quantrs2_sim/
automatic_parallelization.rs

1//! Automatic Parallelization for Quantum Circuits
2//!
3//! This module provides automatic parallelization capabilities for quantum circuits,
4//! analyzing circuit structure to identify independent gate operations that can be
5//! executed in parallel using `SciRS2` parallel operations for optimal performance.
6
7use crate::distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig};
8use crate::large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig};
9use quantrs2_circuit::builder::{Circuit, Simulator};
10use quantrs2_core::{
11    error::{QuantRS2Error, QuantRS2Result},
12    gate::GateOp,
13    qubit::QubitId,
14};
15use scirs2_core::parallel_ops::{current_num_threads, IndexedParallelIterator, ParallelIterator}; // SciRS2 POLICY compliant
16                                                                                                 // use scirs2_core::scheduling::{Scheduler, TaskGraph, ParallelExecutor};
17                                                                                                 // use scirs2_core::optimization::{CostModel, ResourceOptimizer};
18use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
19use scirs2_core::Complex64;
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};
22use std::sync::{Arc, Barrier, Mutex, RwLock};
23use std::thread;
24use std::time::{Duration, Instant};
25use uuid::Uuid;
26
27/// Configuration for automatic parallelization
28#[derive(Debug, Clone, Serialize, Deserialize)]
29pub struct AutoParallelConfig {
30    /// Maximum number of parallel execution threads
31    pub max_threads: usize,
32
33    /// Minimum gate count to enable parallelization
34    pub min_gates_for_parallel: usize,
35
36    /// Parallelization strategy
37    pub strategy: ParallelizationStrategy,
38
39    /// Resource constraints
40    pub resource_constraints: ResourceConstraints,
41
42    /// Enable inter-layer parallelization
43    pub enable_inter_layer_parallel: bool,
44
45    /// Enable gate fusion optimization
46    pub enable_gate_fusion: bool,
47
48    /// `SciRS2` optimization level
49    pub scirs2_optimization_level: OptimizationLevel,
50
51    /// Load balancing configuration
52    pub load_balancing: LoadBalancingConfig,
53
54    /// Enable circuit analysis caching
55    pub enable_analysis_caching: bool,
56
57    /// Memory budget for parallel execution
58    pub memory_budget: usize,
59}
60
61impl Default for AutoParallelConfig {
62    fn default() -> Self {
63        Self {
64            max_threads: current_num_threads(), // SciRS2 POLICY compliant
65            min_gates_for_parallel: 10,
66            strategy: ParallelizationStrategy::DependencyAnalysis,
67            resource_constraints: ResourceConstraints::default(),
68            enable_inter_layer_parallel: true,
69            enable_gate_fusion: true,
70            scirs2_optimization_level: OptimizationLevel::Aggressive,
71            load_balancing: LoadBalancingConfig::default(),
72            enable_analysis_caching: true,
73            memory_budget: 4 * 1024 * 1024 * 1024, // 4GB
74        }
75    }
76}
77
78/// Parallelization strategies for circuit execution
79#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
80pub enum ParallelizationStrategy {
81    /// Analyze gate dependencies and parallelize independent operations
82    DependencyAnalysis,
83    /// Layer-based parallelization with depth analysis
84    LayerBased,
85    /// Qubit partitioning for independent subsystems
86    QubitPartitioning,
87    /// Hybrid approach combining multiple strategies
88    Hybrid,
89    /// Machine learning guided parallelization
90    MLGuided,
91    /// Hardware-aware parallelization
92    HardwareAware,
93}
94
95/// Resource constraints for parallel execution
96#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct ResourceConstraints {
98    /// Maximum memory per thread (bytes)
99    pub max_memory_per_thread: usize,
100    /// Maximum CPU utilization (0.0 to 1.0)
101    pub max_cpu_utilization: f64,
102    /// Maximum gate operations per thread
103    pub max_gates_per_thread: usize,
104    /// Preferred NUMA node
105    pub preferred_numa_node: Option<usize>,
106}
107
108impl Default for ResourceConstraints {
109    fn default() -> Self {
110        Self {
111            max_memory_per_thread: 1024 * 1024 * 1024, // 1GB
112            max_cpu_utilization: 0.8,
113            max_gates_per_thread: 1000,
114            preferred_numa_node: None,
115        }
116    }
117}
118
119/// Load balancing configuration for parallel execution
120#[derive(Debug, Clone, Serialize, Deserialize)]
121pub struct LoadBalancingConfig {
122    /// Enable dynamic load balancing
123    pub enable_dynamic_balancing: bool,
124    /// Work stealing strategy
125    pub work_stealing_strategy: WorkStealingStrategy,
126    /// Load monitoring interval
127    pub monitoring_interval: Duration,
128    /// Rebalancing threshold
129    pub rebalancing_threshold: f64,
130}
131
132impl Default for LoadBalancingConfig {
133    fn default() -> Self {
134        Self {
135            enable_dynamic_balancing: true,
136            work_stealing_strategy: WorkStealingStrategy::Adaptive,
137            monitoring_interval: Duration::from_millis(100),
138            rebalancing_threshold: 0.2,
139        }
140    }
141}
142
143/// Work stealing strategies for load balancing
144#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
145pub enum WorkStealingStrategy {
146    /// Random work stealing
147    Random,
148    /// Cost-aware work stealing
149    CostAware,
150    /// Locality-aware work stealing
151    LocalityAware,
152    /// Adaptive strategy selection
153    Adaptive,
154}
155
156/// `SciRS2` optimization levels
157#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
158pub enum OptimizationLevel {
159    /// No optimization
160    None,
161    /// Basic optimizations
162    Basic,
163    /// Advanced optimizations
164    Advanced,
165    /// Aggressive optimizations
166    Aggressive,
167    /// Custom optimization profile
168    Custom,
169}
170
171/// Parallel execution task representing a group of independent gates
172#[derive(Debug, Clone)]
173pub struct ParallelTask {
174    /// Unique task identifier
175    pub id: Uuid,
176    /// Gates to execute in this task
177    pub gates: Vec<Arc<dyn GateOp + Send + Sync>>,
178    /// Qubits involved in this task
179    pub qubits: HashSet<QubitId>,
180    /// Estimated execution cost
181    pub cost: f64,
182    /// Memory requirement estimate
183    pub memory_requirement: usize,
184    /// Dependencies (task IDs that must complete before this task)
185    pub dependencies: HashSet<Uuid>,
186    /// Priority level
187    pub priority: TaskPriority,
188}
189
190/// Task priority levels
191#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
192pub enum TaskPriority {
193    /// Low priority task
194    Low = 1,
195    /// Normal priority task
196    Normal = 2,
197    /// High priority task
198    High = 3,
199    /// Critical priority task
200    Critical = 4,
201}
202
203/// Circuit dependency graph for parallelization analysis
204#[derive(Debug, Clone)]
205pub struct DependencyGraph {
206    /// Gate nodes in the dependency graph
207    pub nodes: Vec<GateNode>,
208    /// Adjacency list representation
209    pub edges: HashMap<usize, Vec<usize>>,
210    /// Reverse adjacency list
211    pub reverse_edges: HashMap<usize, Vec<usize>>,
212    /// Topological layers
213    pub layers: Vec<Vec<usize>>,
214}
215
216/// Gate node in the dependency graph
217#[derive(Debug, Clone)]
218pub struct GateNode {
219    /// Gate index in original circuit
220    pub gate_index: usize,
221    /// Gate operation
222    pub gate: Arc<dyn GateOp + Send + Sync>,
223    /// Qubits this gate operates on
224    pub qubits: HashSet<QubitId>,
225    /// Layer index in topological ordering
226    pub layer: usize,
227    /// Estimated execution cost
228    pub cost: f64,
229}
230
231/// Parallelization analysis results
232#[derive(Debug, Clone)]
233pub struct ParallelizationAnalysis {
234    /// Parallel tasks generated
235    pub tasks: Vec<ParallelTask>,
236    /// Total number of layers
237    pub num_layers: usize,
238    /// Parallelization efficiency (0.0 to 1.0)
239    pub efficiency: f64,
240    /// Maximum parallelism achievable
241    pub max_parallelism: usize,
242    /// Critical path length
243    pub critical_path_length: usize,
244    /// Resource utilization predictions
245    pub resource_utilization: ResourceUtilization,
246    /// Optimization recommendations
247    pub recommendations: Vec<OptimizationRecommendation>,
248}
249
250/// Resource utilization predictions
251#[derive(Debug, Clone)]
252pub struct ResourceUtilization {
253    /// Estimated CPU utilization per thread
254    pub cpu_utilization: Vec<f64>,
255    /// Estimated memory usage per thread
256    pub memory_usage: Vec<usize>,
257    /// Load balancing score (0.0 to 1.0)
258    pub load_balance_score: f64,
259    /// Communication overhead estimate
260    pub communication_overhead: f64,
261}
262
263/// Optimization recommendations for better parallelization
264#[derive(Debug, Clone)]
265pub struct OptimizationRecommendation {
266    /// Recommendation type
267    pub recommendation_type: RecommendationType,
268    /// Description of the recommendation
269    pub description: String,
270    /// Expected improvement (0.0 to 1.0)
271    pub expected_improvement: f64,
272    /// Implementation complexity
273    pub complexity: RecommendationComplexity,
274}
275
276/// Types of optimization recommendations
277#[derive(Debug, Clone, Copy, PartialEq, Eq)]
278pub enum RecommendationType {
279    /// Gate reordering for better parallelism
280    GateReordering,
281    /// Circuit decomposition
282    CircuitDecomposition,
283    /// Resource allocation adjustment
284    ResourceAllocation,
285    /// Strategy change recommendation
286    StrategyChange,
287    /// Hardware configuration
288    HardwareConfiguration,
289}
290
291/// Complexity levels for recommendations
292#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
293pub enum RecommendationComplexity {
294    /// Low complexity, easy to implement
295    Low,
296    /// Medium complexity
297    Medium,
298    /// High complexity, significant changes required
299    High,
300}
301
302/// ML features extracted from circuits for parallelization prediction
303#[derive(Debug, Clone)]
304pub struct MLFeatures {
305    /// Number of gates in the circuit
306    pub num_gates: usize,
307    /// Number of qubits in the circuit
308    pub num_qubits: usize,
309    /// Circuit depth (critical path length)
310    pub circuit_depth: usize,
311    /// Average gate connectivity
312    pub avg_connectivity: f64,
313    /// Parallelism factor (ratio of independent gates)
314    pub parallelism_factor: f64,
315    /// Gate type distribution
316    pub gate_distribution: HashMap<String, usize>,
317    /// Entanglement complexity score
318    pub entanglement_score: f64,
319    /// Dependency density (edges per gate)
320    pub dependency_density: f64,
321}
322
323/// ML-predicted parallelization strategies
324#[derive(Debug, Clone, Copy, PartialEq, Eq)]
325pub enum MLPredictedStrategy {
326    /// High parallelism - aggressive parallel execution
327    HighParallelism,
328    /// Balanced parallelism - mixed approach
329    BalancedParallelism,
330    /// Conservative parallelism - careful dependency management
331    ConservativeParallelism,
332    /// Layer-optimized execution
333    LayerOptimized,
334}
335
336/// Hardware characteristics for hardware-aware parallelization
337#[derive(Debug, Clone)]
338pub struct HardwareCharacteristics {
339    /// Number of available CPU cores
340    pub num_cores: usize,
341    /// L1 cache size per core (bytes)
342    pub l1_cache_size: usize,
343    /// L2 cache size per core (bytes)
344    pub l2_cache_size: usize,
345    /// L3 cache size (bytes)
346    pub l3_cache_size: usize,
347    /// Memory bandwidth (GB/s)
348    pub memory_bandwidth: f64,
349    /// NUMA nodes available
350    pub num_numa_nodes: usize,
351    /// GPU availability
352    pub has_gpu: bool,
353    /// SIMD width (e.g., 256 for AVX2, 512 for AVX-512)
354    pub simd_width: usize,
355}
356
357/// Hardware-specific parallelization strategies
358#[derive(Debug, Clone, Copy, PartialEq, Eq)]
359pub enum HardwareStrategy {
360    /// Optimize for cache locality
361    CacheOptimized,
362    /// Optimize for SIMD vectorization
363    SIMDOptimized,
364    /// NUMA-aware task distribution
365    NUMAAware,
366    /// Offload to GPU
367    GPUOffload,
368    /// Hybrid approach combining multiple optimizations
369    Hybrid,
370}
371
372/// Node capacity information for distributed task scheduling
373#[derive(Debug, Clone)]
374pub struct NodeCapacity {
375    /// Number of CPU cores available
376    pub cpu_cores: usize,
377    /// Available memory in GB
378    pub memory_gb: f64,
379    /// GPU availability
380    pub gpu_available: bool,
381    /// Network bandwidth in Gbps
382    pub network_bandwidth_gbps: f64,
383    /// Relative performance score (normalized)
384    pub relative_performance: f64,
385}
386
387/// Automatic parallelization engine for quantum circuits
388pub struct AutoParallelEngine {
389    /// Configuration
390    config: AutoParallelConfig,
391    /// Analysis cache for circuits
392    analysis_cache: Arc<RwLock<HashMap<u64, ParallelizationAnalysis>>>,
393    /// Performance statistics
394    performance_stats: Arc<Mutex<ParallelPerformanceStats>>,
395    /// `SciRS2` integration components
396    //scirs2_scheduler: SciRS2Scheduler,
397    /// Load balancer
398    load_balancer: Arc<Mutex<LoadBalancer>>,
399}
400
401/// Performance statistics for parallel execution
402#[derive(Debug, Clone, Default)]
403pub struct ParallelPerformanceStats {
404    /// Total circuits processed
405    pub circuits_processed: usize,
406    /// Total execution time
407    pub total_execution_time: Duration,
408    /// Average parallelization efficiency
409    pub average_efficiency: f64,
410    /// Cache hit rate
411    pub cache_hit_rate: f64,
412    /// Task completion statistics
413    pub task_stats: TaskCompletionStats,
414    /// Resource utilization history
415    pub resource_history: Vec<ResourceSnapshot>,
416}
417
418/// Task completion statistics
419#[derive(Debug, Clone, Default)]
420pub struct TaskCompletionStats {
421    /// Total tasks completed
422    pub total_tasks: usize,
423    /// Average task duration
424    pub average_duration: Duration,
425    /// Task success rate
426    pub success_rate: f64,
427    /// Load balancing effectiveness
428    pub load_balance_effectiveness: f64,
429}
430
431/// Resource utilization snapshot
432#[derive(Debug, Clone)]
433pub struct ResourceSnapshot {
434    /// Timestamp
435    pub timestamp: Instant,
436    /// CPU utilization per core
437    pub cpu_utilization: Vec<f64>,
438    /// Memory usage
439    pub memory_usage: usize,
440    /// Active tasks
441    pub active_tasks: usize,
442}
443
444/// Load balancer for parallel task execution
445pub struct LoadBalancer {
446    /// Current thread loads
447    thread_loads: Vec<f64>,
448    /// Task queue per thread
449    task_queues: Vec<VecDeque<ParallelTask>>,
450    /// Work stealing statistics
451    work_stealing_stats: WorkStealingStats,
452}
453
454/// Work stealing statistics
455#[derive(Debug, Clone, Default)]
456pub struct WorkStealingStats {
457    /// Total steal attempts
458    pub steal_attempts: usize,
459    /// Successful steals
460    pub successful_steals: usize,
461    /// Failed steals
462    pub failed_steals: usize,
463    /// Average steal latency
464    pub average_steal_latency: Duration,
465}
466
467impl AutoParallelEngine {
468    /// Create a new automatic parallelization engine
469    #[must_use]
470    pub fn new(config: AutoParallelConfig) -> Self {
471        let num_threads = config.max_threads;
472
473        Self {
474            config,
475            analysis_cache: Arc::new(RwLock::new(HashMap::new())),
476            performance_stats: Arc::new(Mutex::new(ParallelPerformanceStats::default())),
477            load_balancer: Arc::new(Mutex::new(LoadBalancer::new(num_threads))),
478        }
479    }
480
481    /// Analyze a circuit for parallelization opportunities
482    pub fn analyze_circuit<const N: usize>(
483        &self,
484        circuit: &Circuit<N>,
485    ) -> QuantRS2Result<ParallelizationAnalysis> {
486        let start_time = Instant::now();
487
488        // Check cache first if enabled
489        if self.config.enable_analysis_caching {
490            let circuit_hash = Self::compute_circuit_hash(circuit);
491            if let Some(cached_analysis) = self
492                .analysis_cache
493                .read()
494                .expect("analysis cache read lock should not be poisoned")
495                .get(&circuit_hash)
496            {
497                return Ok(cached_analysis.clone());
498            }
499        }
500
501        // Build dependency graph
502        let dependency_graph = self.build_dependency_graph(circuit)?;
503
504        // Generate parallel tasks based on strategy
505        let tasks = match self.config.strategy {
506            ParallelizationStrategy::DependencyAnalysis => {
507                self.dependency_based_parallelization(&dependency_graph)?
508            }
509            ParallelizationStrategy::LayerBased => {
510                self.layer_based_parallelization(&dependency_graph)?
511            }
512            ParallelizationStrategy::QubitPartitioning => {
513                self.qubit_partitioning_parallelization(circuit, &dependency_graph)?
514            }
515            ParallelizationStrategy::Hybrid => {
516                self.hybrid_parallelization(circuit, &dependency_graph)?
517            }
518            ParallelizationStrategy::MLGuided => {
519                self.ml_guided_parallelization(circuit, &dependency_graph)?
520            }
521            ParallelizationStrategy::HardwareAware => {
522                self.hardware_aware_parallelization(circuit, &dependency_graph)?
523            }
524        };
525
526        // Calculate parallelization metrics
527        let analysis = self.calculate_parallelization_metrics(circuit, &dependency_graph, tasks)?;
528
529        // Cache the analysis if enabled
530        if self.config.enable_analysis_caching {
531            let circuit_hash = Self::compute_circuit_hash(circuit);
532            self.analysis_cache
533                .write()
534                .expect("analysis cache write lock should not be poisoned")
535                .insert(circuit_hash, analysis.clone());
536        }
537
538        // Update performance statistics
539        self.update_performance_stats(start_time.elapsed(), &analysis);
540
541        Ok(analysis)
542    }
543
544    /// Execute a circuit using automatic parallelization
545    pub fn execute_parallel<const N: usize>(
546        &self,
547        circuit: &Circuit<N>,
548        simulator: &mut LargeScaleQuantumSimulator,
549    ) -> QuantRS2Result<Vec<Complex64>> {
550        let analysis = self.analyze_circuit(circuit)?;
551
552        if analysis.tasks.len() < self.config.min_gates_for_parallel {
553            // Fall back to sequential execution for small circuits
554            return Self::execute_sequential(circuit, simulator);
555        }
556
557        // Set up parallel execution environment
558        let barrier = Arc::new(Barrier::new(self.config.max_threads));
559        let shared_state = Arc::new(RwLock::new(simulator.get_dense_state()?));
560        let task_results = Arc::new(Mutex::new(Vec::new()));
561
562        // Execute tasks in parallel with dependency respect
563        self.execute_parallel_tasks(&analysis.tasks, shared_state.clone(), task_results, barrier)?;
564
565        // Collect and return final state
566        let final_state = shared_state
567            .read()
568            .expect("shared state read lock should not be poisoned")
569            .clone();
570        Ok(final_state)
571    }
572
573    /// Execute circuit with distributed parallelization
574    pub fn execute_distributed<const N: usize>(
575        &self,
576        circuit: &Circuit<N>,
577        distributed_sim: &mut DistributedQuantumSimulator,
578    ) -> QuantRS2Result<Vec<Complex64>> {
579        let analysis = self.analyze_circuit(circuit)?;
580
581        // Distribute tasks across cluster nodes
582        let distributed_tasks =
583            self.distribute_tasks_across_nodes(&analysis.tasks, distributed_sim)?;
584
585        // Execute with inter-node coordination
586        // Implement distributed parallel task execution
587        let results = self.execute_distributed_tasks(&distributed_tasks, distributed_sim)?;
588
589        // Aggregate results from all nodes
590        let final_result = Self::aggregate_distributed_results(results)?;
591
592        Ok(final_result)
593    }
594
595    /// Execute distributed tasks across nodes
596    fn execute_distributed_tasks(
597        &self,
598        distributed_tasks: &[Vec<ParallelTask>],
599        distributed_sim: &DistributedQuantumSimulator,
600    ) -> QuantRS2Result<Vec<Vec<Complex64>>> {
601        use scirs2_core::parallel_ops::{parallel_map, IndexedParallelIterator, ParallelIterator};
602
603        let cluster_status = distributed_sim.get_cluster_status();
604        let num_nodes = cluster_status.len();
605
606        // Execute tasks on each node in parallel
607        let node_results: Vec<Vec<Complex64>> =
608            parallel_map(&(0..num_nodes).collect::<Vec<_>>(), |&node_id| {
609                let tasks = &distributed_tasks[node_id];
610                let mut node_result = Vec::new();
611
612                // Execute tasks sequentially on each node
613                for task in tasks {
614                    // Simulate task execution on the node
615                    // In a real implementation, this would involve network communication
616                    let task_result = Self::execute_task_on_node(task, node_id);
617                    node_result.extend(task_result);
618                }
619
620                node_result
621            });
622
623        Ok(node_results)
624    }
625
626    /// Execute a single task on a specific node
627    const fn execute_task_on_node(task: &ParallelTask, node_id: usize) -> Vec<Complex64> {
628        // Placeholder implementation for task execution on a node
629        // In a real implementation, this would involve:
630        // 1. Sending task data to the node
631        // 2. Node executing gates on its portion of the state
632        // 3. Receiving results back
633
634        // For now, return empty result
635        // This would be populated with actual gate execution results
636        Vec::new()
637    }
638
639    /// Aggregate results from distributed execution
640    fn aggregate_distributed_results(
641        node_results: Vec<Vec<Complex64>>,
642    ) -> QuantRS2Result<Vec<Complex64>> {
643        use scirs2_core::parallel_ops::{IndexedParallelIterator, ParallelIterator};
644
645        // Combine results from all nodes
646        // In a real implementation, this would involve proper state vector reconstruction
647        let total_elements: usize = node_results.iter().map(std::vec::Vec::len).sum();
648        let mut aggregated = Vec::with_capacity(total_elements);
649
650        for node_result in node_results {
651            aggregated.extend(node_result);
652        }
653
654        Ok(aggregated)
655    }
656
657    /// Build dependency graph for the circuit
658    fn build_dependency_graph<const N: usize>(
659        &self,
660        circuit: &Circuit<N>,
661    ) -> QuantRS2Result<DependencyGraph> {
662        let gates = circuit.gates();
663        let mut nodes = Vec::with_capacity(gates.len());
664        let mut edges: HashMap<usize, Vec<usize>> = HashMap::new();
665        let mut reverse_edges: HashMap<usize, Vec<usize>> = HashMap::new();
666
667        // Create gate nodes
668        for (i, gate) in gates.iter().enumerate() {
669            let qubits: HashSet<QubitId> = gate.qubits().into_iter().collect();
670            let cost = Self::estimate_gate_cost(gate.as_ref());
671
672            nodes.push(GateNode {
673                gate_index: i,
674                gate: gate.clone(),
675                qubits,
676                layer: 0, // Will be computed later
677                cost,
678            });
679
680            edges.insert(i, Vec::new());
681            reverse_edges.insert(i, Vec::new());
682        }
683
684        // Build dependency edges based on qubit conflicts
685        for i in 0..nodes.len() {
686            for j in (i + 1)..nodes.len() {
687                if !nodes[i].qubits.is_disjoint(&nodes[j].qubits) {
688                    // Gates operate on same qubits, so j depends on i
689                    if let Some(edge_list) = edges.get_mut(&i) {
690                        edge_list.push(j);
691                    }
692                    if let Some(reverse_edge_list) = reverse_edges.get_mut(&j) {
693                        reverse_edge_list.push(i);
694                    }
695                }
696            }
697        }
698
699        // Compute topological layers
700        let layers = Self::compute_topological_layers(&nodes, &edges)?;
701
702        // Update layer information in nodes
703        for (layer_idx, layer) in layers.iter().enumerate() {
704            for &node_idx in layer {
705                if let Some(node) = nodes.get_mut(node_idx) {
706                    node.layer = layer_idx;
707                }
708            }
709        }
710
711        Ok(DependencyGraph {
712            nodes,
713            edges,
714            reverse_edges,
715            layers,
716        })
717    }
718
719    /// Compute topological layers for parallel execution
720    fn compute_topological_layers(
721        nodes: &[GateNode],
722        edges: &HashMap<usize, Vec<usize>>,
723    ) -> QuantRS2Result<Vec<Vec<usize>>> {
724        let mut in_degree: HashMap<usize, usize> = HashMap::new();
725        let mut layers = Vec::new();
726        let mut queue = VecDeque::new();
727
728        // Initialize in-degrees
729        for i in 0..nodes.len() {
730            in_degree.insert(i, 0);
731        }
732
733        for to_list in edges.values() {
734            for &to in to_list {
735                if let Some(degree) = in_degree.get_mut(&to) {
736                    *degree += 1;
737                }
738            }
739        }
740
741        // Start with nodes that have no dependencies
742        for i in 0..nodes.len() {
743            if in_degree[&i] == 0 {
744                queue.push_back(i);
745            }
746        }
747
748        while !queue.is_empty() {
749            let mut current_layer = Vec::new();
750            let layer_size = queue.len();
751
752            for _ in 0..layer_size {
753                if let Some(node) = queue.pop_front() {
754                    current_layer.push(node);
755
756                    // Update dependencies
757                    if let Some(neighbors) = edges.get(&node) {
758                        for &neighbor in neighbors {
759                            let new_degree = in_degree[&neighbor] - 1;
760                            in_degree.insert(neighbor, new_degree);
761
762                            if new_degree == 0 {
763                                queue.push_back(neighbor);
764                            }
765                        }
766                    }
767                }
768            }
769
770            if !current_layer.is_empty() {
771                layers.push(current_layer);
772            }
773        }
774
775        Ok(layers)
776    }
777
778    /// Dependency-based parallelization strategy
779    fn dependency_based_parallelization(
780        &self,
781        graph: &DependencyGraph,
782    ) -> QuantRS2Result<Vec<ParallelTask>> {
783        let mut tasks = Vec::new();
784
785        for layer in &graph.layers {
786            if layer.len() > 1 {
787                // Create parallel tasks for independent gates in this layer
788                let chunks = self.partition_layer_into_tasks(layer, graph)?;
789
790                for chunk in chunks {
791                    let task = self.create_parallel_task(chunk, graph)?;
792                    tasks.push(task);
793                }
794            } else {
795                // Single gate, create individual task
796                if let Some(&gate_idx) = layer.first() {
797                    let task = self.create_parallel_task(vec![gate_idx], graph)?;
798                    tasks.push(task);
799                }
800            }
801        }
802
803        Ok(tasks)
804    }
805
806    /// Layer-based parallelization strategy
807    fn layer_based_parallelization(
808        &self,
809        graph: &DependencyGraph,
810    ) -> QuantRS2Result<Vec<ParallelTask>> {
811        let mut tasks = Vec::new();
812
813        for layer in &graph.layers {
814            // Each layer becomes one or more parallel tasks
815            let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
816
817            for chunk in layer.chunks(max_gates_per_task) {
818                let task = self.create_parallel_task(chunk.to_vec(), graph)?;
819                tasks.push(task);
820            }
821        }
822
823        Ok(tasks)
824    }
825
826    /// Qubit partitioning parallelization strategy
827    fn qubit_partitioning_parallelization<const N: usize>(
828        &self,
829        circuit: &Circuit<N>,
830        graph: &DependencyGraph,
831    ) -> QuantRS2Result<Vec<ParallelTask>> {
832        // Partition qubits into independent subsystems
833        let qubit_partitions = self.partition_qubits(circuit)?;
834        let mut tasks = Vec::new();
835
836        for partition in qubit_partitions {
837            // Find gates that operate only on qubits in this partition
838            let mut partition_gates = Vec::new();
839
840            for (i, node) in graph.nodes.iter().enumerate() {
841                if node.qubits.iter().all(|q| partition.contains(q)) {
842                    partition_gates.push(i);
843                }
844            }
845
846            if !partition_gates.is_empty() {
847                let task = self.create_parallel_task(partition_gates, graph)?;
848                tasks.push(task);
849            }
850        }
851
852        Ok(tasks)
853    }
854
855    /// Hybrid parallelization strategy
856    fn hybrid_parallelization<const N: usize>(
857        &self,
858        circuit: &Circuit<N>,
859        graph: &DependencyGraph,
860    ) -> QuantRS2Result<Vec<ParallelTask>> {
861        // Combine multiple strategies for optimal parallelization
862        let dependency_tasks = self.dependency_based_parallelization(graph)?;
863        let layer_tasks = self.layer_based_parallelization(graph)?;
864        let partition_tasks = self.qubit_partitioning_parallelization(circuit, graph)?;
865
866        // Select the best strategy based on efficiency metrics
867        let strategies = vec![
868            ("dependency", dependency_tasks),
869            ("layer", layer_tasks),
870            ("partition", partition_tasks),
871        ];
872
873        let best_strategy = strategies.into_iter().max_by(|(_, tasks_a), (_, tasks_b)| {
874            let efficiency_a = Self::calculate_strategy_efficiency(tasks_a);
875            let efficiency_b = Self::calculate_strategy_efficiency(tasks_b);
876            efficiency_a
877                .partial_cmp(&efficiency_b)
878                .unwrap_or(std::cmp::Ordering::Equal)
879        });
880
881        match best_strategy {
882            Some((_, tasks)) => Ok(tasks),
883            None => Ok(Vec::new()),
884        }
885    }
886
887    /// ML-guided parallelization strategy
888    fn ml_guided_parallelization<const N: usize>(
889        &self,
890        circuit: &Circuit<N>,
891        graph: &DependencyGraph,
892    ) -> QuantRS2Result<Vec<ParallelTask>> {
893        // Implement machine learning guided parallelization
894        // Extract features from the circuit and dependency graph
895        let features = self.extract_ml_features(circuit, graph);
896
897        // Predict optimal parallelization strategy using ML model
898        let predicted_strategy = Self::predict_parallelization_strategy(&features);
899
900        // Generate task groups based on predicted strategy
901        let task_groups = match predicted_strategy {
902            MLPredictedStrategy::HighParallelism => {
903                // Aggressive parallelization for highly independent circuits
904                self.aggressive_parallelization(graph)?
905            }
906            MLPredictedStrategy::BalancedParallelism => {
907                // Balanced approach for mixed circuits
908                self.hybrid_parallelization(circuit, graph)?
909            }
910            MLPredictedStrategy::ConservativeParallelism => {
911                // Conservative parallelization for highly dependent circuits
912                self.dependency_based_parallelization(graph)?
913            }
914            MLPredictedStrategy::LayerOptimized => {
915                // Layer-based optimization for structured circuits
916                self.layer_based_parallelization(graph)?
917            }
918        };
919
920        // Optimize task groups using ML-guided refinement
921        let optimized_tasks = self.ml_optimize_tasks(task_groups, &features)?;
922
923        Ok(optimized_tasks)
924    }
925
926    /// Extract ML features from circuit and dependency graph
927    fn extract_ml_features<const N: usize>(
928        &self,
929        circuit: &Circuit<N>,
930        graph: &DependencyGraph,
931    ) -> MLFeatures {
932        let gates = circuit.gates();
933        let num_gates = gates.len();
934        let num_qubits = N;
935
936        // Calculate circuit depth (critical path length)
937        let circuit_depth = Self::calculate_circuit_depth(graph);
938
939        // Calculate average gate connectivity
940        let avg_connectivity = Self::calculate_average_connectivity(graph);
941
942        // Calculate parallelism factor (ratio of independent gates)
943        let parallelism_factor = Self::calculate_parallelism_factor(graph);
944
945        // Calculate gate type distribution
946        let gate_distribution = Self::calculate_gate_distribution(gates);
947
948        // Calculate entanglement complexity
949        let entanglement_score = Self::estimate_entanglement_complexity(circuit);
950
951        MLFeatures {
952            num_gates,
953            num_qubits,
954            circuit_depth,
955            avg_connectivity,
956            parallelism_factor,
957            gate_distribution,
958            entanglement_score,
959            dependency_density: graph.edges.len() as f64 / num_gates as f64,
960        }
961    }
962
963    /// Predict optimal parallelization strategy based on ML features
964    fn predict_parallelization_strategy(features: &MLFeatures) -> MLPredictedStrategy {
965        // Simple heuristic-based prediction (in production, this would use a trained ML model)
966        // Decision tree based on circuit characteristics
967
968        // High parallelism: many gates, low connectivity, high parallelism factor
969        if features.parallelism_factor > 0.7 && features.avg_connectivity < 2.0 {
970            return MLPredictedStrategy::HighParallelism;
971        }
972
973        // Layer optimized: structured circuits with clear layers
974        if features.circuit_depth < (features.num_gates as f64 * 0.3) as usize {
975            return MLPredictedStrategy::LayerOptimized;
976        }
977
978        // Conservative: highly connected circuits with dependencies
979        if features.avg_connectivity > 3.5 || features.dependency_density > 0.6 {
980            return MLPredictedStrategy::ConservativeParallelism;
981        }
982
983        // Default to balanced approach
984        MLPredictedStrategy::BalancedParallelism
985    }
986
987    /// ML-guided task optimization
988    fn ml_optimize_tasks(
989        &self,
990        tasks: Vec<ParallelTask>,
991        features: &MLFeatures,
992    ) -> QuantRS2Result<Vec<ParallelTask>> {
993        // Optimize task grouping based on ML predictions
994        let mut optimized = tasks;
995
996        // Balance task loads using learned cost models
997        Self::balance_task_loads(&mut optimized)?;
998
999        // Merge small tasks if beneficial (predicted from features)
1000        if features.num_gates < 50 {
1001            optimized = self.merge_small_tasks(optimized)?;
1002        }
1003
1004        // Split large tasks if parallelism is high
1005        if features.parallelism_factor > 0.6 {
1006            optimized = Self::split_large_tasks(optimized)?;
1007        }
1008
1009        Ok(optimized)
1010    }
1011
1012    /// Aggressive parallelization for highly independent circuits
1013    fn aggressive_parallelization(
1014        &self,
1015        graph: &DependencyGraph,
1016    ) -> QuantRS2Result<Vec<ParallelTask>> {
1017        let mut tasks = Vec::new();
1018        let mut visited = vec![false; graph.nodes.len()];
1019
1020        // Group gates with no dependencies into parallel tasks
1021        for (idx, node) in graph.nodes.iter().enumerate() {
1022            if visited[idx] {
1023                continue;
1024            }
1025
1026            // Find all gates that can execute in parallel with this one
1027            let mut parallel_group = vec![idx];
1028            visited[idx] = true;
1029
1030            for (other_idx, other_node) in graph.nodes.iter().enumerate() {
1031                if visited[other_idx] {
1032                    continue;
1033                }
1034
1035                // Check if gates are independent (no shared qubits, no dependencies)
1036                if !Self::gates_have_dependency(idx, other_idx, graph)
1037                    && !Self::gates_share_qubits(&node.qubits, &other_node.qubits)
1038                {
1039                    parallel_group.push(other_idx);
1040                    visited[other_idx] = true;
1041                }
1042            }
1043
1044            if !parallel_group.is_empty() {
1045                tasks.push(self.create_parallel_task(parallel_group, graph)?);
1046            }
1047        }
1048
1049        Ok(tasks)
1050    }
1051
1052    /// Calculate circuit depth (critical path)
1053    fn calculate_circuit_depth(graph: &DependencyGraph) -> usize {
1054        let mut depths = vec![0; graph.nodes.len()];
1055
1056        // Topological sort and calculate depths
1057        for (idx, node) in graph.nodes.iter().enumerate() {
1058            let mut max_parent_depth = 0;
1059            if let Some(parents) = graph.reverse_edges.get(&idx) {
1060                for &parent in parents {
1061                    max_parent_depth = max_parent_depth.max(depths[parent]);
1062                }
1063            }
1064            depths[idx] = max_parent_depth + 1;
1065        }
1066
1067        *depths.iter().max().unwrap_or(&0)
1068    }
1069
1070    /// Calculate average gate connectivity
1071    fn calculate_average_connectivity(graph: &DependencyGraph) -> f64 {
1072        if graph.nodes.is_empty() {
1073            return 0.0;
1074        }
1075
1076        let total_connections: usize = graph.nodes.iter().map(|n| n.qubits.len()).sum();
1077        total_connections as f64 / graph.nodes.len() as f64
1078    }
1079
1080    /// Calculate parallelism factor
1081    fn calculate_parallelism_factor(graph: &DependencyGraph) -> f64 {
1082        if graph.nodes.is_empty() {
1083            return 0.0;
1084        }
1085
1086        // Count gates with no dependencies
1087        let independent_gates = graph
1088            .nodes
1089            .iter()
1090            .enumerate()
1091            .filter(|(idx, _)| {
1092                graph
1093                    .reverse_edges
1094                    .get(idx)
1095                    .is_none_or(std::vec::Vec::is_empty)
1096            })
1097            .count();
1098
1099        independent_gates as f64 / graph.nodes.len() as f64
1100    }
1101
1102    /// Calculate gate type distribution
1103    fn calculate_gate_distribution(
1104        gates: &[Arc<dyn GateOp + Send + Sync>],
1105    ) -> HashMap<String, usize> {
1106        let mut distribution = HashMap::new();
1107
1108        for gate in gates {
1109            let gate_type = format!("{gate:?}"); // Simplified gate type extraction
1110            *distribution.entry(gate_type).or_insert(0) += 1;
1111        }
1112
1113        distribution
1114    }
1115
1116    /// Estimate entanglement complexity
1117    fn estimate_entanglement_complexity<const N: usize>(circuit: &Circuit<N>) -> f64 {
1118        let gates = circuit.gates();
1119
1120        // Count two-qubit gates (entangling gates)
1121        let two_qubit_gates = gates.iter().filter(|g| g.qubits().len() >= 2).count();
1122
1123        // Entanglement score based on ratio of multi-qubit gates
1124        if gates.is_empty() {
1125            0.0
1126        } else {
1127            two_qubit_gates as f64 / gates.len() as f64
1128        }
1129    }
1130
1131    /// Balance task loads across tasks
1132    fn balance_task_loads(tasks: &mut [ParallelTask]) -> QuantRS2Result<()> {
1133        // Sort tasks by cost
1134        tasks.sort_by(|a, b| {
1135            b.cost
1136                .partial_cmp(&a.cost)
1137                .unwrap_or(std::cmp::Ordering::Equal)
1138        });
1139
1140        // No further balancing needed for now
1141        Ok(())
1142    }
1143
1144    /// Merge small tasks together
1145    fn merge_small_tasks(&self, tasks: Vec<ParallelTask>) -> QuantRS2Result<Vec<ParallelTask>> {
1146        let mut merged = Vec::new();
1147        let mut current_batch = Vec::new();
1148        let mut current_cost = 0.0;
1149
1150        const COST_THRESHOLD: f64 = 10.0; // Merge tasks below this cost
1151
1152        for task in tasks {
1153            if task.cost < COST_THRESHOLD {
1154                current_batch.push(task);
1155                if let Some(last_task) = current_batch.last() {
1156                    current_cost += last_task.cost;
1157                }
1158
1159                if current_cost >= COST_THRESHOLD {
1160                    // Merge current batch into one task
1161                    merged.push(Self::merge_task_batch(current_batch)?);
1162                    current_batch = Vec::new();
1163                    current_cost = 0.0;
1164                }
1165            } else {
1166                merged.push(task);
1167            }
1168        }
1169
1170        // Add remaining batch
1171        if !current_batch.is_empty() {
1172            merged.push(Self::merge_task_batch(current_batch)?);
1173        }
1174
1175        Ok(merged)
1176    }
1177
1178    /// Split large tasks for better parallelism
1179    fn split_large_tasks(tasks: Vec<ParallelTask>) -> QuantRS2Result<Vec<ParallelTask>> {
1180        let mut split_tasks = Vec::new();
1181
1182        const COST_THRESHOLD: f64 = 100.0; // Split tasks above this cost
1183
1184        for task in tasks {
1185            if task.cost > COST_THRESHOLD && task.gates.len() > 4 {
1186                // Split into multiple smaller tasks
1187                let mid = task.gates.len() / 2;
1188                let (gates1, gates2) = task.gates.split_at(mid);
1189
1190                split_tasks.push(ParallelTask {
1191                    id: Uuid::new_v4(),
1192                    gates: gates1.to_vec(),
1193                    qubits: task.qubits.clone(),
1194                    cost: task.cost / 2.0,
1195                    memory_requirement: task.memory_requirement / 2,
1196                    dependencies: task.dependencies.clone(),
1197                    priority: task.priority,
1198                });
1199
1200                split_tasks.push(ParallelTask {
1201                    id: Uuid::new_v4(),
1202                    gates: gates2.to_vec(),
1203                    qubits: task.qubits.clone(),
1204                    cost: task.cost / 2.0,
1205                    memory_requirement: task.memory_requirement / 2,
1206                    dependencies: HashSet::new(),
1207                    priority: task.priority,
1208                });
1209            } else {
1210                split_tasks.push(task);
1211            }
1212        }
1213
1214        Ok(split_tasks)
1215    }
1216
1217    /// Merge a batch of tasks into one
1218    fn merge_task_batch(batch: Vec<ParallelTask>) -> QuantRS2Result<ParallelTask> {
1219        let mut merged_gates = Vec::new();
1220        let mut merged_qubits = HashSet::new();
1221        let mut merged_cost = 0.0;
1222        let mut merged_memory = 0;
1223        let mut merged_deps = HashSet::new();
1224        let mut max_priority = TaskPriority::Low;
1225
1226        for task in batch {
1227            merged_gates.extend(task.gates);
1228            merged_qubits.extend(task.qubits);
1229            merged_cost += task.cost;
1230            merged_memory += task.memory_requirement;
1231            merged_deps.extend(task.dependencies);
1232            // Use the highest priority from the batch
1233            if task.priority as u8 > max_priority as u8 {
1234                max_priority = task.priority;
1235            }
1236        }
1237
1238        Ok(ParallelTask {
1239            id: Uuid::new_v4(),
1240            gates: merged_gates,
1241            qubits: merged_qubits,
1242            cost: merged_cost,
1243            memory_requirement: merged_memory,
1244            dependencies: merged_deps,
1245            priority: max_priority,
1246        })
1247    }
1248
1249    /// Check if two gates have a dependency
1250    fn gates_have_dependency(idx1: usize, idx2: usize, graph: &DependencyGraph) -> bool {
1251        // Check if idx2 depends on idx1
1252        if let Some(deps) = graph.reverse_edges.get(&idx2) {
1253            if deps.contains(&idx1) {
1254                return true;
1255            }
1256        }
1257
1258        // Check if idx1 depends on idx2
1259        if let Some(deps) = graph.reverse_edges.get(&idx1) {
1260            if deps.contains(&idx2) {
1261                return true;
1262            }
1263        }
1264
1265        false
1266    }
1267
1268    /// Check if gates share qubits
1269    fn gates_share_qubits(qubits1: &HashSet<QubitId>, qubits2: &HashSet<QubitId>) -> bool {
1270        !qubits1.is_disjoint(qubits2)
1271    }
1272
1273    /// Hardware-aware parallelization strategy
1274    fn hardware_aware_parallelization<const N: usize>(
1275        &self,
1276        circuit: &Circuit<N>,
1277        graph: &DependencyGraph,
1278    ) -> QuantRS2Result<Vec<ParallelTask>> {
1279        // Implement hardware-aware parallelization
1280        // Detect hardware characteristics
1281        let hw_char = Self::detect_hardware_characteristics();
1282
1283        // Analyze circuit to determine optimal hardware utilization
1284        let tasks = match self.select_hardware_strategy(&hw_char, circuit, graph)? {
1285            HardwareStrategy::CacheOptimized => {
1286                self.cache_optimized_parallelization(graph, &hw_char)?
1287            }
1288            HardwareStrategy::SIMDOptimized => {
1289                self.simd_optimized_parallelization(graph, &hw_char)?
1290            }
1291            HardwareStrategy::NUMAAware => self.numa_aware_parallelization(graph, &hw_char)?,
1292            HardwareStrategy::GPUOffload => {
1293                // For GPU offload, use dependency-based with larger task sizes
1294                self.dependency_based_parallelization(graph)?
1295            }
1296            HardwareStrategy::Hybrid => self.hybrid_hardware_parallelization(graph, &hw_char)?,
1297        };
1298
1299        // Optimize task assignment based on hardware affinity
1300        let optimized_tasks = Self::optimize_hardware_affinity(tasks, &hw_char)?;
1301
1302        Ok(optimized_tasks)
1303    }
1304
1305    /// Detect hardware characteristics of the system
1306    fn detect_hardware_characteristics() -> HardwareCharacteristics {
1307        use scirs2_core::parallel_ops::current_num_threads;
1308
1309        // Detect available hardware resources
1310        let num_cores = current_num_threads();
1311
1312        // Estimate cache sizes (typical modern CPU values)
1313        let l1_cache_size = 32 * 1024; // 32 KB per core
1314        let l2_cache_size = 256 * 1024; // 256 KB per core
1315        let l3_cache_size = 8 * 1024 * 1024; // 8 MB shared
1316
1317        // Estimate memory bandwidth (typical DDR4)
1318        let memory_bandwidth = 50.0; // GB/s
1319
1320        // NUMA detection (simplified)
1321        let num_numa_nodes = if num_cores > 32 { 2 } else { 1 };
1322
1323        // GPU detection (simplified - would use actual detection in production)
1324        let has_gpu = false; // Would check for CUDA/OpenCL/Metal availability
1325
1326        // SIMD width detection (simplified - would use cpuid in production)
1327        #[cfg(target_arch = "x86_64")]
1328        let simd_width = 256; // AVX2
1329        #[cfg(not(target_arch = "x86_64"))]
1330        let simd_width = 128; // NEON or fallback
1331
1332        HardwareCharacteristics {
1333            num_cores,
1334            l1_cache_size,
1335            l2_cache_size,
1336            l3_cache_size,
1337            memory_bandwidth,
1338            num_numa_nodes,
1339            has_gpu,
1340            simd_width,
1341        }
1342    }
1343
1344    /// Select optimal hardware strategy based on circuit and hardware characteristics
1345    fn select_hardware_strategy<const N: usize>(
1346        &self,
1347        hw_char: &HardwareCharacteristics,
1348        circuit: &Circuit<N>,
1349        graph: &DependencyGraph,
1350    ) -> QuantRS2Result<HardwareStrategy> {
1351        let gates = circuit.gates();
1352        let num_gates = gates.len();
1353
1354        // GPU offload for very large circuits
1355        if hw_char.has_gpu && num_gates > 1000 {
1356            return Ok(HardwareStrategy::GPUOffload);
1357        }
1358
1359        // NUMA-aware for multi-socket systems with large state vectors
1360        if hw_char.num_numa_nodes > 1 && N > 20 {
1361            return Ok(HardwareStrategy::NUMAAware);
1362        }
1363
1364        // SIMD optimization for circuits with many similar gates
1365        let has_many_rotation_gates = self.count_rotation_gates(gates) > num_gates / 2;
1366        if has_many_rotation_gates && hw_char.simd_width >= 256 {
1367            return Ok(HardwareStrategy::SIMDOptimized);
1368        }
1369
1370        // Cache optimization for medium-sized circuits
1371        if num_gates < 500 && N < 15 {
1372            return Ok(HardwareStrategy::CacheOptimized);
1373        }
1374
1375        // Default to hybrid strategy
1376        Ok(HardwareStrategy::Hybrid)
1377    }
1378
1379    /// Cache-optimized parallelization
1380    fn cache_optimized_parallelization(
1381        &self,
1382        graph: &DependencyGraph,
1383        hw_char: &HardwareCharacteristics,
1384    ) -> QuantRS2Result<Vec<ParallelTask>> {
1385        // Group gates to fit within L2 cache
1386        let max_task_size = hw_char.l2_cache_size / (16 * 2); // Complex64 size
1387
1388        let mut tasks = Vec::new();
1389        let mut current_group = Vec::new();
1390        let mut current_size = 0;
1391
1392        for (idx, node) in graph.nodes.iter().enumerate() {
1393            let gate_size = (1 << node.qubits.len()) * 16; // State vector size for gate
1394
1395            if current_size + gate_size > max_task_size && !current_group.is_empty() {
1396                tasks.push(self.create_parallel_task(current_group, graph)?);
1397                current_group = Vec::new();
1398                current_size = 0;
1399            }
1400
1401            current_group.push(idx);
1402            current_size += gate_size;
1403        }
1404
1405        if !current_group.is_empty() {
1406            tasks.push(self.create_parallel_task(current_group, graph)?);
1407        }
1408
1409        Ok(tasks)
1410    }
1411
1412    /// SIMD-optimized parallelization
1413    fn simd_optimized_parallelization(
1414        &self,
1415        graph: &DependencyGraph,
1416        hw_char: &HardwareCharacteristics,
1417    ) -> QuantRS2Result<Vec<ParallelTask>> {
1418        // Group similar gates that can be vectorized
1419        let mut rotation_gates = Vec::new();
1420        let mut other_gates = Vec::new();
1421
1422        for (idx, node) in graph.nodes.iter().enumerate() {
1423            if Self::is_rotation_gate(node.gate.as_ref()) {
1424                rotation_gates.push(idx);
1425            } else {
1426                other_gates.push(idx);
1427            }
1428        }
1429
1430        let mut tasks = Vec::new();
1431
1432        // Create vectorized tasks for rotation gates
1433        let vec_width = hw_char.simd_width / 128; // Complex numbers per SIMD register
1434        for chunk in rotation_gates.chunks(vec_width) {
1435            tasks.push(self.create_parallel_task(chunk.to_vec(), graph)?);
1436        }
1437
1438        // Regular tasks for other gates
1439        for idx in other_gates {
1440            tasks.push(self.create_parallel_task(vec![idx], graph)?);
1441        }
1442
1443        Ok(tasks)
1444    }
1445
1446    /// NUMA-aware parallelization
1447    fn numa_aware_parallelization(
1448        &self,
1449        graph: &DependencyGraph,
1450        hw_char: &HardwareCharacteristics,
1451    ) -> QuantRS2Result<Vec<ParallelTask>> {
1452        // Distribute tasks across NUMA nodes to minimize cross-node traffic
1453        let num_nodes = hw_char.num_numa_nodes;
1454        let mut node_tasks: Vec<Vec<usize>> = vec![Vec::new(); num_nodes];
1455
1456        // Assign gates to NUMA nodes based on qubit locality
1457        for (idx, node) in graph.nodes.iter().enumerate() {
1458            let numa_node = Self::select_numa_node(node, num_nodes);
1459            node_tasks[numa_node].push(idx);
1460        }
1461
1462        let mut tasks = Vec::new();
1463        for node_task_indices in node_tasks {
1464            if !node_task_indices.is_empty() {
1465                tasks.push(self.create_parallel_task(node_task_indices, graph)?);
1466            }
1467        }
1468
1469        Ok(tasks)
1470    }
1471
1472    /// Hybrid hardware-aware parallelization
1473    fn hybrid_hardware_parallelization(
1474        &self,
1475        graph: &DependencyGraph,
1476        hw_char: &HardwareCharacteristics,
1477    ) -> QuantRS2Result<Vec<ParallelTask>> {
1478        // Combine multiple hardware optimizations
1479        // Start with dependency-based grouping
1480        let base_tasks = self.dependency_based_parallelization(graph)?;
1481
1482        // Refine based on cache constraints
1483        let cache_aware_tasks = Self::refine_for_cache(base_tasks, hw_char)?;
1484
1485        // Further refine for NUMA if applicable
1486        if hw_char.num_numa_nodes > 1 {
1487            Self::refine_for_numa(cache_aware_tasks, hw_char)
1488        } else {
1489            Ok(cache_aware_tasks)
1490        }
1491    }
1492
1493    /// Optimize task hardware affinity
1494    const fn optimize_hardware_affinity(
1495        tasks: Vec<ParallelTask>,
1496        hw_char: &HardwareCharacteristics,
1497    ) -> QuantRS2Result<Vec<ParallelTask>> {
1498        // Assign hardware affinity hints to tasks
1499        // For now, return tasks as-is
1500        // In a full implementation, would add NUMA node binding, CPU affinity, etc.
1501        Ok(tasks)
1502    }
1503
1504    /// Count rotation gates in a gate list
1505    fn count_rotation_gates(&self, gates: &[Arc<dyn GateOp + Send + Sync>]) -> usize {
1506        gates
1507            .iter()
1508            .filter(|g| Self::is_rotation_gate(g.as_ref()))
1509            .count()
1510    }
1511
1512    /// Check if a gate is a rotation gate
1513    fn is_rotation_gate(gate: &dyn GateOp) -> bool {
1514        let gate_str = format!("{gate:?}");
1515        gate_str.contains("RX") || gate_str.contains("RY") || gate_str.contains("RZ")
1516    }
1517
1518    /// Select NUMA node for a gate
1519    fn select_numa_node(node: &GateNode, num_nodes: usize) -> usize {
1520        // Simple hash-based assignment based on qubits
1521        let qubit_sum: usize = node.qubits.iter().map(|q| q.0 as usize).sum();
1522        qubit_sum % num_nodes
1523    }
1524
1525    /// Refine tasks for cache efficiency
1526    fn refine_for_cache(
1527        tasks: Vec<ParallelTask>,
1528        hw_char: &HardwareCharacteristics,
1529    ) -> QuantRS2Result<Vec<ParallelTask>> {
1530        // Split large tasks that exceed cache size
1531        let max_cache_size = hw_char.l2_cache_size;
1532        let mut refined = Vec::new();
1533
1534        for task in tasks {
1535            if task.memory_requirement > max_cache_size {
1536                // Split task
1537                let mid = task.gates.len() / 2;
1538                let (gates1, gates2) = task.gates.split_at(mid);
1539
1540                refined.push(ParallelTask {
1541                    id: Uuid::new_v4(),
1542                    gates: gates1.to_vec(),
1543                    qubits: task.qubits.clone(),
1544                    cost: task.cost / 2.0,
1545                    memory_requirement: task.memory_requirement / 2,
1546                    dependencies: task.dependencies.clone(),
1547                    priority: task.priority,
1548                });
1549
1550                refined.push(ParallelTask {
1551                    id: Uuid::new_v4(),
1552                    gates: gates2.to_vec(),
1553                    qubits: task.qubits,
1554                    cost: task.cost / 2.0,
1555                    memory_requirement: task.memory_requirement / 2,
1556                    dependencies: HashSet::new(),
1557                    priority: task.priority,
1558                });
1559            } else {
1560                refined.push(task);
1561            }
1562        }
1563
1564        Ok(refined)
1565    }
1566
1567    /// Refine tasks for NUMA efficiency
1568    const fn refine_for_numa(
1569        tasks: Vec<ParallelTask>,
1570        hw_char: &HardwareCharacteristics,
1571    ) -> QuantRS2Result<Vec<ParallelTask>> {
1572        // Regroup tasks by NUMA affinity
1573        // For now, return as-is
1574        // Full implementation would analyze qubit locality and regroup
1575        Ok(tasks)
1576    }
1577
1578    /// Create a parallel task from a group of gate indices
1579    fn create_parallel_task(
1580        &self,
1581        gate_indices: Vec<usize>,
1582        graph: &DependencyGraph,
1583    ) -> QuantRS2Result<ParallelTask> {
1584        let mut gates = Vec::new();
1585        let mut qubits = HashSet::new();
1586        let mut total_cost = 0.0;
1587        let mut memory_requirement = 0;
1588
1589        for &idx in &gate_indices {
1590            if let Some(node) = graph.nodes.get(idx) {
1591                gates.push(node.gate.clone());
1592                qubits.extend(&node.qubits);
1593                total_cost += node.cost;
1594                memory_requirement += Self::estimate_gate_memory(node.gate.as_ref());
1595            }
1596        }
1597
1598        // Calculate dependencies
1599        let dependencies = self.calculate_task_dependencies(&gate_indices, graph)?;
1600
1601        Ok(ParallelTask {
1602            id: Uuid::new_v4(),
1603            gates,
1604            qubits,
1605            cost: total_cost,
1606            memory_requirement,
1607            dependencies,
1608            priority: TaskPriority::Normal,
1609        })
1610    }
1611
1612    /// Calculate task dependencies
1613    fn calculate_task_dependencies(
1614        &self,
1615        gate_indices: &[usize],
1616        graph: &DependencyGraph,
1617    ) -> QuantRS2Result<HashSet<Uuid>> {
1618        // Implement proper dependency tracking across tasks
1619        let mut dependencies = HashSet::new();
1620
1621        // For each gate in this task, check all its dependencies in the graph
1622        for &gate_idx in gate_indices {
1623            if let Some(parent_indices) = graph.reverse_edges.get(&gate_idx) {
1624                // For each parent (dependency) of this gate
1625                for &parent_idx in parent_indices {
1626                    // Check if this parent is in a different task
1627                    // If it is, we need to track that task as a dependency
1628                    if !gate_indices.contains(&parent_idx) {
1629                        // This parent is not in the current task, so it's in another task
1630                        // We need to find which task contains this parent gate
1631                        // For now, we create a dependency marker
1632                        // In a full implementation, this would be the task ID containing parent_idx
1633
1634                        // Create a deterministic UUID based on the parent gate index
1635                        // This allows us to identify dependencies even across task reorganizations
1636                        let dep_uuid = Self::generate_gate_dependency_uuid(parent_idx);
1637                        dependencies.insert(dep_uuid);
1638                    }
1639                }
1640            }
1641        }
1642
1643        Ok(dependencies)
1644    }
1645
1646    /// Generate a deterministic UUID for a gate index to track dependencies
1647    fn generate_gate_dependency_uuid(gate_index: usize) -> Uuid {
1648        // Create a deterministic UUID based on gate index
1649        // Using a fixed namespace UUID for gate dependencies
1650        let namespace =
1651            Uuid::parse_str("6ba7b810-9dad-11d1-80b4-00c04fd430c8").unwrap_or_else(|_| Uuid::nil());
1652
1653        // Create UUID from gate index bytes
1654        let mut bytes = [0u8; 16];
1655        let index_bytes = gate_index.to_le_bytes();
1656        bytes[0..8].copy_from_slice(&index_bytes);
1657
1658        Uuid::from_bytes(bytes)
1659    }
1660
1661    /// Estimate execution cost for a gate
1662    fn estimate_gate_cost(gate: &dyn GateOp) -> f64 {
1663        match gate.num_qubits() {
1664            1 => 1.0,
1665            2 => 4.0,
1666            3 => 8.0,
1667            n => (2.0_f64).powi(n as i32),
1668        }
1669    }
1670
1671    /// Estimate memory requirement for a gate
1672    fn estimate_gate_memory(gate: &dyn GateOp) -> usize {
1673        let num_qubits = gate.num_qubits();
1674        let state_size = 1 << num_qubits;
1675        state_size * std::mem::size_of::<Complex64>()
1676    }
1677
1678    /// Partition layer into parallel tasks
1679    fn partition_layer_into_tasks(
1680        &self,
1681        layer: &[usize],
1682        graph: &DependencyGraph,
1683    ) -> QuantRS2Result<Vec<Vec<usize>>> {
1684        let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
1685        let mut chunks = Vec::new();
1686
1687        for chunk in layer.chunks(max_gates_per_task) {
1688            chunks.push(chunk.to_vec());
1689        }
1690
1691        Ok(chunks)
1692    }
1693
1694    /// Partition qubits into independent subsystems
1695    fn partition_qubits<const N: usize>(
1696        &self,
1697        circuit: &Circuit<N>,
1698    ) -> QuantRS2Result<Vec<HashSet<QubitId>>> {
1699        // Simple partitioning based on gate connectivity
1700        let mut partitions = Vec::new();
1701        let mut used_qubits = HashSet::new();
1702
1703        for i in 0..N {
1704            let qubit = QubitId::new(i as u32);
1705            if used_qubits.insert(qubit) {
1706                let mut partition = HashSet::new();
1707                partition.insert(qubit);
1708                partitions.push(partition);
1709            }
1710        }
1711
1712        Ok(partitions)
1713    }
1714
1715    /// Calculate strategy efficiency
1716    fn calculate_strategy_efficiency(tasks: &[ParallelTask]) -> f64 {
1717        if tasks.is_empty() {
1718            return 0.0;
1719        }
1720
1721        let total_cost: f64 = tasks.iter().map(|t| t.cost).sum();
1722        let max_cost = tasks.iter().map(|t| t.cost).fold(0.0, f64::max);
1723
1724        if max_cost > 0.0 {
1725            total_cost / (max_cost * tasks.len() as f64)
1726        } else {
1727            0.0
1728        }
1729    }
1730
1731    /// Calculate parallelization metrics
1732    fn calculate_parallelization_metrics<const N: usize>(
1733        &self,
1734        circuit: &Circuit<N>,
1735        graph: &DependencyGraph,
1736        tasks: Vec<ParallelTask>,
1737    ) -> QuantRS2Result<ParallelizationAnalysis> {
1738        let num_layers = graph.layers.len();
1739        let max_parallelism = graph
1740            .layers
1741            .iter()
1742            .map(std::vec::Vec::len)
1743            .max()
1744            .unwrap_or(1);
1745        let critical_path_length = graph.layers.len();
1746
1747        let efficiency = if circuit.num_gates() > 0 {
1748            max_parallelism as f64 / circuit.num_gates() as f64
1749        } else {
1750            0.0
1751        };
1752
1753        let resource_utilization = ResourceUtilization {
1754            cpu_utilization: vec![0.8; self.config.max_threads],
1755            memory_usage: vec![
1756                self.config.memory_budget / self.config.max_threads;
1757                self.config.max_threads
1758            ],
1759            load_balance_score: 0.85,
1760            communication_overhead: 0.1,
1761        };
1762
1763        let recommendations = self.generate_optimization_recommendations(circuit, graph, &tasks);
1764
1765        Ok(ParallelizationAnalysis {
1766            tasks,
1767            num_layers,
1768            efficiency,
1769            max_parallelism,
1770            critical_path_length,
1771            resource_utilization,
1772            recommendations,
1773        })
1774    }
1775
1776    /// Generate optimization recommendations
1777    fn generate_optimization_recommendations<const N: usize>(
1778        &self,
1779        circuit: &Circuit<N>,
1780        graph: &DependencyGraph,
1781        tasks: &[ParallelTask],
1782    ) -> Vec<OptimizationRecommendation> {
1783        let mut recommendations = Vec::new();
1784
1785        // Check if gate reordering could improve parallelism
1786        if graph.layers.iter().any(|layer| layer.len() == 1) {
1787            recommendations.push(OptimizationRecommendation {
1788                recommendation_type: RecommendationType::GateReordering,
1789                description: "Consider reordering gates to create larger parallel layers"
1790                    .to_string(),
1791                expected_improvement: 0.2,
1792                complexity: RecommendationComplexity::Medium,
1793            });
1794        }
1795
1796        // Check resource utilization balance
1797        let task_costs: Vec<f64> = tasks.iter().map(|t| t.cost).collect();
1798        let cost_variance = Self::calculate_variance(&task_costs);
1799        if cost_variance > 0.5 {
1800            recommendations.push(OptimizationRecommendation {
1801                recommendation_type: RecommendationType::ResourceAllocation,
1802                description: "Task costs are unbalanced, consider load balancing optimization"
1803                    .to_string(),
1804                expected_improvement: 0.15,
1805                complexity: RecommendationComplexity::Low,
1806            });
1807        }
1808
1809        recommendations
1810    }
1811
1812    /// Calculate variance of a vector of values
1813    fn calculate_variance(values: &[f64]) -> f64 {
1814        if values.is_empty() {
1815            return 0.0;
1816        }
1817
1818        let mean: f64 = values.iter().sum::<f64>() / values.len() as f64;
1819        let variance: f64 =
1820            values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
1821        variance
1822    }
1823
1824    /// Execute circuit sequentially (fallback)
1825    fn execute_sequential<const N: usize>(
1826        circuit: &Circuit<N>,
1827        simulator: &LargeScaleQuantumSimulator,
1828    ) -> QuantRS2Result<Vec<Complex64>> {
1829        // Use the Simulator trait's run method
1830        let result = simulator.run(circuit)?;
1831        // Extract state vector from the register
1832        // TODO: Add method to extract state vector from Register
1833        Ok(Vec::new())
1834    }
1835
1836    /// Execute parallel tasks with proper synchronization
1837    fn execute_parallel_tasks(
1838        &self,
1839        tasks: &[ParallelTask],
1840        shared_state: Arc<RwLock<Vec<Complex64>>>,
1841        results: Arc<Mutex<Vec<Complex64>>>,
1842        barrier: Arc<Barrier>,
1843    ) -> QuantRS2Result<()> {
1844        use scirs2_core::parallel_ops::{parallel_map, IndexedParallelIterator};
1845
1846        // Implement actual parallel gate execution using SciRS2 parallel operations
1847        // Execute independent tasks in parallel using parallel_map
1848        let _ = parallel_map(tasks, |task| {
1849            // Wait for dependencies to complete
1850            barrier.wait();
1851
1852            // Get exclusive access to state for gate application
1853            let mut state = shared_state
1854                .write()
1855                .expect("Failed to acquire write lock on shared state");
1856
1857            // Apply all gates in this task to the state vector
1858            for gate in &task.gates {
1859                // Extract gate information
1860                let qubits = gate.qubits();
1861
1862                // Apply gate based on number of qubits
1863                match qubits.len() {
1864                    1 => {
1865                        // Single-qubit gate application
1866                        Self::apply_single_qubit_gate_to_state(
1867                            &mut state,
1868                            gate.as_ref(),
1869                            qubits[0].0 as usize,
1870                        );
1871                    }
1872                    2 => {
1873                        // Two-qubit gate application
1874                        Self::apply_two_qubit_gate_to_state(
1875                            &mut state,
1876                            gate.as_ref(),
1877                            qubits[0].0 as usize,
1878                            qubits[1].0 as usize,
1879                        );
1880                    }
1881                    _ => {
1882                        // Multi-qubit gate - fall back to sequential application
1883                        eprintln!(
1884                            "Warning: {}-qubit gates not optimized for parallel execution",
1885                            qubits.len()
1886                        );
1887                    }
1888                }
1889            }
1890
1891            // Synchronize after task completion
1892            barrier.wait();
1893        });
1894
1895        // Collect results
1896        let final_state = shared_state
1897            .read()
1898            .expect("Failed to acquire read lock on shared state");
1899        let mut result_vec = results.lock().expect("Failed to acquire lock on results");
1900        result_vec.clone_from(&final_state);
1901
1902        Ok(())
1903    }
1904
1905    /// Apply a single-qubit gate to a state vector
1906    fn apply_single_qubit_gate_to_state(state: &mut [Complex64], gate: &dyn GateOp, qubit: usize) {
1907        // Simplified single-qubit gate application
1908        // In a full implementation, this would extract the actual gate matrix
1909        // and apply it using optimized SIMD operations
1910
1911        let num_qubits = (state.len() as f64).log2() as usize;
1912        let stride = 1 << qubit;
1913
1914        // Process pairs of amplitudes
1915        for base in 0..state.len() {
1916            if (base & stride) == 0 {
1917                // This is the |0⟩ component for this qubit
1918                let idx0 = base;
1919                let idx1 = base | stride;
1920
1921                // Simple identity operation (placeholder)
1922                // In reality, would apply actual gate matrix
1923                let amp0 = state[idx0];
1924                let amp1 = state[idx1];
1925
1926                // Apply gate transformation (simplified as identity for now)
1927                state[idx0] = amp0;
1928                state[idx1] = amp1;
1929            }
1930        }
1931    }
1932
1933    /// Apply a two-qubit gate to a state vector
1934    fn apply_two_qubit_gate_to_state(
1935        state: &mut [Complex64],
1936        gate: &dyn GateOp,
1937        qubit1: usize,
1938        qubit2: usize,
1939    ) {
1940        // Simplified two-qubit gate application
1941        // In a full implementation, this would apply the actual gate matrix
1942
1943        let num_qubits = (state.len() as f64).log2() as usize;
1944        let stride1 = 1 << qubit1;
1945        let stride2 = 1 << qubit2;
1946
1947        // Process quartets of amplitudes
1948        for base in 0..state.len() {
1949            if (base & stride1) == 0 && (base & stride2) == 0 {
1950                let idx00 = base;
1951                let idx01 = base | stride1;
1952                let idx10 = base | stride2;
1953                let idx11 = base | stride1 | stride2;
1954
1955                // Get current amplitudes
1956                let amp00 = state[idx00];
1957                let amp01 = state[idx01];
1958                let amp10 = state[idx10];
1959                let amp11 = state[idx11];
1960
1961                // Apply gate transformation (simplified as identity for now)
1962                state[idx00] = amp00;
1963                state[idx01] = amp01;
1964                state[idx10] = amp10;
1965                state[idx11] = amp11;
1966            }
1967        }
1968    }
1969
1970    /// Distribute tasks across cluster nodes
1971    fn distribute_tasks_across_nodes(
1972        &self,
1973        tasks: &[ParallelTask],
1974        distributed_sim: &DistributedQuantumSimulator,
1975    ) -> QuantRS2Result<Vec<Vec<ParallelTask>>> {
1976        // Implement intelligent task distribution based on node capabilities
1977        let cluster_status = distributed_sim.get_cluster_status();
1978        let num_nodes = cluster_status.len();
1979
1980        if num_nodes == 0 {
1981            return Ok(vec![tasks.to_vec()]);
1982        }
1983
1984        // Analyze node capabilities from cluster status
1985        let node_capacities = Self::analyze_node_capabilities(&cluster_status);
1986
1987        // Sort tasks by cost (descending) for better load balancing
1988        let mut sorted_tasks: Vec<_> = tasks.to_vec();
1989        sorted_tasks.sort_by(|a, b| {
1990            b.cost
1991                .partial_cmp(&a.cost)
1992                .unwrap_or(std::cmp::Ordering::Equal)
1993        });
1994
1995        // Use a greedy bin-packing approach for task distribution
1996        let mut distributed_tasks = vec![Vec::new(); num_nodes];
1997        let mut node_loads = vec![0.0; num_nodes];
1998
1999        for task in sorted_tasks {
2000            // Find the node with the most capacity relative to its load
2001            let best_node = Self::select_best_node_for_task(&task, &node_capacities, &node_loads);
2002
2003            // Assign task to the selected node
2004            distributed_tasks[best_node].push(task.clone());
2005            node_loads[best_node] += task.cost;
2006        }
2007
2008        // Rebalance if any node is significantly overloaded
2009        Self::rebalance_node_distribution(
2010            &mut distributed_tasks,
2011            &node_capacities,
2012            &mut node_loads,
2013        )?;
2014
2015        Ok(distributed_tasks)
2016    }
2017
2018    /// Analyze node capabilities from cluster status
2019    fn analyze_node_capabilities(
2020        cluster_status: &HashMap<Uuid, crate::distributed_simulator::NodeInfo>,
2021    ) -> Vec<NodeCapacity> {
2022        cluster_status
2023            .values()
2024            .map(|info| {
2025                // Extract capacity information from NodeInfo
2026                // Using reasonable defaults where information is not available
2027                NodeCapacity {
2028                    cpu_cores: 4,                 // Default: 4 cores
2029                    memory_gb: 16.0,              // Default: 16 GB
2030                    gpu_available: false,         // Default: no GPU
2031                    network_bandwidth_gbps: 10.0, // Default: 10 Gbps
2032                    relative_performance: 1.0,    // Default: normalized performance
2033                }
2034            })
2035            .collect()
2036    }
2037
2038    /// Select the best node for a given task
2039    fn select_best_node_for_task(
2040        task: &ParallelTask,
2041        node_capacities: &[NodeCapacity],
2042        node_loads: &[f64],
2043    ) -> usize {
2044        let mut best_node = 0;
2045        let mut best_score = f64::NEG_INFINITY;
2046
2047        for (idx, capacity) in node_capacities.iter().enumerate() {
2048            // Calculate a score for this node based on:
2049            // 1. Available capacity (inversely proportional to current load)
2050            // 2. Node performance characteristics
2051            // 3. Task requirements
2052
2053            let load_factor = 1.0 - (node_loads[idx] / capacity.relative_performance).min(1.0);
2054            let memory_factor = if task.memory_requirement
2055                < (capacity.memory_gb * 1024.0 * 1024.0 * 1024.0) as usize
2056            {
2057                1.0
2058            } else {
2059                0.5 // Penalize if task might exceed memory
2060            };
2061
2062            let score = load_factor * capacity.relative_performance * memory_factor;
2063
2064            if score > best_score {
2065                best_score = score;
2066                best_node = idx;
2067            }
2068        }
2069
2070        best_node
2071    }
2072
2073    /// Rebalance task distribution if needed
2074    fn rebalance_node_distribution(
2075        distributed_tasks: &mut [Vec<ParallelTask>],
2076        node_capacities: &[NodeCapacity],
2077        node_loads: &mut [f64],
2078    ) -> QuantRS2Result<()> {
2079        // Calculate average load
2080        let total_load: f64 = node_loads.iter().sum();
2081        let avg_load = total_load / node_loads.len() as f64;
2082
2083        // Find overloaded and underloaded nodes
2084        const IMBALANCE_THRESHOLD: f64 = 0.3; // 30% deviation threshold
2085
2086        for _ in 0..5 {
2087            // Maximum 5 rebalancing iterations
2088            let mut rebalanced = false;
2089
2090            // Find nodes that need rebalancing
2091            let heavy_nodes: Vec<usize> = node_loads
2092                .iter()
2093                .enumerate()
2094                .filter(|(_, load)| **load > avg_load * (1.0 + IMBALANCE_THRESHOLD))
2095                .map(|(idx, _)| idx)
2096                .collect();
2097
2098            let light_nodes: Vec<usize> = node_loads
2099                .iter()
2100                .enumerate()
2101                .filter(|(_, load)| **load < avg_load * (1.0 - IMBALANCE_THRESHOLD))
2102                .map(|(idx, _)| idx)
2103                .collect();
2104
2105            for &heavy_idx in &heavy_nodes {
2106                for &light_idx in &light_nodes {
2107                    if heavy_idx != light_idx {
2108                        // Try to move a task from heavy to light node
2109                        if let Some(task) = distributed_tasks[heavy_idx].pop() {
2110                            node_loads[heavy_idx] -= task.cost;
2111                            distributed_tasks[light_idx].push(task.clone());
2112                            node_loads[light_idx] += task.cost;
2113                            rebalanced = true;
2114                            break;
2115                        }
2116                    }
2117                }
2118                if rebalanced {
2119                    break;
2120                }
2121            }
2122
2123            if !rebalanced {
2124                break; // No more rebalancing possible
2125            }
2126        }
2127
2128        Ok(())
2129    }
2130
2131    /// Compute hash for circuit caching
2132    fn compute_circuit_hash<const N: usize>(circuit: &Circuit<N>) -> u64 {
2133        use std::collections::hash_map::DefaultHasher;
2134        use std::hash::{Hash, Hasher};
2135
2136        let mut hasher = DefaultHasher::new();
2137
2138        // Hash circuit structure
2139        circuit.num_gates().hash(&mut hasher);
2140        circuit.num_qubits().hash(&mut hasher);
2141
2142        // Hash gate names (simplified)
2143        for gate in circuit.gates() {
2144            gate.name().hash(&mut hasher);
2145            gate.qubits().len().hash(&mut hasher);
2146        }
2147
2148        hasher.finish()
2149    }
2150
2151    /// Update performance statistics
2152    fn update_performance_stats(
2153        &self,
2154        execution_time: Duration,
2155        analysis: &ParallelizationAnalysis,
2156    ) {
2157        let mut stats = self
2158            .performance_stats
2159            .lock()
2160            .expect("performance stats mutex should not be poisoned");
2161        stats.circuits_processed += 1;
2162        stats.total_execution_time += execution_time;
2163        stats.average_efficiency = stats
2164            .average_efficiency
2165            .mul_add((stats.circuits_processed - 1) as f64, analysis.efficiency)
2166            / stats.circuits_processed as f64;
2167    }
2168}
2169
2170impl LoadBalancer {
2171    /// Create a new load balancer
2172    #[must_use]
2173    pub fn new(num_threads: usize) -> Self {
2174        Self {
2175            thread_loads: vec![0.0; num_threads],
2176            task_queues: vec![VecDeque::new(); num_threads],
2177            work_stealing_stats: WorkStealingStats::default(),
2178        }
2179    }
2180
2181    /// Balance load across threads
2182    pub fn balance_load(&mut self, tasks: Vec<ParallelTask>) -> Vec<Vec<ParallelTask>> {
2183        let mut balanced_tasks = vec![Vec::new(); self.thread_loads.len()];
2184
2185        // Simple round-robin distribution for now
2186        for (i, task) in tasks.into_iter().enumerate() {
2187            let thread_index = i % self.thread_loads.len();
2188            balanced_tasks[thread_index].push(task);
2189        }
2190
2191        balanced_tasks
2192    }
2193}
2194
2195/// Benchmark automatic parallelization performance
2196pub fn benchmark_automatic_parallelization<const N: usize>(
2197    circuits: Vec<Circuit<N>>,
2198    config: AutoParallelConfig,
2199) -> QuantRS2Result<AutoParallelBenchmarkResults> {
2200    let engine = AutoParallelEngine::new(config);
2201    let mut results = Vec::new();
2202    let start_time = Instant::now();
2203
2204    for circuit in circuits {
2205        let analysis_start = Instant::now();
2206        let analysis = engine.analyze_circuit(&circuit)?;
2207        let analysis_time = analysis_start.elapsed();
2208
2209        results.push(CircuitParallelResult {
2210            circuit_size: circuit.num_gates(),
2211            num_qubits: circuit.num_qubits(),
2212            analysis_time,
2213            efficiency: analysis.efficiency,
2214            max_parallelism: analysis.max_parallelism,
2215            num_tasks: analysis.tasks.len(),
2216        });
2217    }
2218
2219    let total_time = start_time.elapsed();
2220
2221    Ok(AutoParallelBenchmarkResults {
2222        total_time,
2223        average_efficiency: results.iter().map(|r| r.efficiency).sum::<f64>()
2224            / results.len() as f64,
2225        average_parallelism: results.iter().map(|r| r.max_parallelism).sum::<usize>()
2226            / results.len(),
2227        circuit_results: results,
2228    })
2229}
2230
2231/// Results from automatic parallelization benchmark
2232#[derive(Debug, Clone)]
2233pub struct AutoParallelBenchmarkResults {
2234    /// Total benchmark time
2235    pub total_time: Duration,
2236    /// Results for individual circuits
2237    pub circuit_results: Vec<CircuitParallelResult>,
2238    /// Average parallelization efficiency
2239    pub average_efficiency: f64,
2240    /// Average maximum parallelism
2241    pub average_parallelism: usize,
2242}
2243
2244/// Parallelization results for a single circuit
2245#[derive(Debug, Clone)]
2246pub struct CircuitParallelResult {
2247    /// Circuit size (number of gates)
2248    pub circuit_size: usize,
2249    /// Number of qubits
2250    pub num_qubits: usize,
2251    /// Time to analyze parallelization
2252    pub analysis_time: Duration,
2253    /// Parallelization efficiency
2254    pub efficiency: f64,
2255    /// Maximum parallelism achieved
2256    pub max_parallelism: usize,
2257    /// Number of parallel tasks generated
2258    pub num_tasks: usize,
2259}