Module quantum_machine_learning_layers

Module quantum_machine_learning_layers 

Source
Expand description

Quantum Machine Learning Layers Framework

This module provides a comprehensive implementation of quantum machine learning layers, including parameterized quantum circuits, quantum convolutional layers, quantum recurrent networks, and hybrid classical-quantum training algorithms. This framework enables quantum advantage in machine learning applications with hardware-aware optimization.

Structs§

AdversarialTrainingConfig
Adversarial training configuration
AttentionHead
Attention head structure
BenchmarkingProtocols
Benchmarking protocols
CachingConfig
Caching configuration
ClassicalPreprocessingConfig
Classical preprocessing configuration
ComputationOptimizationConfig
Computation optimization configuration
ConvolutionalFilter
Convolutional filter structure
DenseConnection
Dense layer connection
EarlyStoppingConfig
Early stopping configuration
EnsembleMethodsConfig
Ensemble methods configuration
ErrorMitigationConfig
Error mitigation configuration
FeatureSelectionConfig
Feature selection configuration
GradientFlowConfig
Gradient flow configuration for hybrid training
HardwareOptimizationConfig
Hardware optimization configuration
HybridTrainingConfig
Hybrid training configuration
LSTMGate
LSTM gate structure
MemoryOptimizationConfig
Memory optimization configuration
NoiseAwareTrainingConfig
Noise-aware training configuration
NoiseCharacterizationConfig
Noise characterization configuration
NoiseInjectionConfig
Noise injection configuration
NoiseParameters
Noise parameters for quantum devices
PQCGate
Parameterized quantum circuit gate
ParallelizationConfig
Parallelization configuration
ParameterizedQuantumCircuitLayer
Parameterized Quantum Circuit Layer
PerformanceOptimizationConfig
Performance optimization configuration
QMLBenchmarkResults
QML benchmark results
QMLConfig
Quantum machine learning configuration
QMLEpochMetrics
Training metrics for a single epoch
QMLLayerConfig
QML layer configuration
QMLStats
QML framework statistics
QMLTrainingConfig
QML training configuration
QMLTrainingResult
Training result for QML framework
QMLTrainingState
Training state for QML framework
QMLUtils
Utility functions for QML
QuantumAdvantageMetrics
Quantum advantage metrics
QuantumAttentionLayer
Quantum Attention Layer
QuantumConvolutionalLayer
Quantum Convolutional Layer
QuantumDenseLayer
Quantum Dense Layer (fully connected)
QuantumLSTMLayer
Quantum LSTM Layer
QuantumMLFramework
Main quantum machine learning layers framework
RegularizationConfig
Regularization configuration
RobustTrainingConfig
Robust training configuration
VirtualDistillationConfig
Virtual distillation configuration

Enums§

AdversarialAttackMethod
Adversarial attack methods
AdversarialDefenseMethod
Adversarial defense methods
AlternatingSchedule
Alternating training schedules for hybrid systems
AnsatzType
Ansatz types for parameterized quantum circuits
CalibrationFrequency
Calibration frequency
ClassicalArchitecture
Classical neural network architectures for hybrid training
ConnectivityConstraints
Connectivity constraints
DataEncodingMethod
Data encoding methods for quantum circuits
DistillationProtocol
Distillation protocols
EnsembleMethod
Ensemble methods
EntanglementPattern
Entanglement patterns
FeatureSelectionMethod
Feature selection methods
GradientMethod
Gradient computation methods
HardwareOptimizationLevel
Hardware optimization levels
LSTMGateType
LSTM gate types
LearningRateSchedule
Learning rate schedules
NoiseCharacterizationMethod
Noise characterization methods
NoiseType
Noise types for training
OptimizerType
Optimizer types
PQCGateType
Types of PQC gates
QMLArchitectureType
QML architecture types
QMLLayerType
Types of QML layers
QMLTrainingAlgorithm
QML training algorithms
QuantumClassicalInterface
Quantum-classical interfaces
QuantumHardwareTarget
Quantum hardware targets
RotationGate
Rotation gates for parameterized circuits
ScalingMethod
Scaling methods for classical preprocessing
TwoQubitGate
Two-qubit gates
VotingStrategy
Voting strategies for ensembles

Traits§

QMLLayer
Trait for QML layers

Functions§

benchmark_quantum_ml_layers
Benchmark quantum machine learning implementations