cos_half * amp_1;
660                }
661            }
662        }
663
664        Ok(())
665    }
666
667    /// Parameterize circuit with current parameter values
668    fn parameterize_circuit(
669        &self,
670        circuit: &mut InterfaceCircuit,
671        parameters: &[f64],
672    ) -> Result<()> {
673        let mut param_idx = 0;
674
675        for gate in &mut circuit.gates {
676            match &mut gate.gate_type {
677                InterfaceGateType::RX(ref mut angle)
678                | InterfaceGateType::RY(ref mut angle)
679                | InterfaceGateType::RZ(ref mut angle) => {
680                    if param_idx < parameters.len() {
681                        *angle = parameters[param_idx];
682                        param_idx += 1;
683                    }
684                }
685                InterfaceGateType::Phase(ref mut angle) => {
686                    if param_idx < parameters.len() {
687                        *angle = parameters[param_idx];
688                        param_idx += 1;
689                    }
690                }
691                _ => {}
692            }
693        }
694
695        Ok(())
696    }
697
698    /// Compute measurement probability for a qubit
699    fn compute_measurement_probability(
700        &self,
701        qubit: usize,
702        state: &Array1<Complex64>,
703    ) -> Result<f64> {
704        let qubit_mask = 1 << qubit;
705        let mut prob_one = 0.0;
706
707        for (i, &amplitude) in state.iter().enumerate() {
708            if i & qubit_mask != 0 {
709                prob_one += amplitude.norm_sqr();
710            }
711        }
712
713        Ok(prob_one)
714    }
715
716    /// Compute loss
717    fn compute_loss(
718        &self,
719        prediction: &Array1<f64>,
720        target: &Array1<f64>,
721        loss_fn: &LossFunction,
722    ) -> Result<f64> {
723        match loss_fn {
724            LossFunction::MeanSquaredError => {
725                let diff = prediction - target;
726                Ok(diff.mapv(|x| x * x).mean().unwrap_or(0.0))
727            }
728            LossFunction::MeanAbsoluteError => {
729                let diff = prediction - target;
730                Ok(diff.mapv(f64::abs).mean().unwrap_or(0.0))
731            }
732            LossFunction::CrossEntropy => {
733                // Simplified cross-entropy
734                let mut loss = 0.0;
735                for (i, (&pred, &targ)) in prediction.iter().zip(target.iter()).enumerate() {
736                    if targ > 0.0 {
737                        loss -= targ * pred.ln();
738                    }
739                }
740                Ok(loss)
741            }
742            _ => Ok(0.0), // Placeholder for other loss functions
743        }
744    }
745
746    /// Compute gradients using automatic differentiation
747    fn compute_gradients_autodiff(
748        &mut self,
749        qnn: &QuantumNeuralNetwork,
750        batch: &[TrainingExample],
751        predictions: &[Array1<f64>],
752    ) -> Result<HashMap<String, Vec<f64>>> {
753        // Placeholder for autodiff implementation
754        self.compute_gradients_parameter_shift(qnn, batch)
755    }
756
757    /// Compute gradients using parameter shift rule
758    fn compute_gradients_parameter_shift(
759        &mut self,
760        qnn: &QuantumNeuralNetwork,
761        batch: &[TrainingExample],
762    ) -> Result<HashMap<String, Vec<f64>>> {
763        let mut gradients = HashMap::new();
764        let shift = std::f64::consts::PI / 2.0;
765
766        // Collect all parameters
767        let mut all_params = Vec::new();
768        let mut param_names = Vec::new();
769
770        for layer in &qnn.layers {
771            for (i, &param) in layer.parameters.iter().enumerate() {
772                all_params.push(param);
773                param_names.push(format!("{}_{}", layer.name, i));
774            }
775        }
776
777        for (param_idx, param_name) in param_names.iter().enumerate() {
778            let mut param_grad = 0.0;
779
780            for example in batch {
781                // Evaluate with positive shift
782                let mut qnn_plus = qnn.clone();
783                self.shift_parameter(&mut qnn_plus, param_idx, shift)?;
784                let pred_plus = self.evaluate_qnn(&qnn_plus, &example.input)?;
785                let loss_plus = self.compute_loss(
786                    &pred_plus,
787                    &example.target,
788                    &qnn.training_config.loss_function,
789                )?;
790
791                // Evaluate with negative shift
792                let mut qnn_minus = qnn.clone();
793                self.shift_parameter(&mut qnn_minus, param_idx, -shift)?;
794                let pred_minus = self.evaluate_qnn(&qnn_minus, &example.input)?;
795                let loss_minus = self.compute_loss(
796                    &pred_minus,
797                    &example.target,
798                    &qnn.training_config.loss_function,
799                )?;
800
801                // Compute gradient using parameter shift rule
802                param_grad += (loss_plus - loss_minus) / 2.0;
803            }
804
805            param_grad /= batch.len() as f64;
806            gradients.insert(param_name.clone(), vec![param_grad]);
807        }
808
809        Ok(gradients)
810    }
811
812    /// Shift a parameter in the QNN
813    fn shift_parameter(
814        &self,
815        qnn: &mut QuantumNeuralNetwork,
816        param_idx: usize,
817        shift: f64,
818    ) -> Result<()> {
819        let mut current_idx = 0;
820
821        for layer in &mut qnn.layers {
822            if current_idx + layer.parameters.len() > param_idx {
823                let local_idx = param_idx - current_idx;
824                layer.parameters[local_idx] += shift;
825                return Ok(());
826            }
827            current_idx += layer.parameters.len();
828        }
829
830        Err(SimulatorError::InvalidInput(format!(
831            "Parameter index {param_idx} out of bounds"
832        )))
833    }
834
835    /// Create optimizer
836    fn create_optimizer(&self, config: &TrainingConfig) -> Result<Box<dyn QMLOptimizer>> {
837        match config.optimizer {
838            OptimizerType::Adam => Ok(Box::new(AdamOptimizer::new(config.learning_rate))),
839            OptimizerType::SGD => Ok(Box::new(SGDOptimizer::new(config.learning_rate))),
840            _ => Ok(Box::new(AdamOptimizer::new(config.learning_rate))), // Default to Adam
841        }
842    }
843
844    /// Update learning rate scheduler
845    fn update_lr_scheduler(
846        &self,
847        scheduler: &mut LRScheduler,
848        current_loss: f64,
849        optimizer: &mut Box<dyn QMLOptimizer>,
850    ) -> Result<()> {
851        match scheduler {
852            LRScheduler::StepLR {
853                step_size: _,
854                gamma,
855            } => {
856                optimizer.update_learning_rate(*gamma);
857            }
858            LRScheduler::ExponentialLR { gamma } => {
859                optimizer.update_learning_rate(*gamma);
860            }
861            LRScheduler::ReduceLROnPlateau {
862                patience: _,
863                factor,
864            } => {
865                // Simple implementation - reduce LR if loss plateaus
866                optimizer.update_learning_rate(*factor);
867            }
868            LRScheduler::CosineAnnealingLR { .. } => {}
869        }
870        Ok(())
871    }
872
873    /// Compute parameter norm
874    fn compute_parameter_norm(&self, qnn: &QuantumNeuralNetwork) -> Result<f64> {
875        let mut norm_squared = 0.0;
876
877        for layer in &qnn.layers {
878            for &param in &layer.parameters {
879                norm_squared += param * param;
880            }
881        }
882
883        Ok(norm_squared.sqrt())
884    }
885
886    /// Compute last gradient norm
887    fn compute_last_gradient_norm(&self) -> Result<f64> {
888        let cache = self.gradient_cache.lock().map_err(|e| {
889            SimulatorError::InvalidOperation(format!("Gradient cache lock poisoned: {e}"))
890        })?;
891        let mut norm_squared = 0.0;
892
893        for (_, grads) in cache.iter() {
894            for &grad in grads {
895                norm_squared += grad * grad;
896            }
897        }
898
899        Ok(norm_squared.sqrt())
900    }
901
902    /// Get training statistics
903    #[must_use]
904    pub const fn get_stats(&self) -> &QMLTrainingStats {
905        &self.stats
906    }
907
908    /// Reset training statistics
909    pub fn reset_stats(&mut self) {
910        self.stats = QMLTrainingStats::default();
911    }
912}
913
914/// Training example
915#[derive(Debug, Clone)]
916pub struct TrainingExample {
917    /// Input data
918    pub input: Array1<f64>,
919    /// Target output
920    pub target: Array1<f64>,
921}
922
923/// Training result
924#[derive(Debug, Clone)]
925pub struct TrainingResult {
926    /// Trained QNN
927    pub trained_qnn: QuantumNeuralNetwork,
928    /// Final training loss
929    pub final_loss: f64,
930    /// Final validation loss
931    pub final_validation_loss: f64,
932    /// Number of epochs completed
933    pub epochs_completed: usize,
934    /// Total training time
935    pub total_time_ms: f64,
936    /// Whether training converged
937    pub converged: bool,
938}
939
940/// QML optimizer trait
941pub trait QMLOptimizer {
942    /// Update parameters using computed gradients
943    fn update_parameters(
944        &mut self,
945        qnn: &mut QuantumNeuralNetwork,
946        gradients: &HashMap<String, Vec<f64>>,
947    ) -> Result<()>;
948
949    /// Update learning rate
950    fn update_learning_rate(&mut self, factor: f64);
951
952    /// Get current learning rate
953    fn get_learning_rate(&self) -> f64;
954}
955
956/// Adam optimizer implementation
957pub struct AdamOptimizer {
958    learning_rate: f64,
959    beta1: f64,
960    beta2: f64,
961    epsilon: f64,
962    step: usize,
963    m: HashMap<String, Vec<f64>>, // First moment estimates
964    v: HashMap<String, Vec<f64>>, // Second moment estimates
965}
966
967impl AdamOptimizer {
968    #[must_use]
969    pub fn new(learning_rate: f64) -> Self {
970        Self {
971            learning_rate,
972            beta1: 0.9,
973            beta2: 0.999,
974            epsilon: 1e-8,
975            step: 0,
976            m: HashMap::new(),
977            v: HashMap::new(),
978        }
979    }
980}
981
982impl QMLOptimizer for AdamOptimizer {
983    fn update_parameters(
984        &mut self,
985        qnn: &mut QuantumNeuralNetwork,
986        gradients: &HashMap<String, Vec<f64>>,
987    ) -> Result<()> {
988        self.step += 1;
989
990        for (param_name, grads) in gradients {
991            // Initialize moments if needed
992            if !self.m.contains_key(param_name) {
993                self.m.insert(param_name.clone(), vec![0.0; grads.len()]);
994                self.v.insert(param_name.clone(), vec![0.0; grads.len()]);
995            }
996
997            let mut updates = Vec::new();
998
999            {
1000                let m = self.m.get_mut(param_name).ok_or_else(|| {
1001                    SimulatorError::InvalidOperation(format!(
1002                        "Parameter {param_name} not found in first moment estimates"
1003                    ))
1004                })?;
1005                let v = self.v.get_mut(param_name).ok_or_else(|| {
1006                    SimulatorError::InvalidOperation(format!(
1007                        "Parameter {param_name} not found in second moment estimates"
1008                    ))
1009                })?;
1010
1011                for (i, &grad) in grads.iter().enumerate() {
1012                    // Update biased first moment estimate
1013                    m[i] = self.beta1.mul_add(m[i], (1.0 - self.beta1) * grad);
1014
1015                    // Update biased second moment estimate
1016                    v[i] = self.beta2.mul_add(v[i], (1.0 - self.beta2) * grad * grad);
1017
1018                    // Compute bias-corrected first moment estimate
1019                    let m_hat = m[i] / (1.0 - self.beta1.powi(self.step as i32));
1020
1021                    // Compute bias-corrected second moment estimate
1022                    let v_hat = v[i] / (1.0 - self.beta2.powi(self.step as i32));
1023
1024                    // Update parameter
1025                    let update = self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
1026                    updates.push((i, -update));
1027                }
1028            }
1029
1030            // Apply updates
1031            for (i, update) in updates {
1032                self.update_qnn_parameter(qnn, param_name, i, update)?;
1033            }
1034        }
1035
1036        Ok(())
1037    }
1038
1039    fn update_learning_rate(&mut self, factor: f64) {
1040        self.learning_rate *= factor;
1041    }
1042
1043    fn get_learning_rate(&self) -> f64 {
1044        self.learning_rate
1045    }
1046}
1047
1048impl AdamOptimizer {
1049    fn update_qnn_parameter(
1050        &self,
1051        qnn: &mut QuantumNeuralNetwork,
1052        param_name: &str,
1053        param_idx: usize,
1054        update: f64,
1055    ) -> Result<()> {
1056        // Parse parameter name to find the layer and parameter index
1057        let parts: Vec<&str> = param_name.split('_').collect();
1058        if parts.len() >= 2 {
1059            let layer_name = parts[0];
1060
1061            for layer in &mut qnn.layers {
1062                if layer.name == layer_name && param_idx < layer.parameters.len() {
1063                    layer.parameters[param_idx] += update;
1064                    return Ok(());
1065                }
1066            }
1067        }
1068
1069        Err(SimulatorError::InvalidInput(format!(
1070            "Parameter {param_name} not found"
1071        )))
1072    }
1073}
1074
1075/// SGD optimizer implementation
1076pub struct SGDOptimizer {
1077    learning_rate: f64,
1078    momentum: f64,
1079    velocity: HashMap<String, Vec<f64>>,
1080}
1081
1082impl SGDOptimizer {
1083    #[must_use]
1084    pub fn new(learning_rate: f64) -> Self {
1085        Self {
1086            learning_rate,
1087            momentum: 0.9,
1088            velocity: HashMap::new(),
1089        }
1090    }
1091}
1092
1093impl QMLOptimizer for SGDOptimizer {
1094    fn update_parameters(
1095        &mut self,
1096        qnn: &mut QuantumNeuralNetwork,
1097        gradients: &HashMap<String, Vec<f64>>,
1098    ) -> Result<()> {
1099        for (param_name, grads) in gradients {
1100            // Initialize velocity if needed
1101            if !self.velocity.contains_key(param_name) {
1102                self.velocity
1103                    .insert(param_name.clone(), vec![0.0; grads.len()]);
1104            }
1105
1106            let mut updates = Vec::new();
1107
1108            {
1109                let velocity = self.velocity.get_mut(param_name).ok_or_else(|| {
1110                    SimulatorError::InvalidOperation(format!(
1111                        "Parameter {param_name} not found in velocity cache"
1112                    ))
1113                })?;
1114
1115                for (i, &grad) in grads.iter().enumerate() {
1116                    // Update velocity with momentum
1117                    velocity[i] = self
1118                        .momentum
1119                        .mul_add(velocity[i], -(self.learning_rate * grad));
1120                    updates.push((i, velocity[i]));
1121                }
1122            }
1123
1124            // Apply updates
1125            for (i, update) in updates {
1126                self.update_qnn_parameter(qnn, param_name, i, update)?;
1127            }
1128        }
1129
1130        Ok(())
1131    }
1132
1133    fn update_learning_rate(&mut self, factor: f64) {
1134        self.learning_rate *= factor;
1135    }
1136
1137    fn get_learning_rate(&self) -> f64 {
1138        self.learning_rate
1139    }
1140}
1141
1142impl SGDOptimizer {
1143    fn update_qnn_parameter(
1144        &self,
1145        qnn: &mut QuantumNeuralNetwork,
1146        param_name: &str,
1147        param_idx: usize,
1148        update: f64,
1149    ) -> Result<()> {
1150        // Parse parameter name to find the layer and parameter index
1151        let parts: Vec<&str> = param_name.split('_').collect();
1152        if parts.len() >= 2 {
1153            let layer_name = parts[0];
1154
1155            for layer in &mut qnn.layers {
1156                if layer.name == layer_name && param_idx < layer.parameters.len() {
1157                    layer.parameters[param_idx] += update;
1158                    return Ok(());
1159                }
1160            }
1161        }
1162
1163        Err(SimulatorError::InvalidInput(format!(
1164            "Parameter {param_name} not found"
1165        )))
1166    }
1167}
1168
1169/// QML utilities
1170pub struct QMLUtils;
1171
1172impl QMLUtils {
1173    /// Create a simple variational quantum classifier
1174    #[must_use]
1175    pub fn create_vqc(num_qubits: usize, num_layers: usize) -> QuantumNeuralNetwork {
1176        let mut layers = Vec::new();
1177
1178        // Data encoding layer
1179        layers.push(QMLLayer {
1180            layer_type: QMLLayerType::DataEncoding,
1181            name: "encoding".to_string(),
1182            num_qubits,
1183            parameters: Vec::new(),
1184            parameter_names: Vec::new(),
1185            circuit_template: None,
1186            classical_function: None,
1187            config: LayerConfig::default(),
1188        });
1189
1190        // Variational layers
1191        for layer_idx in 0..num_layers {
1192            let num_params = num_qubits * 3; // 3 parameters per qubit (RX, RY, RZ)
1193            let parameters = (0..num_params)
1194                .map(|_| fastrand::f64() * 2.0 * std::f64::consts::PI)
1195                .collect();
1196            let parameter_names = (0..num_params).map(|i| format!("param_{i}")).collect();
1197
1198            layers.push(QMLLayer {
1199                layer_type: QMLLayerType::VariationalCircuit,
1200                name: format!("var_layer_{layer_idx}"),
1201                num_qubits,
1202                parameters,
1203                parameter_names,
1204                circuit_template: Some(Self::create_variational_circuit_template(num_qubits)),
1205                classical_function: None,
1206                config: LayerConfig {
1207                    repetitions: 1,
1208                    entangling_pattern: (0..num_qubits - 1).map(|i| (i, i + 1)).collect(),
1209                    ..Default::default()
1210                },
1211            });
1212        }
1213
1214        // Measurement layer
1215        layers.push(QMLLayer {
1216            layer_type: QMLLayerType::Measurement,
1217            name: "measurement".to_string(),
1218            num_qubits,
1219            parameters: Vec::new(),
1220            parameter_names: Vec::new(),
1221            circuit_template: None,
1222            classical_function: None,
1223            config: LayerConfig::default(),
1224        });
1225
1226        QuantumNeuralNetwork {
1227            layers,
1228            global_parameters: HashMap::new(),
1229            metadata: QNNMetadata {
1230                name: Some("VQC".to_string()),
1231                total_parameters: num_layers * num_qubits * 3,
1232                trainable_parameters: num_layers * num_qubits * 3,
1233                ..Default::default()
1234            },
1235            training_config: TrainingConfig::default(),
1236        }
1237    }
1238
1239    /// Create variational circuit template
1240    fn create_variational_circuit_template(num_qubits: usize) -> InterfaceCircuit {
1241        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1242
1243        // Add parameterized rotation gates
1244        for qubit in 0..num_qubits {
1245            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1246            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1247            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.0), vec![qubit]));
1248        }
1249
1250        // Add entangling gates
1251        for qubit in 0..num_qubits - 1 {
1252            circuit.add_gate(InterfaceGate::new(
1253                InterfaceGateType::CNOT,
1254                vec![qubit, qubit + 1],
1255            ));
1256        }
1257
1258        circuit
1259    }
1260
1261    /// Create training data for XOR problem
1262    #[must_use]
1263    pub fn create_xor_training_data() -> Vec<TrainingExample> {
1264        vec![
1265            TrainingExample {
1266                input: Array1::from(vec![0.0, 0.0]),
1267                target: Array1::from(vec![0.0]),
1268            },
1269            TrainingExample {
1270                input: Array1::from(vec![0.0, 1.0]),
1271                target: Array1::from(vec![1.0]),
1272            },
1273            TrainingExample {
1274                input: Array1::from(vec![1.0, 0.0]),
1275                target: Array1::from(vec![1.0]),
1276            },
1277            TrainingExample {
1278                input: Array1::from(vec![1.0, 1.0]),
1279                target: Array1::from(vec![0.0]),
1280            },
1281        ]
1282    }
1283
1284    /// Benchmark QML integration
1285    pub fn benchmark_qml_integration() -> Result<QMLBenchmarkResults> {
1286        let mut results = QMLBenchmarkResults::default();
1287
1288        let configs = vec![
1289            QMLIntegrationConfig {
1290                framework: QMLFramework::SciRS2,
1291                enable_autodiff: false,
1292                batch_size: 4,
1293                ..Default::default()
1294            },
1295            QMLIntegrationConfig {
1296                framework: QMLFramework::SciRS2,
1297                enable_autodiff: true,
1298                batch_size: 4,
1299                ..Default::default()
1300            },
1301        ];
1302
1303        for (i, config) in configs.into_iter().enumerate() {
1304            let mut integration = QMLIntegration::new(config)?;
1305            let mut qnn = Self::create_vqc(2, 2);
1306            qnn.training_config.epochs = 10;
1307
1308            let training_data = Self::create_xor_training_data();
1309
1310            let start = std::time::Instant::now();
1311            let _result = integration.train_qnn(qnn, &training_data, None)?;
1312            let time = start.elapsed().as_secs_f64() * 1000.0;
1313
1314            results.training_times.push((format!("config_{i}"), time));
1315        }
1316
1317        Ok(results)
1318    }
1319}
1320
1321/// QML benchmark results
1322#[derive(Debug, Clone, Default)]
1323pub struct QMLBenchmarkResults {
1324    /// Training times by configuration
1325    pub training_times: Vec<(String, f64)>,
1326}
1327
1328#[cfg(test)]
1329mod tests {
1330    use super::*;
1331    use approx::assert_abs_diff_eq;
1332
1333    #[test]
1334    fn test_qml_integration_creation() {
1335        let config = QMLIntegrationConfig::default();
1336        let integration = QMLIntegration::new(config);
1337        assert!(integration.is_ok());
1338    }
1339
1340    #[test]
1341    fn test_quantum_neural_network_creation() {
1342        let qnn = QMLUtils::create_vqc(2, 2);
1343        assert_eq!(qnn.layers.len(), 4); // encoding + 2 variational + measurement
1344        assert_eq!(qnn.metadata.total_parameters, 12); // 2 layers * 2 qubits * 3 params
1345    }
1346
1347    #[test]
1348    fn test_training_data_creation() {
1349        let data = QMLUtils::create_xor_training_data();
1350        assert_eq!(data.len(), 4);
1351        assert_eq!(data[0].input, Array1::from(vec![0.0, 0.0]));
1352        assert_eq!(data[0].target, Array1::from(vec![0.0]));
1353    }
1354
1355    #[test]
1356    fn test_adam_optimizer() {
1357        let mut optimizer = AdamOptimizer::new(0.01);
1358        assert_eq!(optimizer.get_learning_rate(), 0.01);
1359
1360        optimizer.update_learning_rate(0.5);
1361        assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.005, epsilon = 1e-10);
1362    }
1363
1364    #[test]
1365    fn test_sgd_optimizer() {
1366        let mut optimizer = SGDOptimizer::new(0.1);
1367        assert_eq!(optimizer.get_learning_rate(), 0.1);
1368
1369        optimizer.update_learning_rate(0.9);
1370        assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.09, epsilon = 1e-10);
1371    }
1372
1373    #[test]
1374    fn test_qml_layer_types() {
1375        let layer_types = [
1376            QMLLayerType::VariationalCircuit,
1377            QMLLayerType::DataEncoding,
1378            QMLLayerType::Measurement,
1379            QMLLayerType::Classical,
1380        ];
1381        assert_eq!(layer_types.len(), 4);
1382    }
1383
1384    #[test]
1385    fn test_training_config_default() {
1386        let config = TrainingConfig::default();
1387        assert_eq!(config.learning_rate, 0.01);
1388        assert_eq!(config.optimizer, OptimizerType::Adam);
1389        assert_eq!(config.loss_function, LossFunction::MeanSquaredError);
1390    }
1391
1392    #[test]
1393    fn test_measurement_probability_computation() {
1394        let config = QMLIntegrationConfig::default();
1395        let integration = QMLIntegration::new(config).expect("Failed to create QML integration");
1396
1397        // Create a simple state |01⟩
1398        let mut state = Array1::zeros(4);
1399        state[1] = Complex64::new(1.0, 0.0); // |01⟩
1400
1401        let prob0 = integration
1402            .compute_measurement_probability(0, &state)
1403            .expect("Failed to compute measurement probability for qubit 0");
1404        let prob1 = integration
1405            .compute_measurement_probability(1, &state)
1406            .expect("Failed to compute measurement probability for qubit 1");
1407
1408        assert_abs_diff_eq!(prob0, 1.0, epsilon = 1e-10); // Qubit 0 is in |1⟩
1409        assert_abs_diff_eq!(prob1, 0.0, epsilon = 1e-10); // Qubit 1 is in |0⟩
1410    }
1411
1412    #[test]
1413    fn test_loss_computation() {
1414        let config = QMLIntegrationConfig::default();
1415        let integration = QMLIntegration::new(config).expect("Failed to create QML integration");
1416
1417        let prediction = Array1::from(vec![0.8, 0.2]);
1418        let target = Array1::from(vec![1.0, 0.0]);
1419
1420        let mse = integration
1421            .compute_loss(&prediction, &target, &LossFunction::MeanSquaredError)
1422            .expect("Failed to compute MSE loss");
1423        let mae = integration
1424            .compute_loss(&prediction, &target, &LossFunction::MeanAbsoluteError)
1425            .expect("Failed to compute MAE loss");
1426
1427        assert_abs_diff_eq!(mse, 0.04, epsilon = 1e-10); // ((0.8-1.0)^2 + (0.2-0.0)^2) / 2 = (0.04 + 0.04) / 2
1428        assert_abs_diff_eq!(mae, 0.2, epsilon = 1e-10); // (0.2 + 0.2) / 2
1429    }
1430
1431    #[test]
1432    fn test_circuit_template_creation() {
1433        let circuit = QMLUtils::create_variational_circuit_template(3);
1434        assert_eq!(circuit.num_qubits, 3);
1435        assert_eq!(circuit.gates.len(), 11); // 3*3 rotation gates + 2 CNOT gates
1436    }
1437}