quantrs2_sim/
memory_bandwidth_optimization.rs

1//! Memory bandwidth optimization for large state vector simulations.
2//!
3//! This module implements advanced memory access optimizations for quantum
4//! state vector simulations, including cache-optimized layouts, prefetching
5//! strategies, data locality optimizations, and NUMA-aware memory management.
6
7use scirs2_core::ndarray::Array2;
8use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
9use scirs2_core::Complex64;
10use std::alloc::{GlobalAlloc, Layout, System};
11use std::collections::{HashMap, VecDeque};
12use std::ptr::NonNull;
13use std::sync::{Arc, Mutex, RwLock};
14use std::time::{Duration, Instant};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18
19/// Memory layout strategies for state vectors
20#[derive(Debug, Clone, Copy, PartialEq, Eq)]
21pub enum MemoryLayout {
22    /// Standard contiguous layout
23    Contiguous,
24    /// Cache-line aligned layout with padding
25    CacheAligned,
26    /// Blocked layout for cache optimization
27    Blocked,
28    /// Interleaved layout for NUMA systems
29    Interleaved,
30    /// Hierarchical layout for multi-level caches
31    Hierarchical,
32    /// Adaptive layout based on access patterns
33    Adaptive,
34}
35
36/// Memory bandwidth optimization configuration
37#[derive(Debug, Clone)]
38pub struct MemoryOptimizationConfig {
39    /// Memory layout strategy
40    pub layout: MemoryLayout,
41    /// Cache line size in bytes
42    pub cache_line_size: usize,
43    /// L1 cache size in bytes
44    pub l1_cache_size: usize,
45    /// L2 cache size in bytes
46    pub l2_cache_size: usize,
47    /// L3 cache size in bytes
48    pub l3_cache_size: usize,
49    /// Block size for blocked layouts
50    pub block_size: usize,
51    /// Enable memory prefetching
52    pub enable_prefetching: bool,
53    /// Prefetch distance (number of cache lines ahead)
54    pub prefetch_distance: usize,
55    /// Enable NUMA optimizations
56    pub enable_numa_optimization: bool,
57    /// Memory pool size for temporary allocations
58    pub memory_pool_size: usize,
59    /// Enable memory bandwidth monitoring
60    pub enable_bandwidth_monitoring: bool,
61    /// Adaptive optimization threshold
62    pub adaptation_threshold: f64,
63}
64
65impl Default for MemoryOptimizationConfig {
66    fn default() -> Self {
67        Self {
68            layout: MemoryLayout::Adaptive,
69            cache_line_size: 64,            // Common cache line size
70            l1_cache_size: 32 * 1024,       // 32KB L1 cache
71            l2_cache_size: 256 * 1024,      // 256KB L2 cache
72            l3_cache_size: 8 * 1024 * 1024, // 8MB L3 cache
73            block_size: 4096,               // 4KB blocks
74            enable_prefetching: true,
75            prefetch_distance: 4,
76            enable_numa_optimization: true,
77            memory_pool_size: 1024 * 1024 * 1024, // 1GB pool
78            enable_bandwidth_monitoring: true,
79            adaptation_threshold: 0.1,
80        }
81    }
82}
83
84/// Memory access pattern tracking
85#[derive(Debug, Clone)]
86pub struct MemoryAccessPattern {
87    /// Access frequency for each memory region
88    pub access_frequency: HashMap<usize, u64>,
89    /// Sequential access patterns
90    pub sequential_accesses: VecDeque<(usize, usize)>,
91    /// Random access patterns
92    pub random_accesses: VecDeque<usize>,
93    /// Cache miss count
94    pub cache_misses: u64,
95    /// Total memory accesses
96    pub total_accesses: u64,
97    /// Last access time
98    pub last_access_time: Instant,
99}
100
101impl Default for MemoryAccessPattern {
102    fn default() -> Self {
103        Self {
104            access_frequency: HashMap::new(),
105            sequential_accesses: VecDeque::new(),
106            random_accesses: VecDeque::new(),
107            cache_misses: 0,
108            total_accesses: 0,
109            last_access_time: Instant::now(),
110        }
111    }
112}
113
114/// Memory bandwidth monitoring
115#[derive(Debug, Clone)]
116pub struct BandwidthMonitor {
117    /// Bandwidth samples over time
118    pub bandwidth_samples: VecDeque<(Instant, f64)>,
119    /// Current bandwidth utilization (0.0 to 1.0)
120    pub current_utilization: f64,
121    /// Peak bandwidth achieved
122    pub peak_bandwidth: f64,
123    /// Average bandwidth over time window
124    pub average_bandwidth: f64,
125    /// Memory access latency samples
126    pub latency_samples: VecDeque<Duration>,
127}
128
129impl Default for BandwidthMonitor {
130    fn default() -> Self {
131        Self {
132            bandwidth_samples: VecDeque::new(),
133            current_utilization: 0.0,
134            peak_bandwidth: 0.0,
135            average_bandwidth: 0.0,
136            latency_samples: VecDeque::new(),
137        }
138    }
139}
140
141/// Memory pool for efficient allocation and reuse
142#[derive(Debug)]
143pub struct MemoryPool {
144    /// Pre-allocated memory blocks
145    blocks: Mutex<Vec<(*mut u8, usize)>>,
146    /// Block size
147    block_size: usize,
148    /// Maximum number of blocks
149    max_blocks: usize,
150    /// Current allocation count
151    allocated_count: Mutex<usize>,
152}
153
154impl MemoryPool {
155    /// Create a new memory pool
156    pub const fn new(block_size: usize, max_blocks: usize) -> Result<Self> {
157        Ok(Self {
158            blocks: Mutex::new(Vec::new()),
159            block_size,
160            max_blocks,
161            allocated_count: Mutex::new(0),
162        })
163    }
164
165    /// Allocate a memory block from the pool
166    pub fn allocate(&self) -> Result<NonNull<u8>> {
167        let mut blocks = self
168            .blocks
169            .lock()
170            .map_err(|e| SimulatorError::MemoryAllocationFailed(format!("Lock poisoned: {e}")))?;
171
172        if let Some((ptr, _)) = blocks.pop() {
173            Ok(unsafe { NonNull::new_unchecked(ptr) })
174        } else {
175            // Allocate new block if pool is empty
176            let layout = Layout::from_size_align(self.block_size, 64)
177                .map_err(|e| SimulatorError::MemoryAllocationFailed(e.to_string()))?;
178
179            let ptr = unsafe { System.alloc(layout) };
180            if ptr.is_null() {
181                return Err(SimulatorError::MemoryAllocationFailed(
182                    "Failed to allocate memory block".to_string(),
183                ));
184            }
185
186            let mut count = self.allocated_count.lock().map_err(|e| {
187                SimulatorError::MemoryAllocationFailed(format!("Lock poisoned: {e}"))
188            })?;
189            *count += 1;
190
191            Ok(unsafe { NonNull::new_unchecked(ptr) })
192        }
193    }
194
195    /// Return a memory block to the pool
196    pub fn deallocate(&self, ptr: NonNull<u8>) -> Result<()> {
197        let mut blocks = self
198            .blocks
199            .lock()
200            .map_err(|e| SimulatorError::MemoryAllocationFailed(format!("Lock poisoned: {e}")))?;
201
202        if blocks.len() < self.max_blocks {
203            blocks.push((ptr.as_ptr(), self.block_size));
204        } else {
205            // Pool is full, actually deallocate
206            let layout = Layout::from_size_align(self.block_size, 64)
207                .map_err(|e| SimulatorError::MemoryAllocationFailed(e.to_string()))?;
208            unsafe { System.dealloc(ptr.as_ptr(), layout) };
209
210            let mut count = self.allocated_count.lock().map_err(|e| {
211                SimulatorError::MemoryAllocationFailed(format!("Lock poisoned: {e}"))
212            })?;
213            *count -= 1;
214        }
215
216        Ok(())
217    }
218}
219
220unsafe impl Send for MemoryPool {}
221unsafe impl Sync for MemoryPool {}
222
223/// Optimized state vector with memory bandwidth optimizations
224#[derive(Debug)]
225pub struct OptimizedStateVector {
226    /// State vector data with optimized layout
227    data: Vec<Complex64>,
228    /// Number of qubits
229    num_qubits: usize,
230    /// Memory layout being used
231    layout: MemoryLayout,
232    /// Block size for blocked layouts
233    block_size: usize,
234    /// Memory access pattern tracking
235    access_pattern: Arc<RwLock<MemoryAccessPattern>>,
236    /// Bandwidth monitor
237    bandwidth_monitor: Arc<RwLock<BandwidthMonitor>>,
238    /// Memory pool for temporary allocations
239    memory_pool: Arc<MemoryPool>,
240    /// Configuration
241    config: MemoryOptimizationConfig,
242}
243
244impl OptimizedStateVector {
245    /// Create a new optimized state vector
246    pub fn new(num_qubits: usize, config: MemoryOptimizationConfig) -> Result<Self> {
247        let size = 1 << num_qubits;
248        let memory_pool = Arc::new(MemoryPool::new(
249            config.memory_pool_size / 1024, // Block size
250            1024,                           // Max blocks
251        )?);
252
253        let mut data = Self::allocate_with_layout(size, config.layout, &config)?;
254
255        // Initialize to |0...0⟩ state
256        data[0] = Complex64::new(1.0, 0.0);
257
258        Ok(Self {
259            data,
260            num_qubits,
261            layout: config.layout,
262            block_size: config.block_size,
263            access_pattern: Arc::new(RwLock::new(MemoryAccessPattern::default())),
264            bandwidth_monitor: Arc::new(RwLock::new(BandwidthMonitor::default())),
265            memory_pool,
266            config,
267        })
268    }
269
270    /// Allocate memory with specific layout optimization
271    fn allocate_with_layout(
272        size: usize,
273        layout: MemoryLayout,
274        config: &MemoryOptimizationConfig,
275    ) -> Result<Vec<Complex64>> {
276        match layout {
277            MemoryLayout::Contiguous => {
278                let mut data = Vec::with_capacity(size);
279                data.resize(size, Complex64::new(0.0, 0.0));
280                Ok(data)
281            }
282            MemoryLayout::CacheAligned => Self::allocate_cache_aligned(size, config),
283            MemoryLayout::Blocked => Self::allocate_blocked(size, config),
284            MemoryLayout::Interleaved => Self::allocate_interleaved(size, config),
285            MemoryLayout::Hierarchical => Self::allocate_hierarchical(size, config),
286            MemoryLayout::Adaptive => {
287                // Start with cache-aligned and adapt based on usage
288                Self::allocate_cache_aligned(size, config)
289            }
290        }
291    }
292
293    /// Allocate cache-aligned memory
294    fn allocate_cache_aligned(
295        size: usize,
296        config: &MemoryOptimizationConfig,
297    ) -> Result<Vec<Complex64>> {
298        let element_size = std::mem::size_of::<Complex64>();
299        let elements_per_line = config.cache_line_size / element_size;
300        let padded_size = size.div_ceil(elements_per_line) * elements_per_line;
301
302        let mut data = Vec::with_capacity(padded_size);
303        data.resize(size, Complex64::new(0.0, 0.0));
304        data.resize(padded_size, Complex64::new(0.0, 0.0)); // Padding
305
306        Ok(data)
307    }
308
309    /// Allocate blocked memory layout
310    fn allocate_blocked(size: usize, config: &MemoryOptimizationConfig) -> Result<Vec<Complex64>> {
311        let mut data = Vec::with_capacity(size);
312        data.resize(size, Complex64::new(0.0, 0.0));
313
314        // Reorganize data in cache-friendly blocks
315        let block_size = config.block_size / std::mem::size_of::<Complex64>();
316        let num_blocks = size.div_ceil(block_size);
317
318        let mut blocked_data = Vec::with_capacity(size);
319        for block_idx in 0..num_blocks {
320            let start = block_idx * block_size;
321            let end = std::cmp::min(start + block_size, size);
322
323            blocked_data.extend_from_slice(&data[start..end]);
324        }
325
326        Ok(blocked_data)
327    }
328
329    /// Allocate interleaved memory for NUMA systems
330    fn allocate_interleaved(
331        size: usize,
332        _config: &MemoryOptimizationConfig,
333    ) -> Result<Vec<Complex64>> {
334        // For now, use standard allocation
335        // In a full implementation, we'd use NUMA APIs
336        let mut data = Vec::with_capacity(size);
337        data.resize(size, Complex64::new(0.0, 0.0));
338        Ok(data)
339    }
340
341    /// Allocate hierarchical memory layout
342    fn allocate_hierarchical(
343        size: usize,
344        config: &MemoryOptimizationConfig,
345    ) -> Result<Vec<Complex64>> {
346        // Hierarchical layout optimized for multi-level caches
347        let l1_elements = config.l1_cache_size / std::mem::size_of::<Complex64>();
348        let l2_elements = config.l2_cache_size / std::mem::size_of::<Complex64>();
349
350        let mut data = Vec::with_capacity(size);
351        data.resize(size, Complex64::new(0.0, 0.0));
352
353        // Reorganize based on cache hierarchy
354        // This is a simplified implementation
355        Ok(data)
356    }
357
358    /// Apply a single-qubit gate with memory optimization
359    pub fn apply_single_qubit_gate_optimized(
360        &mut self,
361        target: usize,
362        gate_matrix: &Array2<Complex64>,
363    ) -> Result<()> {
364        let start_time = Instant::now();
365
366        let mask = 1 << target;
367        let size = self.data.len();
368
369        // Use optimized memory access patterns
370        match self.layout {
371            MemoryLayout::Blocked => {
372                self.apply_single_qubit_gate_blocked(target, gate_matrix, mask)?;
373            }
374            MemoryLayout::CacheAligned => {
375                self.apply_single_qubit_gate_cache_aligned(target, gate_matrix, mask)?;
376            }
377            _ => {
378                self.apply_single_qubit_gate_standard(target, gate_matrix, mask)?;
379            }
380        }
381
382        // Update bandwidth monitoring
383        let elapsed = start_time.elapsed();
384        self.update_bandwidth_monitor(size * std::mem::size_of::<Complex64>(), elapsed);
385
386        Ok(())
387    }
388
389    /// Apply single-qubit gate with blocked memory access
390    fn apply_single_qubit_gate_blocked(
391        &mut self,
392        target: usize,
393        gate_matrix: &Array2<Complex64>,
394        mask: usize,
395    ) -> Result<()> {
396        let block_size = self.block_size / std::mem::size_of::<Complex64>();
397        let num_blocks = self.data.len().div_ceil(block_size);
398
399        for block_idx in 0..num_blocks {
400            let start = block_idx * block_size;
401            let end = std::cmp::min(start + block_size, self.data.len());
402
403            // Prefetch next block if enabled
404            if self.config.enable_prefetching && block_idx + 1 < num_blocks {
405                let next_start = (block_idx + 1) * block_size;
406                if next_start < self.data.len() {
407                    Self::prefetch_memory(&self.data[next_start]);
408                }
409            }
410
411            // Process current block
412            for i in (start..end).step_by(2) {
413                if i + 1 < self.data.len() {
414                    let i0 = i & !mask;
415                    let i1 = i0 | mask;
416
417                    if i1 < self.data.len() {
418                        let amp0 = self.data[i0];
419                        let amp1 = self.data[i1];
420
421                        self.data[i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
422                        self.data[i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
423                    }
424                }
425            }
426        }
427
428        Ok(())
429    }
430
431    /// Apply single-qubit gate with cache-aligned memory access
432    fn apply_single_qubit_gate_cache_aligned(
433        &mut self,
434        target: usize,
435        gate_matrix: &Array2<Complex64>,
436        mask: usize,
437    ) -> Result<()> {
438        let elements_per_line = self.config.cache_line_size / std::mem::size_of::<Complex64>();
439
440        for chunk_start in (0..self.data.len()).step_by(elements_per_line) {
441            let chunk_end = std::cmp::min(chunk_start + elements_per_line, self.data.len());
442
443            // Prefetch next cache line
444            if self.config.enable_prefetching && chunk_end < self.data.len() {
445                Self::prefetch_memory(&self.data[chunk_end]);
446            }
447
448            for i in (chunk_start..chunk_end).step_by(2) {
449                if i + 1 < self.data.len() {
450                    let i0 = i & !mask;
451                    let i1 = i0 | mask;
452
453                    if i1 < self.data.len() {
454                        let amp0 = self.data[i0];
455                        let amp1 = self.data[i1];
456
457                        self.data[i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
458                        self.data[i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
459                    }
460                }
461            }
462        }
463
464        Ok(())
465    }
466
467    /// Apply single-qubit gate with standard memory access
468    fn apply_single_qubit_gate_standard(
469        &mut self,
470        target: usize,
471        gate_matrix: &Array2<Complex64>,
472        mask: usize,
473    ) -> Result<()> {
474        for i in (0..self.data.len()).step_by(2) {
475            let i0 = i & !mask;
476            let i1 = i0 | mask;
477
478            if i1 < self.data.len() {
479                let amp0 = self.data[i0];
480                let amp1 = self.data[i1];
481
482                self.data[i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
483                self.data[i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
484            }
485        }
486
487        Ok(())
488    }
489
490    /// Prefetch memory to cache
491    #[inline(always)]
492    fn prefetch_memory(addr: &Complex64) {
493        // TODO: Use scirs2_core's platform-agnostic prefetch operations when API is stabilized
494        // For now, use a volatile read as a simple prefetch hint
495        unsafe {
496            let _ = std::ptr::read_volatile(std::ptr::from_ref(addr).cast::<u8>());
497        }
498    }
499
500    /// Apply a two-qubit gate with memory optimization
501    pub fn apply_two_qubit_gate_optimized(
502        &mut self,
503        control: usize,
504        target: usize,
505        gate_matrix: &Array2<Complex64>,
506    ) -> Result<()> {
507        let start_time = Instant::now();
508
509        let control_mask = 1 << control;
510        let target_mask = 1 << target;
511        let size = self.data.len();
512
513        // Optimize for data locality
514        match self.layout {
515            MemoryLayout::Blocked => {
516                self.apply_two_qubit_gate_blocked(control_mask, target_mask, gate_matrix)?;
517            }
518            _ => {
519                self.apply_two_qubit_gate_standard(control_mask, target_mask, gate_matrix)?;
520            }
521        }
522
523        // Update bandwidth monitoring
524        let elapsed = start_time.elapsed();
525        self.update_bandwidth_monitor(size * std::mem::size_of::<Complex64>(), elapsed);
526
527        Ok(())
528    }
529
530    /// Apply two-qubit gate with blocked memory access
531    fn apply_two_qubit_gate_blocked(
532        &mut self,
533        control_mask: usize,
534        target_mask: usize,
535        gate_matrix: &Array2<Complex64>,
536    ) -> Result<()> {
537        let block_size = self.block_size / std::mem::size_of::<Complex64>();
538        let num_blocks = self.data.len().div_ceil(block_size);
539
540        for block_idx in 0..num_blocks {
541            let start = block_idx * block_size;
542            let end = std::cmp::min(start + block_size, self.data.len());
543
544            // Prefetch next block
545            if self.config.enable_prefetching && block_idx + 1 < num_blocks {
546                let next_start = (block_idx + 1) * block_size;
547                if next_start < self.data.len() {
548                    Self::prefetch_memory(&self.data[next_start]);
549                }
550            }
551
552            // Process current block
553            for i in (start..end).step_by(4) {
554                if i + 3 < self.data.len() {
555                    let i00 = i & !(control_mask | target_mask);
556                    let i01 = i00 | target_mask;
557                    let i10 = i00 | control_mask;
558                    let i11 = i00 | control_mask | target_mask;
559
560                    if i11 < self.data.len() {
561                        let amp00 = self.data[i00];
562                        let amp01 = self.data[i01];
563                        let amp10 = self.data[i10];
564                        let amp11 = self.data[i11];
565
566                        self.data[i00] = gate_matrix[[0, 0]] * amp00
567                            + gate_matrix[[0, 1]] * amp01
568                            + gate_matrix[[0, 2]] * amp10
569                            + gate_matrix[[0, 3]] * amp11;
570                        self.data[i01] = gate_matrix[[1, 0]] * amp00
571                            + gate_matrix[[1, 1]] * amp01
572                            + gate_matrix[[1, 2]] * amp10
573                            + gate_matrix[[1, 3]] * amp11;
574                        self.data[i10] = gate_matrix[[2, 0]] * amp00
575                            + gate_matrix[[2, 1]] * amp01
576                            + gate_matrix[[2, 2]] * amp10
577                            + gate_matrix[[2, 3]] * amp11;
578                        self.data[i11] = gate_matrix[[3, 0]] * amp00
579                            + gate_matrix[[3, 1]] * amp01
580                            + gate_matrix[[3, 2]] * amp10
581                            + gate_matrix[[3, 3]] * amp11;
582                    }
583                }
584            }
585        }
586
587        Ok(())
588    }
589
590    /// Apply two-qubit gate with standard memory access
591    fn apply_two_qubit_gate_standard(
592        &mut self,
593        control_mask: usize,
594        target_mask: usize,
595        gate_matrix: &Array2<Complex64>,
596    ) -> Result<()> {
597        for i in (0..self.data.len()).step_by(4) {
598            let i00 = i & !(control_mask | target_mask);
599            let i01 = i00 | target_mask;
600            let i10 = i00 | control_mask;
601            let i11 = i00 | control_mask | target_mask;
602
603            if i11 < self.data.len() {
604                let amp00 = self.data[i00];
605                let amp01 = self.data[i01];
606                let amp10 = self.data[i10];
607                let amp11 = self.data[i11];
608
609                self.data[i00] = gate_matrix[[0, 0]] * amp00
610                    + gate_matrix[[0, 1]] * amp01
611                    + gate_matrix[[0, 2]] * amp10
612                    + gate_matrix[[0, 3]] * amp11;
613                self.data[i01] = gate_matrix[[1, 0]] * amp00
614                    + gate_matrix[[1, 1]] * amp01
615                    + gate_matrix[[1, 2]] * amp10
616                    + gate_matrix[[1, 3]] * amp11;
617                self.data[i10] = gate_matrix[[2, 0]] * amp00
618                    + gate_matrix[[2, 1]] * amp01
619                    + gate_matrix[[2, 2]] * amp10
620                    + gate_matrix[[2, 3]] * amp11;
621                self.data[i11] = gate_matrix[[3, 0]] * amp00
622                    + gate_matrix[[3, 1]] * amp01
623                    + gate_matrix[[3, 2]] * amp10
624                    + gate_matrix[[3, 3]] * amp11;
625            }
626        }
627
628        Ok(())
629    }
630
631    /// Update bandwidth monitoring
632    fn update_bandwidth_monitor(&self, bytes_accessed: usize, elapsed: Duration) {
633        if let Ok(mut monitor) = self.bandwidth_monitor.write() {
634            let bandwidth = bytes_accessed as f64 / elapsed.as_secs_f64();
635            let now = Instant::now();
636
637            monitor.bandwidth_samples.push_back((now, bandwidth));
638
639            // Keep only recent samples (last 100)
640            while monitor.bandwidth_samples.len() > 100 {
641                monitor.bandwidth_samples.pop_front();
642            }
643
644            // Update statistics
645            if bandwidth > monitor.peak_bandwidth {
646                monitor.peak_bandwidth = bandwidth;
647            }
648
649            let sum: f64 = monitor.bandwidth_samples.iter().map(|(_, bw)| bw).sum();
650            monitor.average_bandwidth = sum / monitor.bandwidth_samples.len() as f64;
651
652            // Estimate current utilization (simplified)
653            let theoretical_max = 100.0 * 1024.0 * 1024.0 * 1024.0; // 100 GB/s theoretical
654            monitor.current_utilization = bandwidth / theoretical_max;
655        }
656    }
657
658    /// Get current bandwidth statistics
659    pub fn get_bandwidth_stats(&self) -> Result<BandwidthMonitor> {
660        self.bandwidth_monitor
661            .read()
662            .map(|guard| guard.clone())
663            .map_err(|e| SimulatorError::InvalidState(format!("RwLock poisoned: {e}")))
664    }
665
666    /// Adapt memory layout based on access patterns
667    pub fn adapt_memory_layout(&mut self) -> Result<()> {
668        if self.layout != MemoryLayout::Adaptive {
669            return Ok(());
670        }
671
672        let access_pattern = self
673            .access_pattern
674            .read()
675            .map_err(|e| SimulatorError::InvalidState(format!("RwLock poisoned: {e}")))?;
676        let bandwidth_stats = self
677            .bandwidth_monitor
678            .read()
679            .map_err(|e| SimulatorError::InvalidState(format!("RwLock poisoned: {e}")))?;
680
681        // Analyze access patterns and bandwidth utilization
682        let sequential_ratio = access_pattern.sequential_accesses.len() as f64
683            / (access_pattern.total_accesses as f64 + 1.0);
684
685        let new_layout = if sequential_ratio > 0.8 {
686            MemoryLayout::CacheAligned
687        } else if bandwidth_stats.current_utilization < 0.5 {
688            MemoryLayout::Blocked
689        } else {
690            MemoryLayout::Hierarchical
691        };
692
693        if new_layout != self.layout {
694            // Reorganize data with new layout
695            let new_data = Self::allocate_with_layout(self.data.len(), new_layout, &self.config)?;
696            // Copy data (simplified - in practice we'd do proper layout transformation)
697            self.data = new_data;
698            self.layout = new_layout;
699        }
700
701        Ok(())
702    }
703
704    /// Get memory usage statistics
705    #[must_use]
706    pub fn get_memory_stats(&self) -> MemoryStats {
707        let element_size = std::mem::size_of::<Complex64>();
708        MemoryStats {
709            total_memory: self.data.len() * element_size,
710            allocated_memory: self.data.capacity() * element_size,
711            layout: self.layout,
712            cache_efficiency: self.calculate_cache_efficiency(),
713            memory_utilization: self.calculate_memory_utilization(),
714        }
715    }
716
717    /// Calculate cache efficiency estimate
718    fn calculate_cache_efficiency(&self) -> f64 {
719        let access_pattern = match self.access_pattern.read() {
720            Ok(guard) => guard,
721            Err(_) => return 1.0, // Default to full efficiency if lock is poisoned
722        };
723        if access_pattern.total_accesses == 0 {
724            return 1.0;
725        }
726
727        let hit_rate =
728            1.0 - (access_pattern.cache_misses as f64 / access_pattern.total_accesses as f64);
729        hit_rate.clamp(0.0, 1.0)
730    }
731
732    /// Calculate memory utilization
733    fn calculate_memory_utilization(&self) -> f64 {
734        match self.bandwidth_monitor.read() {
735            Ok(guard) => guard.current_utilization,
736            Err(_) => 0.0, // Default to zero utilization if lock is poisoned
737        }
738    }
739
740    /// Get state vector data (read-only access)
741    #[must_use]
742    pub fn data(&self) -> &[Complex64] {
743        &self.data
744    }
745
746    /// Get mutable state vector data with access tracking
747    pub fn data_mut(&mut self) -> &mut [Complex64] {
748        // Track memory access
749        if let Ok(mut pattern) = self.access_pattern.write() {
750            pattern.total_accesses += 1;
751            pattern.last_access_time = Instant::now();
752        }
753
754        &mut self.data
755    }
756}
757
758/// Memory usage statistics
759#[derive(Debug, Clone)]
760pub struct MemoryStats {
761    /// Total memory used in bytes
762    pub total_memory: usize,
763    /// Allocated memory capacity in bytes
764    pub allocated_memory: usize,
765    /// Current memory layout
766    pub layout: MemoryLayout,
767    /// Cache efficiency (0.0 to 1.0)
768    pub cache_efficiency: f64,
769    /// Memory bandwidth utilization (0.0 to 1.0)
770    pub memory_utilization: f64,
771}
772
773/// Memory bandwidth optimization manager
774#[derive(Debug)]
775pub struct MemoryBandwidthOptimizer {
776    /// Configuration
777    config: MemoryOptimizationConfig,
778    /// Global memory pool
779    memory_pool: Arc<MemoryPool>,
780    /// `SciRS2` backend integration
781    backend: Option<SciRS2Backend>,
782}
783
784impl MemoryBandwidthOptimizer {
785    /// Create a new memory bandwidth optimizer
786    pub fn new(config: MemoryOptimizationConfig) -> Result<Self> {
787        let memory_pool = Arc::new(MemoryPool::new(config.memory_pool_size / 1024, 1024)?);
788
789        Ok(Self {
790            config,
791            memory_pool,
792            backend: None,
793        })
794    }
795
796    /// Initialize `SciRS2` backend integration
797    pub fn init_scirs2_backend(&mut self) -> Result<()> {
798        // SciRS2Backend::new() returns a SciRS2Backend directly
799        let backend = SciRS2Backend::new();
800        self.backend = Some(backend);
801        Ok(())
802    }
803
804    /// Create an optimized state vector
805    pub fn create_optimized_state_vector(&self, num_qubits: usize) -> Result<OptimizedStateVector> {
806        OptimizedStateVector::new(num_qubits, self.config.clone())
807    }
808
809    /// Optimize memory access for a given circuit
810    pub fn optimize_circuit_memory_access(
811        &self,
812        state_vector: &mut OptimizedStateVector,
813        circuit_depth: usize,
814    ) -> Result<MemoryOptimizationReport> {
815        let start_time = Instant::now();
816
817        // Analyze circuit characteristics
818        let estimated_accesses = circuit_depth * state_vector.data.len();
819
820        // Adapt memory layout if beneficial
821        state_vector.adapt_memory_layout()?;
822
823        // Warm up caches if enabled
824        if self.config.enable_prefetching {
825            Self::warmup_caches(state_vector)?;
826        }
827
828        let optimization_time = start_time.elapsed();
829
830        Ok(MemoryOptimizationReport {
831            optimization_time,
832            estimated_memory_accesses: estimated_accesses,
833            cache_warmup_performed: self.config.enable_prefetching,
834            layout_adaptation_performed: true,
835            memory_stats: state_vector.get_memory_stats(),
836        })
837    }
838
839    /// Warm up memory caches by touching data
840    fn warmup_caches(state_vector: &OptimizedStateVector) -> Result<()> {
841        let chunk_size = state_vector.config.cache_line_size / std::mem::size_of::<Complex64>();
842
843        for chunk_start in (0..state_vector.data.len()).step_by(chunk_size) {
844            let chunk_end = std::cmp::min(chunk_start + chunk_size, state_vector.data.len());
845
846            // Touch each cache line
847            for i in (chunk_start..chunk_end).step_by(chunk_size / 4) {
848                let _ = state_vector.data[i]; // Read to bring into cache
849            }
850        }
851
852        Ok(())
853    }
854}
855
856/// Memory optimization report
857#[derive(Debug, Clone)]
858pub struct MemoryOptimizationReport {
859    /// Time spent on optimization
860    pub optimization_time: Duration,
861    /// Estimated number of memory accesses
862    pub estimated_memory_accesses: usize,
863    /// Whether cache warmup was performed
864    pub cache_warmup_performed: bool,
865    /// Whether layout adaptation was performed
866    pub layout_adaptation_performed: bool,
867    /// Final memory statistics
868    pub memory_stats: MemoryStats,
869}
870
871#[cfg(test)]
872mod tests {
873    use super::*;
874    use scirs2_core::ndarray::Array2;
875
876    #[test]
877    fn test_optimized_state_vector_creation() {
878        let config = MemoryOptimizationConfig::default();
879        let state_vector = OptimizedStateVector::new(3, config)
880            .expect("OptimizedStateVector creation should succeed");
881
882        assert_eq!(state_vector.num_qubits, 3);
883        assert_eq!(state_vector.data.len(), 8);
884        assert_eq!(state_vector.data[0], Complex64::new(1.0, 0.0));
885    }
886
887    #[test]
888    fn test_memory_layouts() {
889        let config = MemoryOptimizationConfig {
890            layout: MemoryLayout::CacheAligned,
891            ..Default::default()
892        };
893
894        let state_vector = OptimizedStateVector::new(4, config)
895            .expect("OptimizedStateVector with CacheAligned layout should be created");
896        assert_eq!(state_vector.layout, MemoryLayout::CacheAligned);
897    }
898
899    #[test]
900    fn test_single_qubit_gate_optimization() {
901        let config = MemoryOptimizationConfig::default();
902        let mut state_vector = OptimizedStateVector::new(2, config)
903            .expect("OptimizedStateVector creation should succeed");
904
905        // Pauli-X gate
906        let gate_matrix = Array2::from_shape_vec(
907            (2, 2),
908            vec![
909                Complex64::new(0.0, 0.0),
910                Complex64::new(1.0, 0.0),
911                Complex64::new(1.0, 0.0),
912                Complex64::new(0.0, 0.0),
913            ],
914        )
915        .expect("Gate matrix construction should succeed");
916
917        state_vector
918            .apply_single_qubit_gate_optimized(0, &gate_matrix)
919            .expect("Single qubit gate application should succeed");
920
921        // State should now be |01⟩
922        assert!((state_vector.data[1].re - 1.0).abs() < 1e-10);
923        assert!(state_vector.data[0].re.abs() < 1e-10);
924    }
925
926    #[test]
927    fn test_bandwidth_monitoring() {
928        let config = MemoryOptimizationConfig::default();
929        let state_vector = OptimizedStateVector::new(3, config)
930            .expect("OptimizedStateVector creation should succeed");
931
932        let stats = state_vector
933            .get_bandwidth_stats()
934            .expect("Bandwidth stats retrieval should succeed");
935        assert_eq!(stats.bandwidth_samples.len(), 0); // No operations yet
936    }
937
938    #[test]
939    fn test_memory_pool() {
940        let pool = MemoryPool::new(1024, 10).expect("MemoryPool creation should succeed");
941
942        let ptr1 = pool.allocate().expect("First allocation should succeed");
943        let ptr2 = pool.allocate().expect("Second allocation should succeed");
944
945        pool.deallocate(ptr1)
946            .expect("First deallocation should succeed");
947        pool.deallocate(ptr2)
948            .expect("Second deallocation should succeed");
949    }
950
951    #[test]
952    fn test_cache_aligned_allocation() {
953        let config = MemoryOptimizationConfig {
954            layout: MemoryLayout::CacheAligned,
955            cache_line_size: 64,
956            ..Default::default()
957        };
958
959        let data = OptimizedStateVector::allocate_cache_aligned(100, &config)
960            .expect("Cache-aligned allocation should succeed");
961
962        // Should be padded to cache line boundary
963        let element_size = std::mem::size_of::<Complex64>();
964        let elements_per_line = config.cache_line_size / element_size;
965        let expected_padded = 100_usize.div_ceil(elements_per_line) * elements_per_line;
966
967        assert_eq!(data.len(), expected_padded);
968    }
969
970    #[test]
971    fn test_memory_bandwidth_optimizer() {
972        let config = MemoryOptimizationConfig::default();
973        let optimizer = MemoryBandwidthOptimizer::new(config)
974            .expect("MemoryBandwidthOptimizer creation should succeed");
975
976        let mut state_vector = optimizer
977            .create_optimized_state_vector(4)
978            .expect("Optimized state vector creation should succeed");
979        let report = optimizer
980            .optimize_circuit_memory_access(&mut state_vector, 10)
981            .expect("Circuit memory optimization should succeed");
982
983        // Ensure optimization completed successfully
984        assert!(report.optimization_time.as_millis() < u128::MAX);
985        assert_eq!(report.estimated_memory_accesses, 10 * 16); // 10 gates x 16 states
986    }
987
988    #[test]
989    fn test_adaptive_layout() {
990        let config = MemoryOptimizationConfig {
991            layout: MemoryLayout::Adaptive,
992            ..Default::default()
993        };
994
995        let mut state_vector = OptimizedStateVector::new(3, config)
996            .expect("OptimizedStateVector with Adaptive layout should be created");
997        state_vector
998            .adapt_memory_layout()
999            .expect("Memory layout adaptation should succeed");
1000
1001        // Layout may have changed based on (empty) access patterns
1002        assert!(matches!(
1003            state_vector.layout,
1004            MemoryLayout::CacheAligned | MemoryLayout::Blocked | MemoryLayout::Hierarchical
1005        ));
1006    }
1007
1008    #[test]
1009    fn test_memory_stats() {
1010        let config = MemoryOptimizationConfig::default();
1011        let state_vector = OptimizedStateVector::new(4, config)
1012            .expect("OptimizedStateVector creation should succeed");
1013
1014        let stats = state_vector.get_memory_stats();
1015        assert_eq!(stats.total_memory, 16 * std::mem::size_of::<Complex64>());
1016        assert!(stats.cache_efficiency >= 0.0 && stats.cache_efficiency <= 1.0);
1017    }
1018
1019    #[test]
1020    fn test_blocked_layout_allocation() {
1021        let config = MemoryOptimizationConfig {
1022            layout: MemoryLayout::Blocked,
1023            block_size: 1024,
1024            ..Default::default()
1025        };
1026
1027        let data = OptimizedStateVector::allocate_blocked(100, &config)
1028            .expect("Blocked layout allocation should succeed");
1029        assert_eq!(data.len(), 100);
1030    }
1031
1032    #[test]
1033    fn test_prefetch_functionality() {
1034        let config = MemoryOptimizationConfig {
1035            enable_prefetching: true,
1036            prefetch_distance: 4,
1037            ..Default::default()
1038        };
1039
1040        let state_vector = OptimizedStateVector::new(5, config)
1041            .expect("OptimizedStateVector with prefetching enabled should be created");
1042
1043        // Test that prefetching doesn't crash
1044        OptimizedStateVector::prefetch_memory(&state_vector.data[0]);
1045    }
1046}