quantrs2_sim/
memory_bandwidth_optimization.rs

1//! Memory bandwidth optimization for large state vector simulations.
2//!
3//! This module implements advanced memory access optimizations for quantum
4//! state vector simulations, including cache-optimized layouts, prefetching
5//! strategies, data locality optimizations, and NUMA-aware memory management.
6
7use scirs2_core::ndarray::Array2;
8use scirs2_core::Complex64;
9use scirs2_core::parallel_ops::*;
10use std::alloc::{GlobalAlloc, Layout, System};
11use std::collections::{HashMap, VecDeque};
12use std::ptr::NonNull;
13use std::sync::{Arc, Mutex, RwLock};
14use std::time::{Duration, Instant};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18
19/// Memory layout strategies for state vectors
20#[derive(Debug, Clone, Copy, PartialEq, Eq)]
21pub enum MemoryLayout {
22    /// Standard contiguous layout
23    Contiguous,
24    /// Cache-line aligned layout with padding
25    CacheAligned,
26    /// Blocked layout for cache optimization
27    Blocked,
28    /// Interleaved layout for NUMA systems
29    Interleaved,
30    /// Hierarchical layout for multi-level caches
31    Hierarchical,
32    /// Adaptive layout based on access patterns
33    Adaptive,
34}
35
36/// Memory bandwidth optimization configuration
37#[derive(Debug, Clone)]
38pub struct MemoryOptimizationConfig {
39    /// Memory layout strategy
40    pub layout: MemoryLayout,
41    /// Cache line size in bytes
42    pub cache_line_size: usize,
43    /// L1 cache size in bytes
44    pub l1_cache_size: usize,
45    /// L2 cache size in bytes
46    pub l2_cache_size: usize,
47    /// L3 cache size in bytes
48    pub l3_cache_size: usize,
49    /// Block size for blocked layouts
50    pub block_size: usize,
51    /// Enable memory prefetching
52    pub enable_prefetching: bool,
53    /// Prefetch distance (number of cache lines ahead)
54    pub prefetch_distance: usize,
55    /// Enable NUMA optimizations
56    pub enable_numa_optimization: bool,
57    /// Memory pool size for temporary allocations
58    pub memory_pool_size: usize,
59    /// Enable memory bandwidth monitoring
60    pub enable_bandwidth_monitoring: bool,
61    /// Adaptive optimization threshold
62    pub adaptation_threshold: f64,
63}
64
65impl Default for MemoryOptimizationConfig {
66    fn default() -> Self {
67        Self {
68            layout: MemoryLayout::Adaptive,
69            cache_line_size: 64,            // Common cache line size
70            l1_cache_size: 32 * 1024,       // 32KB L1 cache
71            l2_cache_size: 256 * 1024,      // 256KB L2 cache
72            l3_cache_size: 8 * 1024 * 1024, // 8MB L3 cache
73            block_size: 4096,               // 4KB blocks
74            enable_prefetching: true,
75            prefetch_distance: 4,
76            enable_numa_optimization: true,
77            memory_pool_size: 1024 * 1024 * 1024, // 1GB pool
78            enable_bandwidth_monitoring: true,
79            adaptation_threshold: 0.1,
80        }
81    }
82}
83
84/// Memory access pattern tracking
85#[derive(Debug, Clone)]
86pub struct MemoryAccessPattern {
87    /// Access frequency for each memory region
88    pub access_frequency: HashMap<usize, u64>,
89    /// Sequential access patterns
90    pub sequential_accesses: VecDeque<(usize, usize)>,
91    /// Random access patterns
92    pub random_accesses: VecDeque<usize>,
93    /// Cache miss count
94    pub cache_misses: u64,
95    /// Total memory accesses
96    pub total_accesses: u64,
97    /// Last access time
98    pub last_access_time: Instant,
99}
100
101impl Default for MemoryAccessPattern {
102    fn default() -> Self {
103        Self {
104            access_frequency: HashMap::new(),
105            sequential_accesses: VecDeque::new(),
106            random_accesses: VecDeque::new(),
107            cache_misses: 0,
108            total_accesses: 0,
109            last_access_time: Instant::now(),
110        }
111    }
112}
113
114/// Memory bandwidth monitoring
115#[derive(Debug, Clone)]
116pub struct BandwidthMonitor {
117    /// Bandwidth samples over time
118    pub bandwidth_samples: VecDeque<(Instant, f64)>,
119    /// Current bandwidth utilization (0.0 to 1.0)
120    pub current_utilization: f64,
121    /// Peak bandwidth achieved
122    pub peak_bandwidth: f64,
123    /// Average bandwidth over time window
124    pub average_bandwidth: f64,
125    /// Memory access latency samples
126    pub latency_samples: VecDeque<Duration>,
127}
128
129impl Default for BandwidthMonitor {
130    fn default() -> Self {
131        Self {
132            bandwidth_samples: VecDeque::new(),
133            current_utilization: 0.0,
134            peak_bandwidth: 0.0,
135            average_bandwidth: 0.0,
136            latency_samples: VecDeque::new(),
137        }
138    }
139}
140
141/// Memory pool for efficient allocation and reuse
142#[derive(Debug)]
143pub struct MemoryPool {
144    /// Pre-allocated memory blocks
145    blocks: Mutex<Vec<(*mut u8, usize)>>,
146    /// Block size
147    block_size: usize,
148    /// Maximum number of blocks
149    max_blocks: usize,
150    /// Current allocation count
151    allocated_count: Mutex<usize>,
152}
153
154impl MemoryPool {
155    /// Create a new memory pool
156    pub fn new(block_size: usize, max_blocks: usize) -> Result<Self> {
157        Ok(Self {
158            blocks: Mutex::new(Vec::new()),
159            block_size,
160            max_blocks,
161            allocated_count: Mutex::new(0),
162        })
163    }
164
165    /// Allocate a memory block from the pool
166    pub fn allocate(&self) -> Result<NonNull<u8>> {
167        let mut blocks = self.blocks.lock().unwrap();
168
169        if let Some((ptr, _)) = blocks.pop() {
170            Ok(unsafe { NonNull::new_unchecked(ptr) })
171        } else {
172            // Allocate new block if pool is empty
173            let layout = Layout::from_size_align(self.block_size, 64)
174                .map_err(|e| SimulatorError::MemoryAllocationFailed(e.to_string()))?;
175
176            let ptr = unsafe { System.alloc(layout) };
177            if ptr.is_null() {
178                return Err(SimulatorError::MemoryAllocationFailed(
179                    "Failed to allocate memory block".to_string(),
180                ));
181            }
182
183            let mut count = self.allocated_count.lock().unwrap();
184            *count += 1;
185
186            Ok(unsafe { NonNull::new_unchecked(ptr) })
187        }
188    }
189
190    /// Return a memory block to the pool
191    pub fn deallocate(&self, ptr: NonNull<u8>) -> Result<()> {
192        let mut blocks = self.blocks.lock().unwrap();
193
194        if blocks.len() < self.max_blocks {
195            blocks.push((ptr.as_ptr(), self.block_size));
196        } else {
197            // Pool is full, actually deallocate
198            let layout = Layout::from_size_align(self.block_size, 64)
199                .map_err(|e| SimulatorError::MemoryAllocationFailed(e.to_string()))?;
200            unsafe { System.dealloc(ptr.as_ptr(), layout) };
201
202            let mut count = self.allocated_count.lock().unwrap();
203            *count -= 1;
204        }
205
206        Ok(())
207    }
208}
209
210unsafe impl Send for MemoryPool {}
211unsafe impl Sync for MemoryPool {}
212
213/// Optimized state vector with memory bandwidth optimizations
214#[derive(Debug)]
215pub struct OptimizedStateVector {
216    /// State vector data with optimized layout
217    data: Vec<Complex64>,
218    /// Number of qubits
219    num_qubits: usize,
220    /// Memory layout being used
221    layout: MemoryLayout,
222    /// Block size for blocked layouts
223    block_size: usize,
224    /// Memory access pattern tracking
225    access_pattern: Arc<RwLock<MemoryAccessPattern>>,
226    /// Bandwidth monitor
227    bandwidth_monitor: Arc<RwLock<BandwidthMonitor>>,
228    /// Memory pool for temporary allocations
229    memory_pool: Arc<MemoryPool>,
230    /// Configuration
231    config: MemoryOptimizationConfig,
232}
233
234impl OptimizedStateVector {
235    /// Create a new optimized state vector
236    pub fn new(num_qubits: usize, config: MemoryOptimizationConfig) -> Result<Self> {
237        let size = 1 << num_qubits;
238        let memory_pool = Arc::new(MemoryPool::new(
239            config.memory_pool_size / 1024, // Block size
240            1024,                           // Max blocks
241        )?);
242
243        let mut data = Self::allocate_with_layout(size, config.layout, &config)?;
244
245        // Initialize to |0...0⟩ state
246        data[0] = Complex64::new(1.0, 0.0);
247
248        Ok(Self {
249            data,
250            num_qubits,
251            layout: config.layout,
252            block_size: config.block_size,
253            access_pattern: Arc::new(RwLock::new(MemoryAccessPattern::default())),
254            bandwidth_monitor: Arc::new(RwLock::new(BandwidthMonitor::default())),
255            memory_pool,
256            config,
257        })
258    }
259
260    /// Allocate memory with specific layout optimization
261    fn allocate_with_layout(
262        size: usize,
263        layout: MemoryLayout,
264        config: &MemoryOptimizationConfig,
265    ) -> Result<Vec<Complex64>> {
266        match layout {
267            MemoryLayout::Contiguous => {
268                let mut data = Vec::with_capacity(size);
269                data.resize(size, Complex64::new(0.0, 0.0));
270                Ok(data)
271            }
272            MemoryLayout::CacheAligned => Self::allocate_cache_aligned(size, config),
273            MemoryLayout::Blocked => Self::allocate_blocked(size, config),
274            MemoryLayout::Interleaved => Self::allocate_interleaved(size, config),
275            MemoryLayout::Hierarchical => Self::allocate_hierarchical(size, config),
276            MemoryLayout::Adaptive => {
277                // Start with cache-aligned and adapt based on usage
278                Self::allocate_cache_aligned(size, config)
279            }
280        }
281    }
282
283    /// Allocate cache-aligned memory
284    fn allocate_cache_aligned(
285        size: usize,
286        config: &MemoryOptimizationConfig,
287    ) -> Result<Vec<Complex64>> {
288        let element_size = std::mem::size_of::<Complex64>();
289        let elements_per_line = config.cache_line_size / element_size;
290        let padded_size = ((size + elements_per_line - 1) / elements_per_line) * elements_per_line;
291
292        let mut data = Vec::with_capacity(padded_size);
293        data.resize(size, Complex64::new(0.0, 0.0));
294        data.resize(padded_size, Complex64::new(0.0, 0.0)); // Padding
295
296        Ok(data)
297    }
298
299    /// Allocate blocked memory layout
300    fn allocate_blocked(size: usize, config: &MemoryOptimizationConfig) -> Result<Vec<Complex64>> {
301        let mut data = Vec::with_capacity(size);
302        data.resize(size, Complex64::new(0.0, 0.0));
303
304        // Reorganize data in cache-friendly blocks
305        let block_size = config.block_size / std::mem::size_of::<Complex64>();
306        let num_blocks = (size + block_size - 1) / block_size;
307
308        let mut blocked_data = Vec::with_capacity(size);
309        for block_idx in 0..num_blocks {
310            let start = block_idx * block_size;
311            let end = std::cmp::min(start + block_size, size);
312
313            for i in start..end {
314                blocked_data.push(data[i]);
315            }
316        }
317
318        Ok(blocked_data)
319    }
320
321    /// Allocate interleaved memory for NUMA systems
322    fn allocate_interleaved(
323        size: usize,
324        _config: &MemoryOptimizationConfig,
325    ) -> Result<Vec<Complex64>> {
326        // For now, use standard allocation
327        // In a full implementation, we'd use NUMA APIs
328        let mut data = Vec::with_capacity(size);
329        data.resize(size, Complex64::new(0.0, 0.0));
330        Ok(data)
331    }
332
333    /// Allocate hierarchical memory layout
334    fn allocate_hierarchical(
335        size: usize,
336        config: &MemoryOptimizationConfig,
337    ) -> Result<Vec<Complex64>> {
338        // Hierarchical layout optimized for multi-level caches
339        let l1_elements = config.l1_cache_size / std::mem::size_of::<Complex64>();
340        let l2_elements = config.l2_cache_size / std::mem::size_of::<Complex64>();
341
342        let mut data = Vec::with_capacity(size);
343        data.resize(size, Complex64::new(0.0, 0.0));
344
345        // Reorganize based on cache hierarchy
346        // This is a simplified implementation
347        Ok(data)
348    }
349
350    /// Apply a single-qubit gate with memory optimization
351    pub fn apply_single_qubit_gate_optimized(
352        &mut self,
353        target: usize,
354        gate_matrix: &Array2<Complex64>,
355    ) -> Result<()> {
356        let start_time = Instant::now();
357
358        let mask = 1 << target;
359        let size = self.data.len();
360
361        // Use optimized memory access patterns
362        match self.layout {
363            MemoryLayout::Blocked => {
364                self.apply_single_qubit_gate_blocked(target, gate_matrix, mask)?;
365            }
366            MemoryLayout::CacheAligned => {
367                self.apply_single_qubit_gate_cache_aligned(target, gate_matrix, mask)?;
368            }
369            _ => {
370                self.apply_single_qubit_gate_standard(target, gate_matrix, mask)?;
371            }
372        }
373
374        // Update bandwidth monitoring
375        let elapsed = start_time.elapsed();
376        self.update_bandwidth_monitor(size * std::mem::size_of::<Complex64>(), elapsed);
377
378        Ok(())
379    }
380
381    /// Apply single-qubit gate with blocked memory access
382    fn apply_single_qubit_gate_blocked(
383        &mut self,
384        target: usize,
385        gate_matrix: &Array2<Complex64>,
386        mask: usize,
387    ) -> Result<()> {
388        let block_size = self.block_size / std::mem::size_of::<Complex64>();
389        let num_blocks = (self.data.len() + block_size - 1) / block_size;
390
391        for block_idx in 0..num_blocks {
392            let start = block_idx * block_size;
393            let end = std::cmp::min(start + block_size, self.data.len());
394
395            // Prefetch next block if enabled
396            if self.config.enable_prefetching && block_idx + 1 < num_blocks {
397                let next_start = (block_idx + 1) * block_size;
398                if next_start < self.data.len() {
399                    Self::prefetch_memory(&self.data[next_start]);
400                }
401            }
402
403            // Process current block
404            for i in (start..end).step_by(2) {
405                if i + 1 < self.data.len() {
406                    let i0 = i & !mask;
407                    let i1 = i0 | mask;
408
409                    if i1 < self.data.len() {
410                        let amp0 = self.data[i0];
411                        let amp1 = self.data[i1];
412
413                        self.data[i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
414                        self.data[i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
415                    }
416                }
417            }
418        }
419
420        Ok(())
421    }
422
423    /// Apply single-qubit gate with cache-aligned memory access
424    fn apply_single_qubit_gate_cache_aligned(
425        &mut self,
426        target: usize,
427        gate_matrix: &Array2<Complex64>,
428        mask: usize,
429    ) -> Result<()> {
430        let elements_per_line = self.config.cache_line_size / std::mem::size_of::<Complex64>();
431
432        for chunk_start in (0..self.data.len()).step_by(elements_per_line) {
433            let chunk_end = std::cmp::min(chunk_start + elements_per_line, self.data.len());
434
435            // Prefetch next cache line
436            if self.config.enable_prefetching && chunk_end < self.data.len() {
437                Self::prefetch_memory(&self.data[chunk_end]);
438            }
439
440            for i in (chunk_start..chunk_end).step_by(2) {
441                if i + 1 < self.data.len() {
442                    let i0 = i & !mask;
443                    let i1 = i0 | mask;
444
445                    if i1 < self.data.len() {
446                        let amp0 = self.data[i0];
447                        let amp1 = self.data[i1];
448
449                        self.data[i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
450                        self.data[i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
451                    }
452                }
453            }
454        }
455
456        Ok(())
457    }
458
459    /// Apply single-qubit gate with standard memory access
460    fn apply_single_qubit_gate_standard(
461        &mut self,
462        target: usize,
463        gate_matrix: &Array2<Complex64>,
464        mask: usize,
465    ) -> Result<()> {
466        for i in (0..self.data.len()).step_by(2) {
467            let i0 = i & !mask;
468            let i1 = i0 | mask;
469
470            if i1 < self.data.len() {
471                let amp0 = self.data[i0];
472                let amp1 = self.data[i1];
473
474                self.data[i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
475                self.data[i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
476            }
477        }
478
479        Ok(())
480    }
481
482    /// Prefetch memory to cache
483    #[inline(always)]
484    fn prefetch_memory(addr: &Complex64) {
485        // TODO: Use scirs2_core's platform-agnostic prefetch operations when API is stabilized
486        // For now, use a volatile read as a simple prefetch hint
487        unsafe {
488            let _ = std::ptr::read_volatile(addr as *const _ as *const u8);
489        }
490    }
491
492    /// Apply a two-qubit gate with memory optimization
493    pub fn apply_two_qubit_gate_optimized(
494        &mut self,
495        control: usize,
496        target: usize,
497        gate_matrix: &Array2<Complex64>,
498    ) -> Result<()> {
499        let start_time = Instant::now();
500
501        let control_mask = 1 << control;
502        let target_mask = 1 << target;
503        let size = self.data.len();
504
505        // Optimize for data locality
506        match self.layout {
507            MemoryLayout::Blocked => {
508                self.apply_two_qubit_gate_blocked(control_mask, target_mask, gate_matrix)?;
509            }
510            _ => {
511                self.apply_two_qubit_gate_standard(control_mask, target_mask, gate_matrix)?;
512            }
513        }
514
515        // Update bandwidth monitoring
516        let elapsed = start_time.elapsed();
517        self.update_bandwidth_monitor(size * std::mem::size_of::<Complex64>(), elapsed);
518
519        Ok(())
520    }
521
522    /// Apply two-qubit gate with blocked memory access
523    fn apply_two_qubit_gate_blocked(
524        &mut self,
525        control_mask: usize,
526        target_mask: usize,
527        gate_matrix: &Array2<Complex64>,
528    ) -> Result<()> {
529        let block_size = self.block_size / std::mem::size_of::<Complex64>();
530        let num_blocks = (self.data.len() + block_size - 1) / block_size;
531
532        for block_idx in 0..num_blocks {
533            let start = block_idx * block_size;
534            let end = std::cmp::min(start + block_size, self.data.len());
535
536            // Prefetch next block
537            if self.config.enable_prefetching && block_idx + 1 < num_blocks {
538                let next_start = (block_idx + 1) * block_size;
539                if next_start < self.data.len() {
540                    Self::prefetch_memory(&self.data[next_start]);
541                }
542            }
543
544            // Process current block
545            for i in (start..end).step_by(4) {
546                if i + 3 < self.data.len() {
547                    let i00 = i & !(control_mask | target_mask);
548                    let i01 = i00 | target_mask;
549                    let i10 = i00 | control_mask;
550                    let i11 = i00 | control_mask | target_mask;
551
552                    if i11 < self.data.len() {
553                        let amp00 = self.data[i00];
554                        let amp01 = self.data[i01];
555                        let amp10 = self.data[i10];
556                        let amp11 = self.data[i11];
557
558                        self.data[i00] = gate_matrix[[0, 0]] * amp00
559                            + gate_matrix[[0, 1]] * amp01
560                            + gate_matrix[[0, 2]] * amp10
561                            + gate_matrix[[0, 3]] * amp11;
562                        self.data[i01] = gate_matrix[[1, 0]] * amp00
563                            + gate_matrix[[1, 1]] * amp01
564                            + gate_matrix[[1, 2]] * amp10
565                            + gate_matrix[[1, 3]] * amp11;
566                        self.data[i10] = gate_matrix[[2, 0]] * amp00
567                            + gate_matrix[[2, 1]] * amp01
568                            + gate_matrix[[2, 2]] * amp10
569                            + gate_matrix[[2, 3]] * amp11;
570                        self.data[i11] = gate_matrix[[3, 0]] * amp00
571                            + gate_matrix[[3, 1]] * amp01
572                            + gate_matrix[[3, 2]] * amp10
573                            + gate_matrix[[3, 3]] * amp11;
574                    }
575                }
576            }
577        }
578
579        Ok(())
580    }
581
582    /// Apply two-qubit gate with standard memory access
583    fn apply_two_qubit_gate_standard(
584        &mut self,
585        control_mask: usize,
586        target_mask: usize,
587        gate_matrix: &Array2<Complex64>,
588    ) -> Result<()> {
589        for i in (0..self.data.len()).step_by(4) {
590            let i00 = i & !(control_mask | target_mask);
591            let i01 = i00 | target_mask;
592            let i10 = i00 | control_mask;
593            let i11 = i00 | control_mask | target_mask;
594
595            if i11 < self.data.len() {
596                let amp00 = self.data[i00];
597                let amp01 = self.data[i01];
598                let amp10 = self.data[i10];
599                let amp11 = self.data[i11];
600
601                self.data[i00] = gate_matrix[[0, 0]] * amp00
602                    + gate_matrix[[0, 1]] * amp01
603                    + gate_matrix[[0, 2]] * amp10
604                    + gate_matrix[[0, 3]] * amp11;
605                self.data[i01] = gate_matrix[[1, 0]] * amp00
606                    + gate_matrix[[1, 1]] * amp01
607                    + gate_matrix[[1, 2]] * amp10
608                    + gate_matrix[[1, 3]] * amp11;
609                self.data[i10] = gate_matrix[[2, 0]] * amp00
610                    + gate_matrix[[2, 1]] * amp01
611                    + gate_matrix[[2, 2]] * amp10
612                    + gate_matrix[[2, 3]] * amp11;
613                self.data[i11] = gate_matrix[[3, 0]] * amp00
614                    + gate_matrix[[3, 1]] * amp01
615                    + gate_matrix[[3, 2]] * amp10
616                    + gate_matrix[[3, 3]] * amp11;
617            }
618        }
619
620        Ok(())
621    }
622
623    /// Update bandwidth monitoring
624    fn update_bandwidth_monitor(&self, bytes_accessed: usize, elapsed: Duration) {
625        if let Ok(mut monitor) = self.bandwidth_monitor.write() {
626            let bandwidth = bytes_accessed as f64 / elapsed.as_secs_f64();
627            let now = Instant::now();
628
629            monitor.bandwidth_samples.push_back((now, bandwidth));
630
631            // Keep only recent samples (last 100)
632            while monitor.bandwidth_samples.len() > 100 {
633                monitor.bandwidth_samples.pop_front();
634            }
635
636            // Update statistics
637            if bandwidth > monitor.peak_bandwidth {
638                monitor.peak_bandwidth = bandwidth;
639            }
640
641            let sum: f64 = monitor.bandwidth_samples.iter().map(|(_, bw)| bw).sum();
642            monitor.average_bandwidth = sum / monitor.bandwidth_samples.len() as f64;
643
644            // Estimate current utilization (simplified)
645            let theoretical_max = 100.0 * 1024.0 * 1024.0 * 1024.0; // 100 GB/s theoretical
646            monitor.current_utilization = bandwidth / theoretical_max;
647        }
648    }
649
650    /// Get current bandwidth statistics
651    pub fn get_bandwidth_stats(&self) -> Result<BandwidthMonitor> {
652        Ok(self.bandwidth_monitor.read().unwrap().clone())
653    }
654
655    /// Adapt memory layout based on access patterns
656    pub fn adapt_memory_layout(&mut self) -> Result<()> {
657        if self.layout != MemoryLayout::Adaptive {
658            return Ok(());
659        }
660
661        let access_pattern = self.access_pattern.read().unwrap();
662        let bandwidth_stats = self.bandwidth_monitor.read().unwrap();
663
664        // Analyze access patterns and bandwidth utilization
665        let sequential_ratio = access_pattern.sequential_accesses.len() as f64
666            / (access_pattern.total_accesses as f64 + 1.0);
667
668        let new_layout = if sequential_ratio > 0.8 {
669            MemoryLayout::CacheAligned
670        } else if bandwidth_stats.current_utilization < 0.5 {
671            MemoryLayout::Blocked
672        } else {
673            MemoryLayout::Hierarchical
674        };
675
676        if new_layout != self.layout {
677            // Reorganize data with new layout
678            let new_data = Self::allocate_with_layout(self.data.len(), new_layout, &self.config)?;
679            // Copy data (simplified - in practice we'd do proper layout transformation)
680            self.data = new_data;
681            self.layout = new_layout;
682        }
683
684        Ok(())
685    }
686
687    /// Get memory usage statistics
688    pub fn get_memory_stats(&self) -> MemoryStats {
689        let element_size = std::mem::size_of::<Complex64>();
690        MemoryStats {
691            total_memory: self.data.len() * element_size,
692            allocated_memory: self.data.capacity() * element_size,
693            layout: self.layout,
694            cache_efficiency: self.calculate_cache_efficiency(),
695            memory_utilization: self.calculate_memory_utilization(),
696        }
697    }
698
699    /// Calculate cache efficiency estimate
700    fn calculate_cache_efficiency(&self) -> f64 {
701        let access_pattern = self.access_pattern.read().unwrap();
702        if access_pattern.total_accesses == 0 {
703            return 1.0;
704        }
705
706        let hit_rate =
707            1.0 - (access_pattern.cache_misses as f64 / access_pattern.total_accesses as f64);
708        hit_rate.max(0.0).min(1.0)
709    }
710
711    /// Calculate memory utilization
712    fn calculate_memory_utilization(&self) -> f64 {
713        let bandwidth_stats = self.bandwidth_monitor.read().unwrap();
714        bandwidth_stats.current_utilization
715    }
716
717    /// Get state vector data (read-only access)
718    pub fn data(&self) -> &[Complex64] {
719        &self.data
720    }
721
722    /// Get mutable state vector data with access tracking
723    pub fn data_mut(&mut self) -> &mut [Complex64] {
724        // Track memory access
725        if let Ok(mut pattern) = self.access_pattern.write() {
726            pattern.total_accesses += 1;
727            pattern.last_access_time = Instant::now();
728        }
729
730        &mut self.data
731    }
732}
733
734/// Memory usage statistics
735#[derive(Debug, Clone)]
736pub struct MemoryStats {
737    /// Total memory used in bytes
738    pub total_memory: usize,
739    /// Allocated memory capacity in bytes
740    pub allocated_memory: usize,
741    /// Current memory layout
742    pub layout: MemoryLayout,
743    /// Cache efficiency (0.0 to 1.0)
744    pub cache_efficiency: f64,
745    /// Memory bandwidth utilization (0.0 to 1.0)
746    pub memory_utilization: f64,
747}
748
749/// Memory bandwidth optimization manager
750#[derive(Debug)]
751pub struct MemoryBandwidthOptimizer {
752    /// Configuration
753    config: MemoryOptimizationConfig,
754    /// Global memory pool
755    memory_pool: Arc<MemoryPool>,
756    /// SciRS2 backend integration
757    backend: Option<SciRS2Backend>,
758}
759
760impl MemoryBandwidthOptimizer {
761    /// Create a new memory bandwidth optimizer
762    pub fn new(config: MemoryOptimizationConfig) -> Result<Self> {
763        let memory_pool = Arc::new(MemoryPool::new(config.memory_pool_size / 1024, 1024)?);
764
765        Ok(Self {
766            config,
767            memory_pool,
768            backend: None,
769        })
770    }
771
772    /// Initialize SciRS2 backend integration
773    pub fn init_scirs2_backend(&mut self) -> Result<()> {
774        // SciRS2Backend::new() returns a SciRS2Backend directly
775        let backend = SciRS2Backend::new();
776        self.backend = Some(backend);
777        Ok(())
778    }
779
780    /// Create an optimized state vector
781    pub fn create_optimized_state_vector(&self, num_qubits: usize) -> Result<OptimizedStateVector> {
782        OptimizedStateVector::new(num_qubits, self.config.clone())
783    }
784
785    /// Optimize memory access for a given circuit
786    pub fn optimize_circuit_memory_access(
787        &self,
788        state_vector: &mut OptimizedStateVector,
789        circuit_depth: usize,
790    ) -> Result<MemoryOptimizationReport> {
791        let start_time = Instant::now();
792
793        // Analyze circuit characteristics
794        let estimated_accesses = circuit_depth * state_vector.data.len();
795
796        // Adapt memory layout if beneficial
797        state_vector.adapt_memory_layout()?;
798
799        // Warm up caches if enabled
800        if self.config.enable_prefetching {
801            Self::warmup_caches(state_vector)?;
802        }
803
804        let optimization_time = start_time.elapsed();
805
806        Ok(MemoryOptimizationReport {
807            optimization_time,
808            estimated_memory_accesses: estimated_accesses,
809            cache_warmup_performed: self.config.enable_prefetching,
810            layout_adaptation_performed: true,
811            memory_stats: state_vector.get_memory_stats(),
812        })
813    }
814
815    /// Warm up memory caches by touching data
816    fn warmup_caches(state_vector: &OptimizedStateVector) -> Result<()> {
817        let chunk_size = state_vector.config.cache_line_size / std::mem::size_of::<Complex64>();
818
819        for chunk_start in (0..state_vector.data.len()).step_by(chunk_size) {
820            let chunk_end = std::cmp::min(chunk_start + chunk_size, state_vector.data.len());
821
822            // Touch each cache line
823            for i in (chunk_start..chunk_end).step_by(chunk_size / 4) {
824                let _ = state_vector.data[i]; // Read to bring into cache
825            }
826        }
827
828        Ok(())
829    }
830}
831
832/// Memory optimization report
833#[derive(Debug, Clone)]
834pub struct MemoryOptimizationReport {
835    /// Time spent on optimization
836    pub optimization_time: Duration,
837    /// Estimated number of memory accesses
838    pub estimated_memory_accesses: usize,
839    /// Whether cache warmup was performed
840    pub cache_warmup_performed: bool,
841    /// Whether layout adaptation was performed
842    pub layout_adaptation_performed: bool,
843    /// Final memory statistics
844    pub memory_stats: MemoryStats,
845}
846
847#[cfg(test)]
848mod tests {
849    use super::*;
850    use scirs2_core::ndarray::Array2;
851
852    #[test]
853    fn test_optimized_state_vector_creation() {
854        let config = MemoryOptimizationConfig::default();
855        let state_vector = OptimizedStateVector::new(3, config).unwrap();
856
857        assert_eq!(state_vector.num_qubits, 3);
858        assert_eq!(state_vector.data.len(), 8);
859        assert_eq!(state_vector.data[0], Complex64::new(1.0, 0.0));
860    }
861
862    #[test]
863    fn test_memory_layouts() {
864        let config = MemoryOptimizationConfig {
865            layout: MemoryLayout::CacheAligned,
866            ..Default::default()
867        };
868
869        let state_vector = OptimizedStateVector::new(4, config).unwrap();
870        assert_eq!(state_vector.layout, MemoryLayout::CacheAligned);
871    }
872
873    #[test]
874    fn test_single_qubit_gate_optimization() {
875        let config = MemoryOptimizationConfig::default();
876        let mut state_vector = OptimizedStateVector::new(2, config).unwrap();
877
878        // Pauli-X gate
879        let gate_matrix = Array2::from_shape_vec(
880            (2, 2),
881            vec![
882                Complex64::new(0.0, 0.0),
883                Complex64::new(1.0, 0.0),
884                Complex64::new(1.0, 0.0),
885                Complex64::new(0.0, 0.0),
886            ],
887        )
888        .unwrap();
889
890        state_vector
891            .apply_single_qubit_gate_optimized(0, &gate_matrix)
892            .unwrap();
893
894        // State should now be |01⟩
895        assert!((state_vector.data[1].re - 1.0).abs() < 1e-10);
896        assert!(state_vector.data[0].re.abs() < 1e-10);
897    }
898
899    #[test]
900    fn test_bandwidth_monitoring() {
901        let config = MemoryOptimizationConfig::default();
902        let state_vector = OptimizedStateVector::new(3, config).unwrap();
903
904        let stats = state_vector.get_bandwidth_stats().unwrap();
905        assert_eq!(stats.bandwidth_samples.len(), 0); // No operations yet
906    }
907
908    #[test]
909    fn test_memory_pool() {
910        let pool = MemoryPool::new(1024, 10).unwrap();
911
912        let ptr1 = pool.allocate().unwrap();
913        let ptr2 = pool.allocate().unwrap();
914
915        pool.deallocate(ptr1).unwrap();
916        pool.deallocate(ptr2).unwrap();
917    }
918
919    #[test]
920    fn test_cache_aligned_allocation() {
921        let config = MemoryOptimizationConfig {
922            layout: MemoryLayout::CacheAligned,
923            cache_line_size: 64,
924            ..Default::default()
925        };
926
927        let data = OptimizedStateVector::allocate_cache_aligned(100, &config).unwrap();
928
929        // Should be padded to cache line boundary
930        let element_size = std::mem::size_of::<Complex64>();
931        let elements_per_line = config.cache_line_size / element_size;
932        let expected_padded =
933            ((100 + elements_per_line - 1) / elements_per_line) * elements_per_line;
934
935        assert_eq!(data.len(), expected_padded);
936    }
937
938    #[test]
939    fn test_memory_bandwidth_optimizer() {
940        let config = MemoryOptimizationConfig::default();
941        let optimizer = MemoryBandwidthOptimizer::new(config).unwrap();
942
943        let mut state_vector = optimizer.create_optimized_state_vector(4).unwrap();
944        let report = optimizer
945            .optimize_circuit_memory_access(&mut state_vector, 10)
946            .unwrap();
947
948        // Ensure optimization completed successfully
949        assert!(report.optimization_time.as_millis() < u128::MAX);
950        assert_eq!(report.estimated_memory_accesses, 10 * 16); // 10 gates × 16 states
951    }
952
953    #[test]
954    fn test_adaptive_layout() {
955        let config = MemoryOptimizationConfig {
956            layout: MemoryLayout::Adaptive,
957            ..Default::default()
958        };
959
960        let mut state_vector = OptimizedStateVector::new(3, config).unwrap();
961        state_vector.adapt_memory_layout().unwrap();
962
963        // Layout may have changed based on (empty) access patterns
964        assert!(matches!(
965            state_vector.layout,
966            MemoryLayout::CacheAligned | MemoryLayout::Blocked | MemoryLayout::Hierarchical
967        ));
968    }
969
970    #[test]
971    fn test_memory_stats() {
972        let config = MemoryOptimizationConfig::default();
973        let state_vector = OptimizedStateVector::new(4, config).unwrap();
974
975        let stats = state_vector.get_memory_stats();
976        assert_eq!(stats.total_memory, 16 * std::mem::size_of::<Complex64>());
977        assert!(stats.cache_efficiency >= 0.0 && stats.cache_efficiency <= 1.0);
978    }
979
980    #[test]
981    fn test_blocked_layout_allocation() {
982        let config = MemoryOptimizationConfig {
983            layout: MemoryLayout::Blocked,
984            block_size: 1024,
985            ..Default::default()
986        };
987
988        let data = OptimizedStateVector::allocate_blocked(100, &config).unwrap();
989        assert_eq!(data.len(), 100);
990    }
991
992    #[test]
993    fn test_prefetch_functionality() {
994        let config = MemoryOptimizationConfig {
995            enable_prefetching: true,
996            prefetch_distance: 4,
997            ..Default::default()
998        };
999
1000        let state_vector = OptimizedStateVector::new(5, config).unwrap();
1001
1002        // Test that prefetching doesn't crash
1003        OptimizedStateVector::prefetch_memory(&state_vector.data[0]);
1004    }
1005}