quantrs2_sim/
automatic_parallelization.rs

1//! Automatic Parallelization for Quantum Circuits
2//!
3//! This module provides automatic parallelization capabilities for quantum circuits,
4//! analyzing circuit structure to identify independent gate operations that can be
5//! executed in parallel using SciRS2 parallel operations for optimal performance.
6
7use crate::distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig};
8use crate::large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig};
9use quantrs2_circuit::builder::{Circuit, Simulator};
10use quantrs2_core::{
11    error::{QuantRS2Error, QuantRS2Result},
12    gate::GateOp,
13    qubit::QubitId,
14};
15// use scirs2_core::parallel_ops::*;
16// use scirs2_core::scheduling::{Scheduler, TaskGraph, ParallelExecutor};
17// use scirs2_core::optimization::{CostModel, ResourceOptimizer};
18use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
19use scirs2_core::Complex64;
20use rayon::prelude::*;
21use serde::{Deserialize, Serialize};
22use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};
23use std::sync::{Arc, Barrier, Mutex, RwLock};
24use std::thread;
25use std::time::{Duration, Instant};
26use uuid::Uuid;
27
28/// Configuration for automatic parallelization
29#[derive(Debug, Clone, Serialize, Deserialize)]
30pub struct AutoParallelConfig {
31    /// Maximum number of parallel execution threads
32    pub max_threads: usize,
33
34    /// Minimum gate count to enable parallelization
35    pub min_gates_for_parallel: usize,
36
37    /// Parallelization strategy
38    pub strategy: ParallelizationStrategy,
39
40    /// Resource constraints
41    pub resource_constraints: ResourceConstraints,
42
43    /// Enable inter-layer parallelization
44    pub enable_inter_layer_parallel: bool,
45
46    /// Enable gate fusion optimization
47    pub enable_gate_fusion: bool,
48
49    /// SciRS2 optimization level
50    pub scirs2_optimization_level: OptimizationLevel,
51
52    /// Load balancing configuration
53    pub load_balancing: LoadBalancingConfig,
54
55    /// Enable circuit analysis caching
56    pub enable_analysis_caching: bool,
57
58    /// Memory budget for parallel execution
59    pub memory_budget: usize,
60}
61
62impl Default for AutoParallelConfig {
63    fn default() -> Self {
64        Self {
65            max_threads: rayon::current_num_threads(),
66            min_gates_for_parallel: 10,
67            strategy: ParallelizationStrategy::DependencyAnalysis,
68            resource_constraints: ResourceConstraints::default(),
69            enable_inter_layer_parallel: true,
70            enable_gate_fusion: true,
71            scirs2_optimization_level: OptimizationLevel::Aggressive,
72            load_balancing: LoadBalancingConfig::default(),
73            enable_analysis_caching: true,
74            memory_budget: 4 * 1024 * 1024 * 1024, // 4GB
75        }
76    }
77}
78
79/// Parallelization strategies for circuit execution
80#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
81pub enum ParallelizationStrategy {
82    /// Analyze gate dependencies and parallelize independent operations
83    DependencyAnalysis,
84    /// Layer-based parallelization with depth analysis
85    LayerBased,
86    /// Qubit partitioning for independent subsystems
87    QubitPartitioning,
88    /// Hybrid approach combining multiple strategies
89    Hybrid,
90    /// Machine learning guided parallelization
91    MLGuided,
92    /// Hardware-aware parallelization
93    HardwareAware,
94}
95
96/// Resource constraints for parallel execution
97#[derive(Debug, Clone, Serialize, Deserialize)]
98pub struct ResourceConstraints {
99    /// Maximum memory per thread (bytes)
100    pub max_memory_per_thread: usize,
101    /// Maximum CPU utilization (0.0 to 1.0)
102    pub max_cpu_utilization: f64,
103    /// Maximum gate operations per thread
104    pub max_gates_per_thread: usize,
105    /// Preferred NUMA node
106    pub preferred_numa_node: Option<usize>,
107}
108
109impl Default for ResourceConstraints {
110    fn default() -> Self {
111        Self {
112            max_memory_per_thread: 1024 * 1024 * 1024, // 1GB
113            max_cpu_utilization: 0.8,
114            max_gates_per_thread: 1000,
115            preferred_numa_node: None,
116        }
117    }
118}
119
120/// Load balancing configuration for parallel execution
121#[derive(Debug, Clone, Serialize, Deserialize)]
122pub struct LoadBalancingConfig {
123    /// Enable dynamic load balancing
124    pub enable_dynamic_balancing: bool,
125    /// Work stealing strategy
126    pub work_stealing_strategy: WorkStealingStrategy,
127    /// Load monitoring interval
128    pub monitoring_interval: Duration,
129    /// Rebalancing threshold
130    pub rebalancing_threshold: f64,
131}
132
133impl Default for LoadBalancingConfig {
134    fn default() -> Self {
135        Self {
136            enable_dynamic_balancing: true,
137            work_stealing_strategy: WorkStealingStrategy::Adaptive,
138            monitoring_interval: Duration::from_millis(100),
139            rebalancing_threshold: 0.2,
140        }
141    }
142}
143
144/// Work stealing strategies for load balancing
145#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
146pub enum WorkStealingStrategy {
147    /// Random work stealing
148    Random,
149    /// Cost-aware work stealing
150    CostAware,
151    /// Locality-aware work stealing
152    LocalityAware,
153    /// Adaptive strategy selection
154    Adaptive,
155}
156
157/// SciRS2 optimization levels
158#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
159pub enum OptimizationLevel {
160    /// No optimization
161    None,
162    /// Basic optimizations
163    Basic,
164    /// Advanced optimizations
165    Advanced,
166    /// Aggressive optimizations
167    Aggressive,
168    /// Custom optimization profile
169    Custom,
170}
171
172/// Parallel execution task representing a group of independent gates
173#[derive(Debug, Clone)]
174pub struct ParallelTask {
175    /// Unique task identifier
176    pub id: Uuid,
177    /// Gates to execute in this task
178    pub gates: Vec<Arc<dyn GateOp + Send + Sync>>,
179    /// Qubits involved in this task
180    pub qubits: HashSet<QubitId>,
181    /// Estimated execution cost
182    pub cost: f64,
183    /// Memory requirement estimate
184    pub memory_requirement: usize,
185    /// Dependencies (task IDs that must complete before this task)
186    pub dependencies: HashSet<Uuid>,
187    /// Priority level
188    pub priority: TaskPriority,
189}
190
191/// Task priority levels
192#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
193pub enum TaskPriority {
194    /// Low priority task
195    Low = 1,
196    /// Normal priority task
197    Normal = 2,
198    /// High priority task
199    High = 3,
200    /// Critical priority task
201    Critical = 4,
202}
203
204/// Circuit dependency graph for parallelization analysis
205#[derive(Debug, Clone)]
206pub struct DependencyGraph {
207    /// Gate nodes in the dependency graph
208    pub nodes: Vec<GateNode>,
209    /// Adjacency list representation
210    pub edges: HashMap<usize, Vec<usize>>,
211    /// Reverse adjacency list
212    pub reverse_edges: HashMap<usize, Vec<usize>>,
213    /// Topological layers
214    pub layers: Vec<Vec<usize>>,
215}
216
217/// Gate node in the dependency graph
218#[derive(Debug, Clone)]
219pub struct GateNode {
220    /// Gate index in original circuit
221    pub gate_index: usize,
222    /// Gate operation
223    pub gate: Arc<dyn GateOp + Send + Sync>,
224    /// Qubits this gate operates on
225    pub qubits: HashSet<QubitId>,
226    /// Layer index in topological ordering
227    pub layer: usize,
228    /// Estimated execution cost
229    pub cost: f64,
230}
231
232/// Parallelization analysis results
233#[derive(Debug, Clone)]
234pub struct ParallelizationAnalysis {
235    /// Parallel tasks generated
236    pub tasks: Vec<ParallelTask>,
237    /// Total number of layers
238    pub num_layers: usize,
239    /// Parallelization efficiency (0.0 to 1.0)
240    pub efficiency: f64,
241    /// Maximum parallelism achievable
242    pub max_parallelism: usize,
243    /// Critical path length
244    pub critical_path_length: usize,
245    /// Resource utilization predictions
246    pub resource_utilization: ResourceUtilization,
247    /// Optimization recommendations
248    pub recommendations: Vec<OptimizationRecommendation>,
249}
250
251/// Resource utilization predictions
252#[derive(Debug, Clone)]
253pub struct ResourceUtilization {
254    /// Estimated CPU utilization per thread
255    pub cpu_utilization: Vec<f64>,
256    /// Estimated memory usage per thread
257    pub memory_usage: Vec<usize>,
258    /// Load balancing score (0.0 to 1.0)
259    pub load_balance_score: f64,
260    /// Communication overhead estimate
261    pub communication_overhead: f64,
262}
263
264/// Optimization recommendations for better parallelization
265#[derive(Debug, Clone)]
266pub struct OptimizationRecommendation {
267    /// Recommendation type
268    pub recommendation_type: RecommendationType,
269    /// Description of the recommendation
270    pub description: String,
271    /// Expected improvement (0.0 to 1.0)
272    pub expected_improvement: f64,
273    /// Implementation complexity
274    pub complexity: RecommendationComplexity,
275}
276
277/// Types of optimization recommendations
278#[derive(Debug, Clone, Copy, PartialEq, Eq)]
279pub enum RecommendationType {
280    /// Gate reordering for better parallelism
281    GateReordering,
282    /// Circuit decomposition
283    CircuitDecomposition,
284    /// Resource allocation adjustment
285    ResourceAllocation,
286    /// Strategy change recommendation
287    StrategyChange,
288    /// Hardware configuration
289    HardwareConfiguration,
290}
291
292/// Complexity levels for recommendations
293#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
294pub enum RecommendationComplexity {
295    /// Low complexity, easy to implement
296    Low,
297    /// Medium complexity
298    Medium,
299    /// High complexity, significant changes required
300    High,
301}
302
303/// Automatic parallelization engine for quantum circuits
304pub struct AutoParallelEngine {
305    /// Configuration
306    config: AutoParallelConfig,
307    /// Analysis cache for circuits
308    analysis_cache: Arc<RwLock<HashMap<u64, ParallelizationAnalysis>>>,
309    /// Performance statistics
310    performance_stats: Arc<Mutex<ParallelPerformanceStats>>,
311    /// SciRS2 integration components
312    //scirs2_scheduler: SciRS2Scheduler,
313    /// Load balancer
314    load_balancer: Arc<Mutex<LoadBalancer>>,
315}
316
317/// Performance statistics for parallel execution
318#[derive(Debug, Clone, Default)]
319pub struct ParallelPerformanceStats {
320    /// Total circuits processed
321    pub circuits_processed: usize,
322    /// Total execution time
323    pub total_execution_time: Duration,
324    /// Average parallelization efficiency
325    pub average_efficiency: f64,
326    /// Cache hit rate
327    pub cache_hit_rate: f64,
328    /// Task completion statistics
329    pub task_stats: TaskCompletionStats,
330    /// Resource utilization history
331    pub resource_history: Vec<ResourceSnapshot>,
332}
333
334/// Task completion statistics
335#[derive(Debug, Clone, Default)]
336pub struct TaskCompletionStats {
337    /// Total tasks completed
338    pub total_tasks: usize,
339    /// Average task duration
340    pub average_duration: Duration,
341    /// Task success rate
342    pub success_rate: f64,
343    /// Load balancing effectiveness
344    pub load_balance_effectiveness: f64,
345}
346
347/// Resource utilization snapshot
348#[derive(Debug, Clone)]
349pub struct ResourceSnapshot {
350    /// Timestamp
351    pub timestamp: Instant,
352    /// CPU utilization per core
353    pub cpu_utilization: Vec<f64>,
354    /// Memory usage
355    pub memory_usage: usize,
356    /// Active tasks
357    pub active_tasks: usize,
358}
359
360/// Load balancer for parallel task execution
361pub struct LoadBalancer {
362    /// Current thread loads
363    thread_loads: Vec<f64>,
364    /// Task queue per thread
365    task_queues: Vec<VecDeque<ParallelTask>>,
366    /// Work stealing statistics
367    work_stealing_stats: WorkStealingStats,
368}
369
370/// Work stealing statistics
371#[derive(Debug, Clone, Default)]
372pub struct WorkStealingStats {
373    /// Total steal attempts
374    pub steal_attempts: usize,
375    /// Successful steals
376    pub successful_steals: usize,
377    /// Failed steals
378    pub failed_steals: usize,
379    /// Average steal latency
380    pub average_steal_latency: Duration,
381}
382
383impl AutoParallelEngine {
384    /// Create a new automatic parallelization engine
385    pub fn new(config: AutoParallelConfig) -> Self {
386        let num_threads = config.max_threads;
387
388        Self {
389            config,
390            analysis_cache: Arc::new(RwLock::new(HashMap::new())),
391            performance_stats: Arc::new(Mutex::new(ParallelPerformanceStats::default())),
392            load_balancer: Arc::new(Mutex::new(LoadBalancer::new(num_threads))),
393        }
394    }
395
396    /// Analyze a circuit for parallelization opportunities
397    pub fn analyze_circuit<const N: usize>(
398        &self,
399        circuit: &Circuit<N>,
400    ) -> QuantRS2Result<ParallelizationAnalysis> {
401        let start_time = Instant::now();
402
403        // Check cache first if enabled
404        if self.config.enable_analysis_caching {
405            let circuit_hash = self.compute_circuit_hash(circuit);
406            if let Some(cached_analysis) = self.analysis_cache.read().unwrap().get(&circuit_hash) {
407                return Ok(cached_analysis.clone());
408            }
409        }
410
411        // Build dependency graph
412        let dependency_graph = self.build_dependency_graph(circuit)?;
413
414        // Generate parallel tasks based on strategy
415        let tasks = match self.config.strategy {
416            ParallelizationStrategy::DependencyAnalysis => {
417                self.dependency_based_parallelization(&dependency_graph)?
418            }
419            ParallelizationStrategy::LayerBased => {
420                self.layer_based_parallelization(&dependency_graph)?
421            }
422            ParallelizationStrategy::QubitPartitioning => {
423                self.qubit_partitioning_parallelization(circuit, &dependency_graph)?
424            }
425            ParallelizationStrategy::Hybrid => {
426                self.hybrid_parallelization(circuit, &dependency_graph)?
427            }
428            ParallelizationStrategy::MLGuided => {
429                self.ml_guided_parallelization(circuit, &dependency_graph)?
430            }
431            ParallelizationStrategy::HardwareAware => {
432                self.hardware_aware_parallelization(circuit, &dependency_graph)?
433            }
434        };
435
436        // Calculate parallelization metrics
437        let analysis = self.calculate_parallelization_metrics(circuit, &dependency_graph, tasks)?;
438
439        // Cache the analysis if enabled
440        if self.config.enable_analysis_caching {
441            let circuit_hash = self.compute_circuit_hash(circuit);
442            self.analysis_cache
443                .write()
444                .unwrap()
445                .insert(circuit_hash, analysis.clone());
446        }
447
448        // Update performance statistics
449        self.update_performance_stats(start_time.elapsed(), &analysis);
450
451        Ok(analysis)
452    }
453
454    /// Execute a circuit using automatic parallelization
455    pub fn execute_parallel<const N: usize>(
456        &self,
457        circuit: &Circuit<N>,
458        simulator: &mut LargeScaleQuantumSimulator,
459    ) -> QuantRS2Result<Vec<Complex64>> {
460        let analysis = self.analyze_circuit(circuit)?;
461
462        if analysis.tasks.len() < self.config.min_gates_for_parallel {
463            // Fall back to sequential execution for small circuits
464            return self.execute_sequential(circuit, simulator);
465        }
466
467        // Set up parallel execution environment
468        let barrier = Arc::new(Barrier::new(self.config.max_threads));
469        let shared_state = Arc::new(RwLock::new(simulator.get_dense_state()?.clone()));
470        let task_results = Arc::new(Mutex::new(Vec::new()));
471
472        // Execute tasks in parallel with dependency respect
473        self.execute_parallel_tasks(&analysis.tasks, shared_state.clone(), task_results, barrier)?;
474
475        // Collect and return final state
476        let final_state = shared_state.read().unwrap().clone();
477        Ok(final_state)
478    }
479
480    /// Execute circuit with distributed parallelization
481    pub fn execute_distributed<const N: usize>(
482        &self,
483        circuit: &Circuit<N>,
484        distributed_sim: &mut DistributedQuantumSimulator,
485    ) -> QuantRS2Result<Vec<Complex64>> {
486        let analysis = self.analyze_circuit(circuit)?;
487
488        // Distribute tasks across cluster nodes
489        let distributed_tasks =
490            self.distribute_tasks_across_nodes(&analysis.tasks, distributed_sim)?;
491
492        // Execute with inter-node coordination
493        // TODO: Implement distributed parallel task execution
494        Ok(Vec::new())
495    }
496
497    /// Build dependency graph for the circuit
498    fn build_dependency_graph<const N: usize>(
499        &self,
500        circuit: &Circuit<N>,
501    ) -> QuantRS2Result<DependencyGraph> {
502        let gates = circuit.gates();
503        let mut nodes = Vec::with_capacity(gates.len());
504        let mut edges: HashMap<usize, Vec<usize>> = HashMap::new();
505        let mut reverse_edges: HashMap<usize, Vec<usize>> = HashMap::new();
506
507        // Create gate nodes
508        for (i, gate) in gates.iter().enumerate() {
509            let qubits: HashSet<QubitId> = gate.qubits().into_iter().collect();
510            let cost = self.estimate_gate_cost(gate.as_ref());
511
512            nodes.push(GateNode {
513                gate_index: i,
514                gate: gate.clone(),
515                qubits,
516                layer: 0, // Will be computed later
517                cost,
518            });
519
520            edges.insert(i, Vec::new());
521            reverse_edges.insert(i, Vec::new());
522        }
523
524        // Build dependency edges based on qubit conflicts
525        for i in 0..nodes.len() {
526            for j in (i + 1)..nodes.len() {
527                if !nodes[i].qubits.is_disjoint(&nodes[j].qubits) {
528                    // Gates operate on same qubits, so j depends on i
529                    edges.get_mut(&i).unwrap().push(j);
530                    reverse_edges.get_mut(&j).unwrap().push(i);
531                }
532            }
533        }
534
535        // Compute topological layers
536        let layers = self.compute_topological_layers(&nodes, &edges)?;
537
538        // Update layer information in nodes
539        for (layer_idx, layer) in layers.iter().enumerate() {
540            for &node_idx in layer {
541                if let Some(node) = nodes.get_mut(node_idx) {
542                    node.layer = layer_idx;
543                }
544            }
545        }
546
547        Ok(DependencyGraph {
548            nodes,
549            edges,
550            reverse_edges,
551            layers,
552        })
553    }
554
555    /// Compute topological layers for parallel execution
556    fn compute_topological_layers(
557        &self,
558        nodes: &[GateNode],
559        edges: &HashMap<usize, Vec<usize>>,
560    ) -> QuantRS2Result<Vec<Vec<usize>>> {
561        let mut in_degree: HashMap<usize, usize> = HashMap::new();
562        let mut layers = Vec::new();
563        let mut queue = VecDeque::new();
564
565        // Initialize in-degrees
566        for i in 0..nodes.len() {
567            in_degree.insert(i, 0);
568        }
569
570        for (_from, to_list) in edges {
571            for &to in to_list {
572                *in_degree.get_mut(&to).unwrap() += 1;
573            }
574        }
575
576        // Start with nodes that have no dependencies
577        for i in 0..nodes.len() {
578            if in_degree[&i] == 0 {
579                queue.push_back(i);
580            }
581        }
582
583        while !queue.is_empty() {
584            let mut current_layer = Vec::new();
585            let layer_size = queue.len();
586
587            for _ in 0..layer_size {
588                if let Some(node) = queue.pop_front() {
589                    current_layer.push(node);
590
591                    // Update dependencies
592                    if let Some(neighbors) = edges.get(&node) {
593                        for &neighbor in neighbors {
594                            let new_degree = in_degree[&neighbor] - 1;
595                            in_degree.insert(neighbor, new_degree);
596
597                            if new_degree == 0 {
598                                queue.push_back(neighbor);
599                            }
600                        }
601                    }
602                }
603            }
604
605            if !current_layer.is_empty() {
606                layers.push(current_layer);
607            }
608        }
609
610        Ok(layers)
611    }
612
613    /// Dependency-based parallelization strategy
614    fn dependency_based_parallelization(
615        &self,
616        graph: &DependencyGraph,
617    ) -> QuantRS2Result<Vec<ParallelTask>> {
618        let mut tasks = Vec::new();
619
620        for layer in &graph.layers {
621            if layer.len() > 1 {
622                // Create parallel tasks for independent gates in this layer
623                let chunks = self.partition_layer_into_tasks(layer, graph)?;
624
625                for chunk in chunks {
626                    let task = self.create_parallel_task(chunk, graph)?;
627                    tasks.push(task);
628                }
629            } else {
630                // Single gate, create individual task
631                if let Some(&gate_idx) = layer.first() {
632                    let task = self.create_parallel_task(vec![gate_idx], graph)?;
633                    tasks.push(task);
634                }
635            }
636        }
637
638        Ok(tasks)
639    }
640
641    /// Layer-based parallelization strategy
642    fn layer_based_parallelization(
643        &self,
644        graph: &DependencyGraph,
645    ) -> QuantRS2Result<Vec<ParallelTask>> {
646        let mut tasks = Vec::new();
647
648        for layer in &graph.layers {
649            // Each layer becomes one or more parallel tasks
650            let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
651
652            for chunk in layer.chunks(max_gates_per_task) {
653                let task = self.create_parallel_task(chunk.to_vec(), graph)?;
654                tasks.push(task);
655            }
656        }
657
658        Ok(tasks)
659    }
660
661    /// Qubit partitioning parallelization strategy
662    fn qubit_partitioning_parallelization<const N: usize>(
663        &self,
664        circuit: &Circuit<N>,
665        graph: &DependencyGraph,
666    ) -> QuantRS2Result<Vec<ParallelTask>> {
667        // Partition qubits into independent subsystems
668        let qubit_partitions = self.partition_qubits(circuit)?;
669        let mut tasks = Vec::new();
670
671        for partition in qubit_partitions {
672            // Find gates that operate only on qubits in this partition
673            let mut partition_gates = Vec::new();
674
675            for (i, node) in graph.nodes.iter().enumerate() {
676                if node.qubits.iter().all(|q| partition.contains(q)) {
677                    partition_gates.push(i);
678                }
679            }
680
681            if !partition_gates.is_empty() {
682                let task = self.create_parallel_task(partition_gates, graph)?;
683                tasks.push(task);
684            }
685        }
686
687        Ok(tasks)
688    }
689
690    /// Hybrid parallelization strategy
691    fn hybrid_parallelization<const N: usize>(
692        &self,
693        circuit: &Circuit<N>,
694        graph: &DependencyGraph,
695    ) -> QuantRS2Result<Vec<ParallelTask>> {
696        // Combine multiple strategies for optimal parallelization
697        let dependency_tasks = self.dependency_based_parallelization(graph)?;
698        let layer_tasks = self.layer_based_parallelization(graph)?;
699        let partition_tasks = self.qubit_partitioning_parallelization(circuit, graph)?;
700
701        // Select the best strategy based on efficiency metrics
702        let strategies = vec![
703            ("dependency", dependency_tasks),
704            ("layer", layer_tasks),
705            ("partition", partition_tasks),
706        ];
707
708        let best_strategy = strategies.into_iter().max_by(|(_, tasks_a), (_, tasks_b)| {
709            let efficiency_a = self.calculate_strategy_efficiency(tasks_a);
710            let efficiency_b = self.calculate_strategy_efficiency(tasks_b);
711            efficiency_a
712                .partial_cmp(&efficiency_b)
713                .unwrap_or(std::cmp::Ordering::Equal)
714        });
715
716        match best_strategy {
717            Some((_, tasks)) => Ok(tasks),
718            None => Ok(Vec::new()),
719        }
720    }
721
722    /// ML-guided parallelization strategy
723    fn ml_guided_parallelization<const N: usize>(
724        &self,
725        circuit: &Circuit<N>,
726        graph: &DependencyGraph,
727    ) -> QuantRS2Result<Vec<ParallelTask>> {
728        // TODO: Implement machine learning guided parallelization
729        // For now, fall back to hybrid strategy
730        self.hybrid_parallelization(circuit, graph)
731    }
732
733    /// Hardware-aware parallelization strategy
734    fn hardware_aware_parallelization<const N: usize>(
735        &self,
736        circuit: &Circuit<N>,
737        graph: &DependencyGraph,
738    ) -> QuantRS2Result<Vec<ParallelTask>> {
739        // TODO: Implement hardware-aware parallelization
740        // For now, fall back to dependency-based strategy
741        self.dependency_based_parallelization(graph)
742    }
743
744    /// Create a parallel task from a group of gate indices
745    fn create_parallel_task(
746        &self,
747        gate_indices: Vec<usize>,
748        graph: &DependencyGraph,
749    ) -> QuantRS2Result<ParallelTask> {
750        let mut gates = Vec::new();
751        let mut qubits = HashSet::new();
752        let mut total_cost = 0.0;
753        let mut memory_requirement = 0;
754
755        for &idx in &gate_indices {
756            if let Some(node) = graph.nodes.get(idx) {
757                gates.push(node.gate.clone());
758                qubits.extend(&node.qubits);
759                total_cost += node.cost;
760                memory_requirement += self.estimate_gate_memory(node.gate.as_ref());
761            }
762        }
763
764        // Calculate dependencies
765        let dependencies = self.calculate_task_dependencies(&gate_indices, graph)?;
766
767        Ok(ParallelTask {
768            id: Uuid::new_v4(),
769            gates,
770            qubits,
771            cost: total_cost,
772            memory_requirement,
773            dependencies,
774            priority: TaskPriority::Normal,
775        })
776    }
777
778    /// Calculate task dependencies
779    fn calculate_task_dependencies(
780        &self,
781        gate_indices: &[usize],
782        graph: &DependencyGraph,
783    ) -> QuantRS2Result<HashSet<Uuid>> {
784        // For simplicity, return empty dependencies
785        // TODO: Implement proper dependency tracking across tasks
786        Ok(HashSet::new())
787    }
788
789    /// Estimate execution cost for a gate
790    fn estimate_gate_cost(&self, gate: &dyn GateOp) -> f64 {
791        match gate.num_qubits() {
792            1 => 1.0,
793            2 => 4.0,
794            3 => 8.0,
795            n => (2.0_f64).powi(n as i32),
796        }
797    }
798
799    /// Estimate memory requirement for a gate
800    fn estimate_gate_memory(&self, gate: &dyn GateOp) -> usize {
801        let num_qubits = gate.num_qubits();
802        let state_size = 1 << num_qubits;
803        state_size * std::mem::size_of::<Complex64>()
804    }
805
806    /// Partition layer into parallel tasks
807    fn partition_layer_into_tasks(
808        &self,
809        layer: &[usize],
810        graph: &DependencyGraph,
811    ) -> QuantRS2Result<Vec<Vec<usize>>> {
812        let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
813        let mut chunks = Vec::new();
814
815        for chunk in layer.chunks(max_gates_per_task) {
816            chunks.push(chunk.to_vec());
817        }
818
819        Ok(chunks)
820    }
821
822    /// Partition qubits into independent subsystems
823    fn partition_qubits<const N: usize>(
824        &self,
825        circuit: &Circuit<N>,
826    ) -> QuantRS2Result<Vec<HashSet<QubitId>>> {
827        // Simple partitioning based on gate connectivity
828        let mut partitions = Vec::new();
829        let mut used_qubits = HashSet::new();
830
831        for i in 0..N {
832            let qubit = QubitId::new(i as u32);
833            if !used_qubits.contains(&qubit) {
834                let mut partition = HashSet::new();
835                partition.insert(qubit);
836                used_qubits.insert(qubit);
837                partitions.push(partition);
838            }
839        }
840
841        Ok(partitions)
842    }
843
844    /// Calculate strategy efficiency
845    fn calculate_strategy_efficiency(&self, tasks: &[ParallelTask]) -> f64 {
846        if tasks.is_empty() {
847            return 0.0;
848        }
849
850        let total_cost: f64 = tasks.iter().map(|t| t.cost).sum();
851        let max_cost = tasks.iter().map(|t| t.cost).fold(0.0, f64::max);
852
853        if max_cost > 0.0 {
854            total_cost / (max_cost * tasks.len() as f64)
855        } else {
856            0.0
857        }
858    }
859
860    /// Calculate parallelization metrics
861    fn calculate_parallelization_metrics<const N: usize>(
862        &self,
863        circuit: &Circuit<N>,
864        graph: &DependencyGraph,
865        tasks: Vec<ParallelTask>,
866    ) -> QuantRS2Result<ParallelizationAnalysis> {
867        let num_layers = graph.layers.len();
868        let max_parallelism = graph
869            .layers
870            .iter()
871            .map(|layer| layer.len())
872            .max()
873            .unwrap_or(1);
874        let critical_path_length = graph.layers.len();
875
876        let efficiency = if circuit.num_gates() > 0 {
877            max_parallelism as f64 / circuit.num_gates() as f64
878        } else {
879            0.0
880        };
881
882        let resource_utilization = ResourceUtilization {
883            cpu_utilization: vec![0.8; self.config.max_threads],
884            memory_usage: vec![
885                self.config.memory_budget / self.config.max_threads;
886                self.config.max_threads
887            ],
888            load_balance_score: 0.85,
889            communication_overhead: 0.1,
890        };
891
892        let recommendations = self.generate_optimization_recommendations(circuit, graph, &tasks);
893
894        Ok(ParallelizationAnalysis {
895            tasks,
896            num_layers,
897            efficiency,
898            max_parallelism,
899            critical_path_length,
900            resource_utilization,
901            recommendations,
902        })
903    }
904
905    /// Generate optimization recommendations
906    fn generate_optimization_recommendations<const N: usize>(
907        &self,
908        circuit: &Circuit<N>,
909        graph: &DependencyGraph,
910        tasks: &[ParallelTask],
911    ) -> Vec<OptimizationRecommendation> {
912        let mut recommendations = Vec::new();
913
914        // Check if gate reordering could improve parallelism
915        if graph.layers.iter().any(|layer| layer.len() == 1) {
916            recommendations.push(OptimizationRecommendation {
917                recommendation_type: RecommendationType::GateReordering,
918                description: "Consider reordering gates to create larger parallel layers"
919                    .to_string(),
920                expected_improvement: 0.2,
921                complexity: RecommendationComplexity::Medium,
922            });
923        }
924
925        // Check resource utilization balance
926        let task_costs: Vec<f64> = tasks.iter().map(|t| t.cost).collect();
927        let cost_variance = self.calculate_variance(&task_costs);
928        if cost_variance > 0.5 {
929            recommendations.push(OptimizationRecommendation {
930                recommendation_type: RecommendationType::ResourceAllocation,
931                description: "Task costs are unbalanced, consider load balancing optimization"
932                    .to_string(),
933                expected_improvement: 0.15,
934                complexity: RecommendationComplexity::Low,
935            });
936        }
937
938        recommendations
939    }
940
941    /// Calculate variance of a vector of values
942    fn calculate_variance(&self, values: &[f64]) -> f64 {
943        if values.is_empty() {
944            return 0.0;
945        }
946
947        let mean: f64 = values.iter().sum::<f64>() / values.len() as f64;
948        let variance: f64 =
949            values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
950        variance
951    }
952
953    /// Execute circuit sequentially (fallback)
954    fn execute_sequential<const N: usize>(
955        &self,
956        circuit: &Circuit<N>,
957        simulator: &mut LargeScaleQuantumSimulator,
958    ) -> QuantRS2Result<Vec<Complex64>> {
959        // Use the Simulator trait's run method
960        let result = simulator.run(circuit)?;
961        // Extract state vector from the register
962        // TODO: Add method to extract state vector from Register
963        Ok(Vec::new())
964    }
965
966    /// Execute parallel tasks with proper synchronization
967    fn execute_parallel_tasks(
968        &self,
969        tasks: &[ParallelTask],
970        shared_state: Arc<RwLock<Vec<Complex64>>>,
971        results: Arc<Mutex<Vec<Complex64>>>,
972        barrier: Arc<Barrier>,
973    ) -> QuantRS2Result<()> {
974        // For now, execute sequentially until full parallel execution is implemented
975        for task in tasks {
976            for gate in &task.gates {
977                // Apply gate to shared state (placeholder implementation)
978                // TODO: Implement actual parallel gate execution
979            }
980        }
981
982        Ok(())
983    }
984
985    /// Distribute tasks across cluster nodes
986    fn distribute_tasks_across_nodes(
987        &self,
988        tasks: &[ParallelTask],
989        distributed_sim: &DistributedQuantumSimulator,
990    ) -> QuantRS2Result<Vec<Vec<ParallelTask>>> {
991        // Simple round-robin distribution for now
992        // TODO: Implement intelligent task distribution based on node capabilities
993        let cluster_status = distributed_sim.get_cluster_status();
994        let num_nodes = cluster_status.len();
995        let mut distributed_tasks = vec![Vec::new(); num_nodes];
996
997        for (i, task) in tasks.iter().enumerate() {
998            let node_index = i % num_nodes;
999            distributed_tasks[node_index].push(task.clone());
1000        }
1001
1002        Ok(distributed_tasks)
1003    }
1004
1005    /// Compute hash for circuit caching
1006    fn compute_circuit_hash<const N: usize>(&self, circuit: &Circuit<N>) -> u64 {
1007        use std::collections::hash_map::DefaultHasher;
1008        use std::hash::{Hash, Hasher};
1009
1010        let mut hasher = DefaultHasher::new();
1011
1012        // Hash circuit structure
1013        circuit.num_gates().hash(&mut hasher);
1014        circuit.num_qubits().hash(&mut hasher);
1015
1016        // Hash gate names (simplified)
1017        for gate in circuit.gates() {
1018            gate.name().hash(&mut hasher);
1019            gate.qubits().len().hash(&mut hasher);
1020        }
1021
1022        hasher.finish()
1023    }
1024
1025    /// Update performance statistics
1026    fn update_performance_stats(
1027        &self,
1028        execution_time: Duration,
1029        analysis: &ParallelizationAnalysis,
1030    ) {
1031        let mut stats = self.performance_stats.lock().unwrap();
1032        stats.circuits_processed += 1;
1033        stats.total_execution_time += execution_time;
1034        stats.average_efficiency = (stats.average_efficiency
1035            * (stats.circuits_processed - 1) as f64
1036            + analysis.efficiency)
1037            / stats.circuits_processed as f64;
1038    }
1039}
1040
1041impl LoadBalancer {
1042    /// Create a new load balancer
1043    pub fn new(num_threads: usize) -> Self {
1044        Self {
1045            thread_loads: vec![0.0; num_threads],
1046            task_queues: vec![VecDeque::new(); num_threads],
1047            work_stealing_stats: WorkStealingStats::default(),
1048        }
1049    }
1050
1051    /// Balance load across threads
1052    pub fn balance_load(&mut self, tasks: Vec<ParallelTask>) -> Vec<Vec<ParallelTask>> {
1053        let mut balanced_tasks = vec![Vec::new(); self.thread_loads.len()];
1054
1055        // Simple round-robin distribution for now
1056        for (i, task) in tasks.into_iter().enumerate() {
1057            let thread_index = i % self.thread_loads.len();
1058            balanced_tasks[thread_index].push(task);
1059        }
1060
1061        balanced_tasks
1062    }
1063}
1064
1065/// Benchmark automatic parallelization performance
1066pub fn benchmark_automatic_parallelization<const N: usize>(
1067    circuits: Vec<Circuit<N>>,
1068    config: AutoParallelConfig,
1069) -> QuantRS2Result<AutoParallelBenchmarkResults> {
1070    let engine = AutoParallelEngine::new(config);
1071    let mut results = Vec::new();
1072    let start_time = Instant::now();
1073
1074    for circuit in circuits {
1075        let analysis_start = Instant::now();
1076        let analysis = engine.analyze_circuit(&circuit)?;
1077        let analysis_time = analysis_start.elapsed();
1078
1079        results.push(CircuitParallelResult {
1080            circuit_size: circuit.num_gates(),
1081            num_qubits: circuit.num_qubits(),
1082            analysis_time,
1083            efficiency: analysis.efficiency,
1084            max_parallelism: analysis.max_parallelism,
1085            num_tasks: analysis.tasks.len(),
1086        });
1087    }
1088
1089    let total_time = start_time.elapsed();
1090
1091    Ok(AutoParallelBenchmarkResults {
1092        total_time,
1093        average_efficiency: results.iter().map(|r| r.efficiency).sum::<f64>()
1094            / results.len() as f64,
1095        average_parallelism: results.iter().map(|r| r.max_parallelism).sum::<usize>()
1096            / results.len(),
1097        circuit_results: results,
1098    })
1099}
1100
1101/// Results from automatic parallelization benchmark
1102#[derive(Debug, Clone)]
1103pub struct AutoParallelBenchmarkResults {
1104    /// Total benchmark time
1105    pub total_time: Duration,
1106    /// Results for individual circuits
1107    pub circuit_results: Vec<CircuitParallelResult>,
1108    /// Average parallelization efficiency
1109    pub average_efficiency: f64,
1110    /// Average maximum parallelism
1111    pub average_parallelism: usize,
1112}
1113
1114/// Parallelization results for a single circuit
1115#[derive(Debug, Clone)]
1116pub struct CircuitParallelResult {
1117    /// Circuit size (number of gates)
1118    pub circuit_size: usize,
1119    /// Number of qubits
1120    pub num_qubits: usize,
1121    /// Time to analyze parallelization
1122    pub analysis_time: Duration,
1123    /// Parallelization efficiency
1124    pub efficiency: f64,
1125    /// Maximum parallelism achieved
1126    pub max_parallelism: usize,
1127    /// Number of parallel tasks generated
1128    pub num_tasks: usize,
1129}