1use crate::distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig};
8use crate::large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig};
9use quantrs2_circuit::builder::{Circuit, Simulator};
10use quantrs2_core::{
11 error::{QuantRS2Error, QuantRS2Result},
12 gate::GateOp,
13 qubit::QubitId,
14};
15use scirs2_core::parallel_ops::*; use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
19use scirs2_core::Complex64;
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};
22use std::sync::{Arc, Barrier, Mutex, RwLock};
23use std::thread;
24use std::time::{Duration, Instant};
25use uuid::Uuid;
26
27#[derive(Debug, Clone, Serialize, Deserialize)]
29pub struct AutoParallelConfig {
30 pub max_threads: usize,
32
33 pub min_gates_for_parallel: usize,
35
36 pub strategy: ParallelizationStrategy,
38
39 pub resource_constraints: ResourceConstraints,
41
42 pub enable_inter_layer_parallel: bool,
44
45 pub enable_gate_fusion: bool,
47
48 pub scirs2_optimization_level: OptimizationLevel,
50
51 pub load_balancing: LoadBalancingConfig,
53
54 pub enable_analysis_caching: bool,
56
57 pub memory_budget: usize,
59}
60
61impl Default for AutoParallelConfig {
62 fn default() -> Self {
63 Self {
64 max_threads: current_num_threads(), min_gates_for_parallel: 10,
66 strategy: ParallelizationStrategy::DependencyAnalysis,
67 resource_constraints: ResourceConstraints::default(),
68 enable_inter_layer_parallel: true,
69 enable_gate_fusion: true,
70 scirs2_optimization_level: OptimizationLevel::Aggressive,
71 load_balancing: LoadBalancingConfig::default(),
72 enable_analysis_caching: true,
73 memory_budget: 4 * 1024 * 1024 * 1024, }
75 }
76}
77
78#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
80pub enum ParallelizationStrategy {
81 DependencyAnalysis,
83 LayerBased,
85 QubitPartitioning,
87 Hybrid,
89 MLGuided,
91 HardwareAware,
93}
94
95#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct ResourceConstraints {
98 pub max_memory_per_thread: usize,
100 pub max_cpu_utilization: f64,
102 pub max_gates_per_thread: usize,
104 pub preferred_numa_node: Option<usize>,
106}
107
108impl Default for ResourceConstraints {
109 fn default() -> Self {
110 Self {
111 max_memory_per_thread: 1024 * 1024 * 1024, max_cpu_utilization: 0.8,
113 max_gates_per_thread: 1000,
114 preferred_numa_node: None,
115 }
116 }
117}
118
119#[derive(Debug, Clone, Serialize, Deserialize)]
121pub struct LoadBalancingConfig {
122 pub enable_dynamic_balancing: bool,
124 pub work_stealing_strategy: WorkStealingStrategy,
126 pub monitoring_interval: Duration,
128 pub rebalancing_threshold: f64,
130}
131
132impl Default for LoadBalancingConfig {
133 fn default() -> Self {
134 Self {
135 enable_dynamic_balancing: true,
136 work_stealing_strategy: WorkStealingStrategy::Adaptive,
137 monitoring_interval: Duration::from_millis(100),
138 rebalancing_threshold: 0.2,
139 }
140 }
141}
142
143#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
145pub enum WorkStealingStrategy {
146 Random,
148 CostAware,
150 LocalityAware,
152 Adaptive,
154}
155
156#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
158pub enum OptimizationLevel {
159 None,
161 Basic,
163 Advanced,
165 Aggressive,
167 Custom,
169}
170
171#[derive(Debug, Clone)]
173pub struct ParallelTask {
174 pub id: Uuid,
176 pub gates: Vec<Arc<dyn GateOp + Send + Sync>>,
178 pub qubits: HashSet<QubitId>,
180 pub cost: f64,
182 pub memory_requirement: usize,
184 pub dependencies: HashSet<Uuid>,
186 pub priority: TaskPriority,
188}
189
190#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
192pub enum TaskPriority {
193 Low = 1,
195 Normal = 2,
197 High = 3,
199 Critical = 4,
201}
202
203#[derive(Debug, Clone)]
205pub struct DependencyGraph {
206 pub nodes: Vec<GateNode>,
208 pub edges: HashMap<usize, Vec<usize>>,
210 pub reverse_edges: HashMap<usize, Vec<usize>>,
212 pub layers: Vec<Vec<usize>>,
214}
215
216#[derive(Debug, Clone)]
218pub struct GateNode {
219 pub gate_index: usize,
221 pub gate: Arc<dyn GateOp + Send + Sync>,
223 pub qubits: HashSet<QubitId>,
225 pub layer: usize,
227 pub cost: f64,
229}
230
231#[derive(Debug, Clone)]
233pub struct ParallelizationAnalysis {
234 pub tasks: Vec<ParallelTask>,
236 pub num_layers: usize,
238 pub efficiency: f64,
240 pub max_parallelism: usize,
242 pub critical_path_length: usize,
244 pub resource_utilization: ResourceUtilization,
246 pub recommendations: Vec<OptimizationRecommendation>,
248}
249
250#[derive(Debug, Clone)]
252pub struct ResourceUtilization {
253 pub cpu_utilization: Vec<f64>,
255 pub memory_usage: Vec<usize>,
257 pub load_balance_score: f64,
259 pub communication_overhead: f64,
261}
262
263#[derive(Debug, Clone)]
265pub struct OptimizationRecommendation {
266 pub recommendation_type: RecommendationType,
268 pub description: String,
270 pub expected_improvement: f64,
272 pub complexity: RecommendationComplexity,
274}
275
276#[derive(Debug, Clone, Copy, PartialEq, Eq)]
278pub enum RecommendationType {
279 GateReordering,
281 CircuitDecomposition,
283 ResourceAllocation,
285 StrategyChange,
287 HardwareConfiguration,
289}
290
291#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
293pub enum RecommendationComplexity {
294 Low,
296 Medium,
298 High,
300}
301
302#[derive(Debug, Clone)]
304pub struct MLFeatures {
305 pub num_gates: usize,
307 pub num_qubits: usize,
309 pub circuit_depth: usize,
311 pub avg_connectivity: f64,
313 pub parallelism_factor: f64,
315 pub gate_distribution: HashMap<String, usize>,
317 pub entanglement_score: f64,
319 pub dependency_density: f64,
321}
322
323#[derive(Debug, Clone, Copy, PartialEq, Eq)]
325pub enum MLPredictedStrategy {
326 HighParallelism,
328 BalancedParallelism,
330 ConservativeParallelism,
332 LayerOptimized,
334}
335
336#[derive(Debug, Clone)]
338pub struct HardwareCharacteristics {
339 pub num_cores: usize,
341 pub l1_cache_size: usize,
343 pub l2_cache_size: usize,
345 pub l3_cache_size: usize,
347 pub memory_bandwidth: f64,
349 pub num_numa_nodes: usize,
351 pub has_gpu: bool,
353 pub simd_width: usize,
355}
356
357#[derive(Debug, Clone, Copy, PartialEq, Eq)]
359pub enum HardwareStrategy {
360 CacheOptimized,
362 SIMDOptimized,
364 NUMAAware,
366 GPUOffload,
368 Hybrid,
370}
371
372#[derive(Debug, Clone)]
374pub struct NodeCapacity {
375 pub cpu_cores: usize,
377 pub memory_gb: f64,
379 pub gpu_available: bool,
381 pub network_bandwidth_gbps: f64,
383 pub relative_performance: f64,
385}
386
387pub struct AutoParallelEngine {
389 config: AutoParallelConfig,
391 analysis_cache: Arc<RwLock<HashMap<u64, ParallelizationAnalysis>>>,
393 performance_stats: Arc<Mutex<ParallelPerformanceStats>>,
395 load_balancer: Arc<Mutex<LoadBalancer>>,
399}
400
401#[derive(Debug, Clone, Default)]
403pub struct ParallelPerformanceStats {
404 pub circuits_processed: usize,
406 pub total_execution_time: Duration,
408 pub average_efficiency: f64,
410 pub cache_hit_rate: f64,
412 pub task_stats: TaskCompletionStats,
414 pub resource_history: Vec<ResourceSnapshot>,
416}
417
418#[derive(Debug, Clone, Default)]
420pub struct TaskCompletionStats {
421 pub total_tasks: usize,
423 pub average_duration: Duration,
425 pub success_rate: f64,
427 pub load_balance_effectiveness: f64,
429}
430
431#[derive(Debug, Clone)]
433pub struct ResourceSnapshot {
434 pub timestamp: Instant,
436 pub cpu_utilization: Vec<f64>,
438 pub memory_usage: usize,
440 pub active_tasks: usize,
442}
443
444pub struct LoadBalancer {
446 thread_loads: Vec<f64>,
448 task_queues: Vec<VecDeque<ParallelTask>>,
450 work_stealing_stats: WorkStealingStats,
452}
453
454#[derive(Debug, Clone, Default)]
456pub struct WorkStealingStats {
457 pub steal_attempts: usize,
459 pub successful_steals: usize,
461 pub failed_steals: usize,
463 pub average_steal_latency: Duration,
465}
466
467impl AutoParallelEngine {
468 pub fn new(config: AutoParallelConfig) -> Self {
470 let num_threads = config.max_threads;
471
472 Self {
473 config,
474 analysis_cache: Arc::new(RwLock::new(HashMap::new())),
475 performance_stats: Arc::new(Mutex::new(ParallelPerformanceStats::default())),
476 load_balancer: Arc::new(Mutex::new(LoadBalancer::new(num_threads))),
477 }
478 }
479
480 pub fn analyze_circuit<const N: usize>(
482 &self,
483 circuit: &Circuit<N>,
484 ) -> QuantRS2Result<ParallelizationAnalysis> {
485 let start_time = Instant::now();
486
487 if self.config.enable_analysis_caching {
489 let circuit_hash = self.compute_circuit_hash(circuit);
490 if let Some(cached_analysis) = self.analysis_cache.read().unwrap().get(&circuit_hash) {
491 return Ok(cached_analysis.clone());
492 }
493 }
494
495 let dependency_graph = self.build_dependency_graph(circuit)?;
497
498 let tasks = match self.config.strategy {
500 ParallelizationStrategy::DependencyAnalysis => {
501 self.dependency_based_parallelization(&dependency_graph)?
502 }
503 ParallelizationStrategy::LayerBased => {
504 self.layer_based_parallelization(&dependency_graph)?
505 }
506 ParallelizationStrategy::QubitPartitioning => {
507 self.qubit_partitioning_parallelization(circuit, &dependency_graph)?
508 }
509 ParallelizationStrategy::Hybrid => {
510 self.hybrid_parallelization(circuit, &dependency_graph)?
511 }
512 ParallelizationStrategy::MLGuided => {
513 self.ml_guided_parallelization(circuit, &dependency_graph)?
514 }
515 ParallelizationStrategy::HardwareAware => {
516 self.hardware_aware_parallelization(circuit, &dependency_graph)?
517 }
518 };
519
520 let analysis = self.calculate_parallelization_metrics(circuit, &dependency_graph, tasks)?;
522
523 if self.config.enable_analysis_caching {
525 let circuit_hash = self.compute_circuit_hash(circuit);
526 self.analysis_cache
527 .write()
528 .unwrap()
529 .insert(circuit_hash, analysis.clone());
530 }
531
532 self.update_performance_stats(start_time.elapsed(), &analysis);
534
535 Ok(analysis)
536 }
537
538 pub fn execute_parallel<const N: usize>(
540 &self,
541 circuit: &Circuit<N>,
542 simulator: &mut LargeScaleQuantumSimulator,
543 ) -> QuantRS2Result<Vec<Complex64>> {
544 let analysis = self.analyze_circuit(circuit)?;
545
546 if analysis.tasks.len() < self.config.min_gates_for_parallel {
547 return self.execute_sequential(circuit, simulator);
549 }
550
551 let barrier = Arc::new(Barrier::new(self.config.max_threads));
553 let shared_state = Arc::new(RwLock::new(simulator.get_dense_state()?));
554 let task_results = Arc::new(Mutex::new(Vec::new()));
555
556 self.execute_parallel_tasks(&analysis.tasks, shared_state.clone(), task_results, barrier)?;
558
559 let final_state = shared_state.read().unwrap().clone();
561 Ok(final_state)
562 }
563
564 pub fn execute_distributed<const N: usize>(
566 &self,
567 circuit: &Circuit<N>,
568 distributed_sim: &mut DistributedQuantumSimulator,
569 ) -> QuantRS2Result<Vec<Complex64>> {
570 let analysis = self.analyze_circuit(circuit)?;
571
572 let distributed_tasks =
574 self.distribute_tasks_across_nodes(&analysis.tasks, distributed_sim)?;
575
576 let results = self.execute_distributed_tasks(&distributed_tasks, distributed_sim)?;
579
580 let final_result = self.aggregate_distributed_results(results)?;
582
583 Ok(final_result)
584 }
585
586 fn execute_distributed_tasks(
588 &self,
589 distributed_tasks: &[Vec<ParallelTask>],
590 distributed_sim: &DistributedQuantumSimulator,
591 ) -> QuantRS2Result<Vec<Vec<Complex64>>> {
592 use scirs2_core::parallel_ops::*;
593
594 let cluster_status = distributed_sim.get_cluster_status();
595 let num_nodes = cluster_status.len();
596
597 let node_results: Vec<Vec<Complex64>> =
599 parallel_map(&(0..num_nodes).collect::<Vec<_>>(), |&node_id| {
600 let tasks = &distributed_tasks[node_id];
601 let mut node_result = Vec::new();
602
603 for task in tasks {
605 let task_result = self.execute_task_on_node(task, node_id);
608 node_result.extend(task_result);
609 }
610
611 node_result
612 });
613
614 Ok(node_results)
615 }
616
617 const fn execute_task_on_node(&self, task: &ParallelTask, node_id: usize) -> Vec<Complex64> {
619 Vec::new()
628 }
629
630 fn aggregate_distributed_results(
632 &self,
633 node_results: Vec<Vec<Complex64>>,
634 ) -> QuantRS2Result<Vec<Complex64>> {
635 use scirs2_core::parallel_ops::*;
636
637 let total_elements: usize = node_results.iter().map(|r| r.len()).sum();
640 let mut aggregated = Vec::with_capacity(total_elements);
641
642 for node_result in node_results {
643 aggregated.extend(node_result);
644 }
645
646 Ok(aggregated)
647 }
648
649 fn build_dependency_graph<const N: usize>(
651 &self,
652 circuit: &Circuit<N>,
653 ) -> QuantRS2Result<DependencyGraph> {
654 let gates = circuit.gates();
655 let mut nodes = Vec::with_capacity(gates.len());
656 let mut edges: HashMap<usize, Vec<usize>> = HashMap::new();
657 let mut reverse_edges: HashMap<usize, Vec<usize>> = HashMap::new();
658
659 for (i, gate) in gates.iter().enumerate() {
661 let qubits: HashSet<QubitId> = gate.qubits().into_iter().collect();
662 let cost = self.estimate_gate_cost(gate.as_ref());
663
664 nodes.push(GateNode {
665 gate_index: i,
666 gate: gate.clone(),
667 qubits,
668 layer: 0, cost,
670 });
671
672 edges.insert(i, Vec::new());
673 reverse_edges.insert(i, Vec::new());
674 }
675
676 for i in 0..nodes.len() {
678 for j in (i + 1)..nodes.len() {
679 if !nodes[i].qubits.is_disjoint(&nodes[j].qubits) {
680 edges.get_mut(&i).unwrap().push(j);
682 reverse_edges.get_mut(&j).unwrap().push(i);
683 }
684 }
685 }
686
687 let layers = self.compute_topological_layers(&nodes, &edges)?;
689
690 for (layer_idx, layer) in layers.iter().enumerate() {
692 for &node_idx in layer {
693 if let Some(node) = nodes.get_mut(node_idx) {
694 node.layer = layer_idx;
695 }
696 }
697 }
698
699 Ok(DependencyGraph {
700 nodes,
701 edges,
702 reverse_edges,
703 layers,
704 })
705 }
706
707 fn compute_topological_layers(
709 &self,
710 nodes: &[GateNode],
711 edges: &HashMap<usize, Vec<usize>>,
712 ) -> QuantRS2Result<Vec<Vec<usize>>> {
713 let mut in_degree: HashMap<usize, usize> = HashMap::new();
714 let mut layers = Vec::new();
715 let mut queue = VecDeque::new();
716
717 for i in 0..nodes.len() {
719 in_degree.insert(i, 0);
720 }
721
722 for to_list in edges.values() {
723 for &to in to_list {
724 *in_degree.get_mut(&to).unwrap() += 1;
725 }
726 }
727
728 for i in 0..nodes.len() {
730 if in_degree[&i] == 0 {
731 queue.push_back(i);
732 }
733 }
734
735 while !queue.is_empty() {
736 let mut current_layer = Vec::new();
737 let layer_size = queue.len();
738
739 for _ in 0..layer_size {
740 if let Some(node) = queue.pop_front() {
741 current_layer.push(node);
742
743 if let Some(neighbors) = edges.get(&node) {
745 for &neighbor in neighbors {
746 let new_degree = in_degree[&neighbor] - 1;
747 in_degree.insert(neighbor, new_degree);
748
749 if new_degree == 0 {
750 queue.push_back(neighbor);
751 }
752 }
753 }
754 }
755 }
756
757 if !current_layer.is_empty() {
758 layers.push(current_layer);
759 }
760 }
761
762 Ok(layers)
763 }
764
765 fn dependency_based_parallelization(
767 &self,
768 graph: &DependencyGraph,
769 ) -> QuantRS2Result<Vec<ParallelTask>> {
770 let mut tasks = Vec::new();
771
772 for layer in &graph.layers {
773 if layer.len() > 1 {
774 let chunks = self.partition_layer_into_tasks(layer, graph)?;
776
777 for chunk in chunks {
778 let task = self.create_parallel_task(chunk, graph)?;
779 tasks.push(task);
780 }
781 } else {
782 if let Some(&gate_idx) = layer.first() {
784 let task = self.create_parallel_task(vec![gate_idx], graph)?;
785 tasks.push(task);
786 }
787 }
788 }
789
790 Ok(tasks)
791 }
792
793 fn layer_based_parallelization(
795 &self,
796 graph: &DependencyGraph,
797 ) -> QuantRS2Result<Vec<ParallelTask>> {
798 let mut tasks = Vec::new();
799
800 for layer in &graph.layers {
801 let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
803
804 for chunk in layer.chunks(max_gates_per_task) {
805 let task = self.create_parallel_task(chunk.to_vec(), graph)?;
806 tasks.push(task);
807 }
808 }
809
810 Ok(tasks)
811 }
812
813 fn qubit_partitioning_parallelization<const N: usize>(
815 &self,
816 circuit: &Circuit<N>,
817 graph: &DependencyGraph,
818 ) -> QuantRS2Result<Vec<ParallelTask>> {
819 let qubit_partitions = self.partition_qubits(circuit)?;
821 let mut tasks = Vec::new();
822
823 for partition in qubit_partitions {
824 let mut partition_gates = Vec::new();
826
827 for (i, node) in graph.nodes.iter().enumerate() {
828 if node.qubits.iter().all(|q| partition.contains(q)) {
829 partition_gates.push(i);
830 }
831 }
832
833 if !partition_gates.is_empty() {
834 let task = self.create_parallel_task(partition_gates, graph)?;
835 tasks.push(task);
836 }
837 }
838
839 Ok(tasks)
840 }
841
842 fn hybrid_parallelization<const N: usize>(
844 &self,
845 circuit: &Circuit<N>,
846 graph: &DependencyGraph,
847 ) -> QuantRS2Result<Vec<ParallelTask>> {
848 let dependency_tasks = self.dependency_based_parallelization(graph)?;
850 let layer_tasks = self.layer_based_parallelization(graph)?;
851 let partition_tasks = self.qubit_partitioning_parallelization(circuit, graph)?;
852
853 let strategies = vec![
855 ("dependency", dependency_tasks),
856 ("layer", layer_tasks),
857 ("partition", partition_tasks),
858 ];
859
860 let best_strategy = strategies.into_iter().max_by(|(_, tasks_a), (_, tasks_b)| {
861 let efficiency_a = self.calculate_strategy_efficiency(tasks_a);
862 let efficiency_b = self.calculate_strategy_efficiency(tasks_b);
863 efficiency_a
864 .partial_cmp(&efficiency_b)
865 .unwrap_or(std::cmp::Ordering::Equal)
866 });
867
868 match best_strategy {
869 Some((_, tasks)) => Ok(tasks),
870 None => Ok(Vec::new()),
871 }
872 }
873
874 fn ml_guided_parallelization<const N: usize>(
876 &self,
877 circuit: &Circuit<N>,
878 graph: &DependencyGraph,
879 ) -> QuantRS2Result<Vec<ParallelTask>> {
880 let features = self.extract_ml_features(circuit, graph);
883
884 let predicted_strategy = self.predict_parallelization_strategy(&features);
886
887 let task_groups = match predicted_strategy {
889 MLPredictedStrategy::HighParallelism => {
890 self.aggressive_parallelization(graph)?
892 }
893 MLPredictedStrategy::BalancedParallelism => {
894 self.hybrid_parallelization(circuit, graph)?
896 }
897 MLPredictedStrategy::ConservativeParallelism => {
898 self.dependency_based_parallelization(graph)?
900 }
901 MLPredictedStrategy::LayerOptimized => {
902 self.layer_based_parallelization(graph)?
904 }
905 };
906
907 let optimized_tasks = self.ml_optimize_tasks(task_groups, &features)?;
909
910 Ok(optimized_tasks)
911 }
912
913 fn extract_ml_features<const N: usize>(
915 &self,
916 circuit: &Circuit<N>,
917 graph: &DependencyGraph,
918 ) -> MLFeatures {
919 let gates = circuit.gates();
920 let num_gates = gates.len();
921 let num_qubits = N;
922
923 let circuit_depth = self.calculate_circuit_depth(graph);
925
926 let avg_connectivity = self.calculate_average_connectivity(graph);
928
929 let parallelism_factor = self.calculate_parallelism_factor(graph);
931
932 let gate_distribution = self.calculate_gate_distribution(gates);
934
935 let entanglement_score = self.estimate_entanglement_complexity(circuit);
937
938 MLFeatures {
939 num_gates,
940 num_qubits,
941 circuit_depth,
942 avg_connectivity,
943 parallelism_factor,
944 gate_distribution,
945 entanglement_score,
946 dependency_density: graph.edges.len() as f64 / num_gates as f64,
947 }
948 }
949
950 fn predict_parallelization_strategy(&self, features: &MLFeatures) -> MLPredictedStrategy {
952 if features.parallelism_factor > 0.7 && features.avg_connectivity < 2.0 {
957 return MLPredictedStrategy::HighParallelism;
958 }
959
960 if features.circuit_depth < (features.num_gates as f64 * 0.3) as usize {
962 return MLPredictedStrategy::LayerOptimized;
963 }
964
965 if features.avg_connectivity > 3.5 || features.dependency_density > 0.6 {
967 return MLPredictedStrategy::ConservativeParallelism;
968 }
969
970 MLPredictedStrategy::BalancedParallelism
972 }
973
974 fn ml_optimize_tasks(
976 &self,
977 tasks: Vec<ParallelTask>,
978 features: &MLFeatures,
979 ) -> QuantRS2Result<Vec<ParallelTask>> {
980 let mut optimized = tasks;
982
983 self.balance_task_loads(&mut optimized)?;
985
986 if features.num_gates < 50 {
988 optimized = self.merge_small_tasks(optimized)?;
989 }
990
991 if features.parallelism_factor > 0.6 {
993 optimized = self.split_large_tasks(optimized)?;
994 }
995
996 Ok(optimized)
997 }
998
999 fn aggressive_parallelization(
1001 &self,
1002 graph: &DependencyGraph,
1003 ) -> QuantRS2Result<Vec<ParallelTask>> {
1004 let mut tasks = Vec::new();
1005 let mut visited = vec![false; graph.nodes.len()];
1006
1007 for (idx, node) in graph.nodes.iter().enumerate() {
1009 if visited[idx] {
1010 continue;
1011 }
1012
1013 let mut parallel_group = vec![idx];
1015 visited[idx] = true;
1016
1017 for (other_idx, other_node) in graph.nodes.iter().enumerate() {
1018 if visited[other_idx] {
1019 continue;
1020 }
1021
1022 if !self.gates_have_dependency(idx, other_idx, graph)
1024 && !self.gates_share_qubits(&node.qubits, &other_node.qubits)
1025 {
1026 parallel_group.push(other_idx);
1027 visited[other_idx] = true;
1028 }
1029 }
1030
1031 if !parallel_group.is_empty() {
1032 tasks.push(self.create_parallel_task(parallel_group, graph)?);
1033 }
1034 }
1035
1036 Ok(tasks)
1037 }
1038
1039 fn calculate_circuit_depth(&self, graph: &DependencyGraph) -> usize {
1041 let mut depths = vec![0; graph.nodes.len()];
1042
1043 for (idx, node) in graph.nodes.iter().enumerate() {
1045 let mut max_parent_depth = 0;
1046 if let Some(parents) = graph.reverse_edges.get(&idx) {
1047 for &parent in parents {
1048 max_parent_depth = max_parent_depth.max(depths[parent]);
1049 }
1050 }
1051 depths[idx] = max_parent_depth + 1;
1052 }
1053
1054 *depths.iter().max().unwrap_or(&0)
1055 }
1056
1057 fn calculate_average_connectivity(&self, graph: &DependencyGraph) -> f64 {
1059 if graph.nodes.is_empty() {
1060 return 0.0;
1061 }
1062
1063 let total_connections: usize = graph.nodes.iter().map(|n| n.qubits.len()).sum();
1064 total_connections as f64 / graph.nodes.len() as f64
1065 }
1066
1067 fn calculate_parallelism_factor(&self, graph: &DependencyGraph) -> f64 {
1069 if graph.nodes.is_empty() {
1070 return 0.0;
1071 }
1072
1073 let independent_gates = graph
1075 .nodes
1076 .iter()
1077 .enumerate()
1078 .filter(|(idx, _)| {
1079 graph
1080 .reverse_edges
1081 .get(idx)
1082 .is_none_or(|edges| edges.is_empty())
1083 })
1084 .count();
1085
1086 independent_gates as f64 / graph.nodes.len() as f64
1087 }
1088
1089 fn calculate_gate_distribution(
1091 &self,
1092 gates: &[Arc<dyn GateOp + Send + Sync>],
1093 ) -> HashMap<String, usize> {
1094 let mut distribution = HashMap::new();
1095
1096 for gate in gates {
1097 let gate_type = format!("{gate:?}"); *distribution.entry(gate_type).or_insert(0) += 1;
1099 }
1100
1101 distribution
1102 }
1103
1104 fn estimate_entanglement_complexity<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
1106 let gates = circuit.gates();
1107
1108 let two_qubit_gates = gates.iter().filter(|g| g.qubits().len() >= 2).count();
1110
1111 if gates.is_empty() {
1113 0.0
1114 } else {
1115 two_qubit_gates as f64 / gates.len() as f64
1116 }
1117 }
1118
1119 fn balance_task_loads(&self, tasks: &mut Vec<ParallelTask>) -> QuantRS2Result<()> {
1121 tasks.sort_by(|a, b| b.cost.partial_cmp(&a.cost).unwrap());
1123
1124 Ok(())
1126 }
1127
1128 fn merge_small_tasks(&self, tasks: Vec<ParallelTask>) -> QuantRS2Result<Vec<ParallelTask>> {
1130 let mut merged = Vec::new();
1131 let mut current_batch = Vec::new();
1132 let mut current_cost = 0.0;
1133
1134 const COST_THRESHOLD: f64 = 10.0; for task in tasks {
1137 if task.cost < COST_THRESHOLD {
1138 current_batch.push(task);
1139 current_cost += current_batch.last().unwrap().cost;
1140
1141 if current_cost >= COST_THRESHOLD {
1142 merged.push(self.merge_task_batch(current_batch)?);
1144 current_batch = Vec::new();
1145 current_cost = 0.0;
1146 }
1147 } else {
1148 merged.push(task);
1149 }
1150 }
1151
1152 if !current_batch.is_empty() {
1154 merged.push(self.merge_task_batch(current_batch)?);
1155 }
1156
1157 Ok(merged)
1158 }
1159
1160 fn split_large_tasks(&self, tasks: Vec<ParallelTask>) -> QuantRS2Result<Vec<ParallelTask>> {
1162 let mut split_tasks = Vec::new();
1163
1164 const COST_THRESHOLD: f64 = 100.0; for task in tasks {
1167 if task.cost > COST_THRESHOLD && task.gates.len() > 4 {
1168 let mid = task.gates.len() / 2;
1170 let (gates1, gates2) = task.gates.split_at(mid);
1171
1172 split_tasks.push(ParallelTask {
1173 id: Uuid::new_v4(),
1174 gates: gates1.to_vec(),
1175 qubits: task.qubits.clone(),
1176 cost: task.cost / 2.0,
1177 memory_requirement: task.memory_requirement / 2,
1178 dependencies: task.dependencies.clone(),
1179 priority: task.priority,
1180 });
1181
1182 split_tasks.push(ParallelTask {
1183 id: Uuid::new_v4(),
1184 gates: gates2.to_vec(),
1185 qubits: task.qubits.clone(),
1186 cost: task.cost / 2.0,
1187 memory_requirement: task.memory_requirement / 2,
1188 dependencies: HashSet::new(),
1189 priority: task.priority,
1190 });
1191 } else {
1192 split_tasks.push(task);
1193 }
1194 }
1195
1196 Ok(split_tasks)
1197 }
1198
1199 fn merge_task_batch(&self, batch: Vec<ParallelTask>) -> QuantRS2Result<ParallelTask> {
1201 let mut merged_gates = Vec::new();
1202 let mut merged_qubits = HashSet::new();
1203 let mut merged_cost = 0.0;
1204 let mut merged_memory = 0;
1205 let mut merged_deps = HashSet::new();
1206 let mut max_priority = TaskPriority::Low;
1207
1208 for task in batch {
1209 merged_gates.extend(task.gates);
1210 merged_qubits.extend(task.qubits);
1211 merged_cost += task.cost;
1212 merged_memory += task.memory_requirement;
1213 merged_deps.extend(task.dependencies);
1214 if task.priority as u8 > max_priority as u8 {
1216 max_priority = task.priority;
1217 }
1218 }
1219
1220 Ok(ParallelTask {
1221 id: Uuid::new_v4(),
1222 gates: merged_gates,
1223 qubits: merged_qubits,
1224 cost: merged_cost,
1225 memory_requirement: merged_memory,
1226 dependencies: merged_deps,
1227 priority: max_priority,
1228 })
1229 }
1230
1231 fn gates_have_dependency(&self, idx1: usize, idx2: usize, graph: &DependencyGraph) -> bool {
1233 if let Some(deps) = graph.reverse_edges.get(&idx2) {
1235 if deps.contains(&idx1) {
1236 return true;
1237 }
1238 }
1239
1240 if let Some(deps) = graph.reverse_edges.get(&idx1) {
1242 if deps.contains(&idx2) {
1243 return true;
1244 }
1245 }
1246
1247 false
1248 }
1249
1250 fn gates_share_qubits(&self, qubits1: &HashSet<QubitId>, qubits2: &HashSet<QubitId>) -> bool {
1252 !qubits1.is_disjoint(qubits2)
1253 }
1254
1255 fn hardware_aware_parallelization<const N: usize>(
1257 &self,
1258 circuit: &Circuit<N>,
1259 graph: &DependencyGraph,
1260 ) -> QuantRS2Result<Vec<ParallelTask>> {
1261 let hw_char = self.detect_hardware_characteristics();
1264
1265 let tasks = match self.select_hardware_strategy(&hw_char, circuit, graph)? {
1267 HardwareStrategy::CacheOptimized => {
1268 self.cache_optimized_parallelization(graph, &hw_char)?
1269 }
1270 HardwareStrategy::SIMDOptimized => {
1271 self.simd_optimized_parallelization(graph, &hw_char)?
1272 }
1273 HardwareStrategy::NUMAAware => self.numa_aware_parallelization(graph, &hw_char)?,
1274 HardwareStrategy::GPUOffload => {
1275 self.dependency_based_parallelization(graph)?
1277 }
1278 HardwareStrategy::Hybrid => self.hybrid_hardware_parallelization(graph, &hw_char)?,
1279 };
1280
1281 let optimized_tasks = self.optimize_hardware_affinity(tasks, &hw_char)?;
1283
1284 Ok(optimized_tasks)
1285 }
1286
1287 fn detect_hardware_characteristics(&self) -> HardwareCharacteristics {
1289 use scirs2_core::parallel_ops::current_num_threads;
1290
1291 let num_cores = current_num_threads();
1293
1294 let l1_cache_size = 32 * 1024; let l2_cache_size = 256 * 1024; let l3_cache_size = 8 * 1024 * 1024; let memory_bandwidth = 50.0; let num_numa_nodes = if num_cores > 32 { 2 } else { 1 };
1304
1305 let has_gpu = false; #[cfg(target_arch = "x86_64")]
1310 let simd_width = 256; #[cfg(not(target_arch = "x86_64"))]
1312 let simd_width = 128; HardwareCharacteristics {
1315 num_cores,
1316 l1_cache_size,
1317 l2_cache_size,
1318 l3_cache_size,
1319 memory_bandwidth,
1320 num_numa_nodes,
1321 has_gpu,
1322 simd_width,
1323 }
1324 }
1325
1326 fn select_hardware_strategy<const N: usize>(
1328 &self,
1329 hw_char: &HardwareCharacteristics,
1330 circuit: &Circuit<N>,
1331 graph: &DependencyGraph,
1332 ) -> QuantRS2Result<HardwareStrategy> {
1333 let gates = circuit.gates();
1334 let num_gates = gates.len();
1335
1336 if hw_char.has_gpu && num_gates > 1000 {
1338 return Ok(HardwareStrategy::GPUOffload);
1339 }
1340
1341 if hw_char.num_numa_nodes > 1 && N > 20 {
1343 return Ok(HardwareStrategy::NUMAAware);
1344 }
1345
1346 let has_many_rotation_gates = self.count_rotation_gates(gates) > num_gates / 2;
1348 if has_many_rotation_gates && hw_char.simd_width >= 256 {
1349 return Ok(HardwareStrategy::SIMDOptimized);
1350 }
1351
1352 if num_gates < 500 && N < 15 {
1354 return Ok(HardwareStrategy::CacheOptimized);
1355 }
1356
1357 Ok(HardwareStrategy::Hybrid)
1359 }
1360
1361 fn cache_optimized_parallelization(
1363 &self,
1364 graph: &DependencyGraph,
1365 hw_char: &HardwareCharacteristics,
1366 ) -> QuantRS2Result<Vec<ParallelTask>> {
1367 let max_task_size = hw_char.l2_cache_size / (16 * 2); let mut tasks = Vec::new();
1371 let mut current_group = Vec::new();
1372 let mut current_size = 0;
1373
1374 for (idx, node) in graph.nodes.iter().enumerate() {
1375 let gate_size = (1 << node.qubits.len()) * 16; if current_size + gate_size > max_task_size && !current_group.is_empty() {
1378 tasks.push(self.create_parallel_task(current_group, graph)?);
1379 current_group = Vec::new();
1380 current_size = 0;
1381 }
1382
1383 current_group.push(idx);
1384 current_size += gate_size;
1385 }
1386
1387 if !current_group.is_empty() {
1388 tasks.push(self.create_parallel_task(current_group, graph)?);
1389 }
1390
1391 Ok(tasks)
1392 }
1393
1394 fn simd_optimized_parallelization(
1396 &self,
1397 graph: &DependencyGraph,
1398 hw_char: &HardwareCharacteristics,
1399 ) -> QuantRS2Result<Vec<ParallelTask>> {
1400 let mut rotation_gates = Vec::new();
1402 let mut other_gates = Vec::new();
1403
1404 for (idx, node) in graph.nodes.iter().enumerate() {
1405 if self.is_rotation_gate(node.gate.as_ref()) {
1406 rotation_gates.push(idx);
1407 } else {
1408 other_gates.push(idx);
1409 }
1410 }
1411
1412 let mut tasks = Vec::new();
1413
1414 let vec_width = hw_char.simd_width / 128; for chunk in rotation_gates.chunks(vec_width) {
1417 tasks.push(self.create_parallel_task(chunk.to_vec(), graph)?);
1418 }
1419
1420 for idx in other_gates {
1422 tasks.push(self.create_parallel_task(vec![idx], graph)?);
1423 }
1424
1425 Ok(tasks)
1426 }
1427
1428 fn numa_aware_parallelization(
1430 &self,
1431 graph: &DependencyGraph,
1432 hw_char: &HardwareCharacteristics,
1433 ) -> QuantRS2Result<Vec<ParallelTask>> {
1434 let num_nodes = hw_char.num_numa_nodes;
1436 let mut node_tasks: Vec<Vec<usize>> = vec![Vec::new(); num_nodes];
1437
1438 for (idx, node) in graph.nodes.iter().enumerate() {
1440 let numa_node = self.select_numa_node(node, num_nodes);
1441 node_tasks[numa_node].push(idx);
1442 }
1443
1444 let mut tasks = Vec::new();
1445 for node_task_indices in node_tasks {
1446 if !node_task_indices.is_empty() {
1447 tasks.push(self.create_parallel_task(node_task_indices, graph)?);
1448 }
1449 }
1450
1451 Ok(tasks)
1452 }
1453
1454 fn hybrid_hardware_parallelization(
1456 &self,
1457 graph: &DependencyGraph,
1458 hw_char: &HardwareCharacteristics,
1459 ) -> QuantRS2Result<Vec<ParallelTask>> {
1460 let base_tasks = self.dependency_based_parallelization(graph)?;
1463
1464 let cache_aware_tasks = self.refine_for_cache(base_tasks, hw_char)?;
1466
1467 if hw_char.num_numa_nodes > 1 {
1469 self.refine_for_numa(cache_aware_tasks, hw_char)
1470 } else {
1471 Ok(cache_aware_tasks)
1472 }
1473 }
1474
1475 const fn optimize_hardware_affinity(
1477 &self,
1478 tasks: Vec<ParallelTask>,
1479 hw_char: &HardwareCharacteristics,
1480 ) -> QuantRS2Result<Vec<ParallelTask>> {
1481 Ok(tasks)
1485 }
1486
1487 fn count_rotation_gates(&self, gates: &[Arc<dyn GateOp + Send + Sync>]) -> usize {
1489 gates
1490 .iter()
1491 .filter(|g| self.is_rotation_gate(g.as_ref()))
1492 .count()
1493 }
1494
1495 fn is_rotation_gate(&self, gate: &dyn GateOp) -> bool {
1497 let gate_str = format!("{gate:?}");
1498 gate_str.contains("RX") || gate_str.contains("RY") || gate_str.contains("RZ")
1499 }
1500
1501 fn select_numa_node(&self, node: &GateNode, num_nodes: usize) -> usize {
1503 let qubit_sum: usize = node.qubits.iter().map(|q| q.0 as usize).sum();
1505 qubit_sum % num_nodes
1506 }
1507
1508 fn refine_for_cache(
1510 &self,
1511 tasks: Vec<ParallelTask>,
1512 hw_char: &HardwareCharacteristics,
1513 ) -> QuantRS2Result<Vec<ParallelTask>> {
1514 let max_cache_size = hw_char.l2_cache_size;
1516 let mut refined = Vec::new();
1517
1518 for task in tasks {
1519 if task.memory_requirement > max_cache_size {
1520 let mid = task.gates.len() / 2;
1522 let (gates1, gates2) = task.gates.split_at(mid);
1523
1524 refined.push(ParallelTask {
1525 id: Uuid::new_v4(),
1526 gates: gates1.to_vec(),
1527 qubits: task.qubits.clone(),
1528 cost: task.cost / 2.0,
1529 memory_requirement: task.memory_requirement / 2,
1530 dependencies: task.dependencies.clone(),
1531 priority: task.priority,
1532 });
1533
1534 refined.push(ParallelTask {
1535 id: Uuid::new_v4(),
1536 gates: gates2.to_vec(),
1537 qubits: task.qubits,
1538 cost: task.cost / 2.0,
1539 memory_requirement: task.memory_requirement / 2,
1540 dependencies: HashSet::new(),
1541 priority: task.priority,
1542 });
1543 } else {
1544 refined.push(task);
1545 }
1546 }
1547
1548 Ok(refined)
1549 }
1550
1551 const fn refine_for_numa(
1553 &self,
1554 tasks: Vec<ParallelTask>,
1555 hw_char: &HardwareCharacteristics,
1556 ) -> QuantRS2Result<Vec<ParallelTask>> {
1557 Ok(tasks)
1561 }
1562
1563 fn create_parallel_task(
1565 &self,
1566 gate_indices: Vec<usize>,
1567 graph: &DependencyGraph,
1568 ) -> QuantRS2Result<ParallelTask> {
1569 let mut gates = Vec::new();
1570 let mut qubits = HashSet::new();
1571 let mut total_cost = 0.0;
1572 let mut memory_requirement = 0;
1573
1574 for &idx in &gate_indices {
1575 if let Some(node) = graph.nodes.get(idx) {
1576 gates.push(node.gate.clone());
1577 qubits.extend(&node.qubits);
1578 total_cost += node.cost;
1579 memory_requirement += self.estimate_gate_memory(node.gate.as_ref());
1580 }
1581 }
1582
1583 let dependencies = self.calculate_task_dependencies(&gate_indices, graph)?;
1585
1586 Ok(ParallelTask {
1587 id: Uuid::new_v4(),
1588 gates,
1589 qubits,
1590 cost: total_cost,
1591 memory_requirement,
1592 dependencies,
1593 priority: TaskPriority::Normal,
1594 })
1595 }
1596
1597 fn calculate_task_dependencies(
1599 &self,
1600 gate_indices: &[usize],
1601 graph: &DependencyGraph,
1602 ) -> QuantRS2Result<HashSet<Uuid>> {
1603 let mut dependencies = HashSet::new();
1605
1606 for &gate_idx in gate_indices {
1608 if let Some(parent_indices) = graph.reverse_edges.get(&gate_idx) {
1609 for &parent_idx in parent_indices {
1611 if !gate_indices.contains(&parent_idx) {
1614 let dep_uuid = self.generate_gate_dependency_uuid(parent_idx);
1622 dependencies.insert(dep_uuid);
1623 }
1624 }
1625 }
1626 }
1627
1628 Ok(dependencies)
1629 }
1630
1631 fn generate_gate_dependency_uuid(&self, gate_index: usize) -> Uuid {
1633 let namespace =
1636 Uuid::parse_str("6ba7b810-9dad-11d1-80b4-00c04fd430c8").unwrap_or_else(|_| Uuid::nil());
1637
1638 let mut bytes = [0u8; 16];
1640 let index_bytes = gate_index.to_le_bytes();
1641 bytes[0..8].copy_from_slice(&index_bytes);
1642
1643 Uuid::from_bytes(bytes)
1644 }
1645
1646 fn estimate_gate_cost(&self, gate: &dyn GateOp) -> f64 {
1648 match gate.num_qubits() {
1649 1 => 1.0,
1650 2 => 4.0,
1651 3 => 8.0,
1652 n => (2.0_f64).powi(n as i32),
1653 }
1654 }
1655
1656 fn estimate_gate_memory(&self, gate: &dyn GateOp) -> usize {
1658 let num_qubits = gate.num_qubits();
1659 let state_size = 1 << num_qubits;
1660 state_size * std::mem::size_of::<Complex64>()
1661 }
1662
1663 fn partition_layer_into_tasks(
1665 &self,
1666 layer: &[usize],
1667 graph: &DependencyGraph,
1668 ) -> QuantRS2Result<Vec<Vec<usize>>> {
1669 let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
1670 let mut chunks = Vec::new();
1671
1672 for chunk in layer.chunks(max_gates_per_task) {
1673 chunks.push(chunk.to_vec());
1674 }
1675
1676 Ok(chunks)
1677 }
1678
1679 fn partition_qubits<const N: usize>(
1681 &self,
1682 circuit: &Circuit<N>,
1683 ) -> QuantRS2Result<Vec<HashSet<QubitId>>> {
1684 let mut partitions = Vec::new();
1686 let mut used_qubits = HashSet::new();
1687
1688 for i in 0..N {
1689 let qubit = QubitId::new(i as u32);
1690 if !used_qubits.contains(&qubit) {
1691 let mut partition = HashSet::new();
1692 partition.insert(qubit);
1693 used_qubits.insert(qubit);
1694 partitions.push(partition);
1695 }
1696 }
1697
1698 Ok(partitions)
1699 }
1700
1701 fn calculate_strategy_efficiency(&self, tasks: &[ParallelTask]) -> f64 {
1703 if tasks.is_empty() {
1704 return 0.0;
1705 }
1706
1707 let total_cost: f64 = tasks.iter().map(|t| t.cost).sum();
1708 let max_cost = tasks.iter().map(|t| t.cost).fold(0.0, f64::max);
1709
1710 if max_cost > 0.0 {
1711 total_cost / (max_cost * tasks.len() as f64)
1712 } else {
1713 0.0
1714 }
1715 }
1716
1717 fn calculate_parallelization_metrics<const N: usize>(
1719 &self,
1720 circuit: &Circuit<N>,
1721 graph: &DependencyGraph,
1722 tasks: Vec<ParallelTask>,
1723 ) -> QuantRS2Result<ParallelizationAnalysis> {
1724 let num_layers = graph.layers.len();
1725 let max_parallelism = graph
1726 .layers
1727 .iter()
1728 .map(|layer| layer.len())
1729 .max()
1730 .unwrap_or(1);
1731 let critical_path_length = graph.layers.len();
1732
1733 let efficiency = if circuit.num_gates() > 0 {
1734 max_parallelism as f64 / circuit.num_gates() as f64
1735 } else {
1736 0.0
1737 };
1738
1739 let resource_utilization = ResourceUtilization {
1740 cpu_utilization: vec![0.8; self.config.max_threads],
1741 memory_usage: vec![
1742 self.config.memory_budget / self.config.max_threads;
1743 self.config.max_threads
1744 ],
1745 load_balance_score: 0.85,
1746 communication_overhead: 0.1,
1747 };
1748
1749 let recommendations = self.generate_optimization_recommendations(circuit, graph, &tasks);
1750
1751 Ok(ParallelizationAnalysis {
1752 tasks,
1753 num_layers,
1754 efficiency,
1755 max_parallelism,
1756 critical_path_length,
1757 resource_utilization,
1758 recommendations,
1759 })
1760 }
1761
1762 fn generate_optimization_recommendations<const N: usize>(
1764 &self,
1765 circuit: &Circuit<N>,
1766 graph: &DependencyGraph,
1767 tasks: &[ParallelTask],
1768 ) -> Vec<OptimizationRecommendation> {
1769 let mut recommendations = Vec::new();
1770
1771 if graph.layers.iter().any(|layer| layer.len() == 1) {
1773 recommendations.push(OptimizationRecommendation {
1774 recommendation_type: RecommendationType::GateReordering,
1775 description: "Consider reordering gates to create larger parallel layers"
1776 .to_string(),
1777 expected_improvement: 0.2,
1778 complexity: RecommendationComplexity::Medium,
1779 });
1780 }
1781
1782 let task_costs: Vec<f64> = tasks.iter().map(|t| t.cost).collect();
1784 let cost_variance = self.calculate_variance(&task_costs);
1785 if cost_variance > 0.5 {
1786 recommendations.push(OptimizationRecommendation {
1787 recommendation_type: RecommendationType::ResourceAllocation,
1788 description: "Task costs are unbalanced, consider load balancing optimization"
1789 .to_string(),
1790 expected_improvement: 0.15,
1791 complexity: RecommendationComplexity::Low,
1792 });
1793 }
1794
1795 recommendations
1796 }
1797
1798 fn calculate_variance(&self, values: &[f64]) -> f64 {
1800 if values.is_empty() {
1801 return 0.0;
1802 }
1803
1804 let mean: f64 = values.iter().sum::<f64>() / values.len() as f64;
1805 let variance: f64 =
1806 values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
1807 variance
1808 }
1809
1810 fn execute_sequential<const N: usize>(
1812 &self,
1813 circuit: &Circuit<N>,
1814 simulator: &mut LargeScaleQuantumSimulator,
1815 ) -> QuantRS2Result<Vec<Complex64>> {
1816 let result = simulator.run(circuit)?;
1818 Ok(Vec::new())
1821 }
1822
1823 fn execute_parallel_tasks(
1825 &self,
1826 tasks: &[ParallelTask],
1827 shared_state: Arc<RwLock<Vec<Complex64>>>,
1828 results: Arc<Mutex<Vec<Complex64>>>,
1829 barrier: Arc<Barrier>,
1830 ) -> QuantRS2Result<()> {
1831 use scirs2_core::parallel_ops::*;
1832
1833 let _ = parallel_map(tasks, |task| {
1836 barrier.wait();
1838
1839 let mut state = shared_state
1841 .write()
1842 .expect("Failed to acquire write lock on shared state");
1843
1844 for gate in &task.gates {
1846 let qubits = gate.qubits();
1848
1849 match qubits.len() {
1851 1 => {
1852 self.apply_single_qubit_gate_to_state(
1854 &mut state,
1855 gate.as_ref(),
1856 qubits[0].0 as usize,
1857 );
1858 }
1859 2 => {
1860 self.apply_two_qubit_gate_to_state(
1862 &mut state,
1863 gate.as_ref(),
1864 qubits[0].0 as usize,
1865 qubits[1].0 as usize,
1866 );
1867 }
1868 _ => {
1869 eprintln!(
1871 "Warning: {}-qubit gates not optimized for parallel execution",
1872 qubits.len()
1873 );
1874 }
1875 }
1876 }
1877
1878 barrier.wait();
1880 });
1881
1882 let final_state = shared_state
1884 .read()
1885 .expect("Failed to acquire read lock on shared state");
1886 let mut result_vec = results.lock().expect("Failed to acquire lock on results");
1887 result_vec.clone_from(&final_state);
1888
1889 Ok(())
1890 }
1891
1892 fn apply_single_qubit_gate_to_state(
1894 &self,
1895 state: &mut [Complex64],
1896 gate: &dyn GateOp,
1897 qubit: usize,
1898 ) {
1899 let num_qubits = (state.len() as f64).log2() as usize;
1904 let stride = 1 << qubit;
1905
1906 for base in 0..state.len() {
1908 if (base & stride) == 0 {
1909 let idx0 = base;
1911 let idx1 = base | stride;
1912
1913 let amp0 = state[idx0];
1916 let amp1 = state[idx1];
1917
1918 state[idx0] = amp0;
1920 state[idx1] = amp1;
1921 }
1922 }
1923 }
1924
1925 fn apply_two_qubit_gate_to_state(
1927 &self,
1928 state: &mut [Complex64],
1929 gate: &dyn GateOp,
1930 qubit1: usize,
1931 qubit2: usize,
1932 ) {
1933 let num_qubits = (state.len() as f64).log2() as usize;
1937 let stride1 = 1 << qubit1;
1938 let stride2 = 1 << qubit2;
1939
1940 for base in 0..state.len() {
1942 if (base & stride1) == 0 && (base & stride2) == 0 {
1943 let idx00 = base;
1944 let idx01 = base | stride1;
1945 let idx10 = base | stride2;
1946 let idx11 = base | stride1 | stride2;
1947
1948 let amp00 = state[idx00];
1950 let amp01 = state[idx01];
1951 let amp10 = state[idx10];
1952 let amp11 = state[idx11];
1953
1954 state[idx00] = amp00;
1956 state[idx01] = amp01;
1957 state[idx10] = amp10;
1958 state[idx11] = amp11;
1959 }
1960 }
1961 }
1962
1963 fn distribute_tasks_across_nodes(
1965 &self,
1966 tasks: &[ParallelTask],
1967 distributed_sim: &DistributedQuantumSimulator,
1968 ) -> QuantRS2Result<Vec<Vec<ParallelTask>>> {
1969 let cluster_status = distributed_sim.get_cluster_status();
1971 let num_nodes = cluster_status.len();
1972
1973 if num_nodes == 0 {
1974 return Ok(vec![tasks.to_vec()]);
1975 }
1976
1977 let node_capacities = self.analyze_node_capabilities(&cluster_status);
1979
1980 let mut sorted_tasks: Vec<_> = tasks.to_vec();
1982 sorted_tasks.sort_by(|a, b| b.cost.partial_cmp(&a.cost).unwrap());
1983
1984 let mut distributed_tasks = vec![Vec::new(); num_nodes];
1986 let mut node_loads = vec![0.0; num_nodes];
1987
1988 for task in sorted_tasks {
1989 let best_node = self.select_best_node_for_task(&task, &node_capacities, &node_loads);
1991
1992 distributed_tasks[best_node].push(task.clone());
1994 node_loads[best_node] += task.cost;
1995 }
1996
1997 self.rebalance_node_distribution(
1999 &mut distributed_tasks,
2000 &node_capacities,
2001 &mut node_loads,
2002 )?;
2003
2004 Ok(distributed_tasks)
2005 }
2006
2007 fn analyze_node_capabilities(
2009 &self,
2010 cluster_status: &HashMap<Uuid, crate::distributed_simulator::NodeInfo>,
2011 ) -> Vec<NodeCapacity> {
2012 cluster_status
2013 .values()
2014 .map(|info| {
2015 NodeCapacity {
2018 cpu_cores: 4, memory_gb: 16.0, gpu_available: false, network_bandwidth_gbps: 10.0, relative_performance: 1.0, }
2024 })
2025 .collect()
2026 }
2027
2028 fn select_best_node_for_task(
2030 &self,
2031 task: &ParallelTask,
2032 node_capacities: &[NodeCapacity],
2033 node_loads: &[f64],
2034 ) -> usize {
2035 let mut best_node = 0;
2036 let mut best_score = f64::NEG_INFINITY;
2037
2038 for (idx, capacity) in node_capacities.iter().enumerate() {
2039 let load_factor = 1.0 - (node_loads[idx] / capacity.relative_performance).min(1.0);
2045 let memory_factor = if task.memory_requirement
2046 < (capacity.memory_gb * 1024.0 * 1024.0 * 1024.0) as usize
2047 {
2048 1.0
2049 } else {
2050 0.5 };
2052
2053 let score = load_factor * capacity.relative_performance * memory_factor;
2054
2055 if score > best_score {
2056 best_score = score;
2057 best_node = idx;
2058 }
2059 }
2060
2061 best_node
2062 }
2063
2064 fn rebalance_node_distribution(
2066 &self,
2067 distributed_tasks: &mut [Vec<ParallelTask>],
2068 node_capacities: &[NodeCapacity],
2069 node_loads: &mut [f64],
2070 ) -> QuantRS2Result<()> {
2071 let total_load: f64 = node_loads.iter().sum();
2073 let avg_load = total_load / node_loads.len() as f64;
2074
2075 const IMBALANCE_THRESHOLD: f64 = 0.3; for _ in 0..5 {
2079 let mut rebalanced = false;
2081
2082 let heavy_nodes: Vec<usize> = node_loads
2084 .iter()
2085 .enumerate()
2086 .filter(|(_, load)| **load > avg_load * (1.0 + IMBALANCE_THRESHOLD))
2087 .map(|(idx, _)| idx)
2088 .collect();
2089
2090 let light_nodes: Vec<usize> = node_loads
2091 .iter()
2092 .enumerate()
2093 .filter(|(_, load)| **load < avg_load * (1.0 - IMBALANCE_THRESHOLD))
2094 .map(|(idx, _)| idx)
2095 .collect();
2096
2097 for &heavy_idx in &heavy_nodes {
2098 for &light_idx in &light_nodes {
2099 if heavy_idx != light_idx {
2100 if let Some(task) = distributed_tasks[heavy_idx].pop() {
2102 node_loads[heavy_idx] -= task.cost;
2103 distributed_tasks[light_idx].push(task.clone());
2104 node_loads[light_idx] += task.cost;
2105 rebalanced = true;
2106 break;
2107 }
2108 }
2109 }
2110 if rebalanced {
2111 break;
2112 }
2113 }
2114
2115 if !rebalanced {
2116 break; }
2118 }
2119
2120 Ok(())
2121 }
2122
2123 fn compute_circuit_hash<const N: usize>(&self, circuit: &Circuit<N>) -> u64 {
2125 use std::collections::hash_map::DefaultHasher;
2126 use std::hash::{Hash, Hasher};
2127
2128 let mut hasher = DefaultHasher::new();
2129
2130 circuit.num_gates().hash(&mut hasher);
2132 circuit.num_qubits().hash(&mut hasher);
2133
2134 for gate in circuit.gates() {
2136 gate.name().hash(&mut hasher);
2137 gate.qubits().len().hash(&mut hasher);
2138 }
2139
2140 hasher.finish()
2141 }
2142
2143 fn update_performance_stats(
2145 &self,
2146 execution_time: Duration,
2147 analysis: &ParallelizationAnalysis,
2148 ) {
2149 let mut stats = self.performance_stats.lock().unwrap();
2150 stats.circuits_processed += 1;
2151 stats.total_execution_time += execution_time;
2152 stats.average_efficiency = stats
2153 .average_efficiency
2154 .mul_add((stats.circuits_processed - 1) as f64, analysis.efficiency)
2155 / stats.circuits_processed as f64;
2156 }
2157}
2158
2159impl LoadBalancer {
2160 pub fn new(num_threads: usize) -> Self {
2162 Self {
2163 thread_loads: vec![0.0; num_threads],
2164 task_queues: vec![VecDeque::new(); num_threads],
2165 work_stealing_stats: WorkStealingStats::default(),
2166 }
2167 }
2168
2169 pub fn balance_load(&mut self, tasks: Vec<ParallelTask>) -> Vec<Vec<ParallelTask>> {
2171 let mut balanced_tasks = vec![Vec::new(); self.thread_loads.len()];
2172
2173 for (i, task) in tasks.into_iter().enumerate() {
2175 let thread_index = i % self.thread_loads.len();
2176 balanced_tasks[thread_index].push(task);
2177 }
2178
2179 balanced_tasks
2180 }
2181}
2182
2183pub fn benchmark_automatic_parallelization<const N: usize>(
2185 circuits: Vec<Circuit<N>>,
2186 config: AutoParallelConfig,
2187) -> QuantRS2Result<AutoParallelBenchmarkResults> {
2188 let engine = AutoParallelEngine::new(config);
2189 let mut results = Vec::new();
2190 let start_time = Instant::now();
2191
2192 for circuit in circuits {
2193 let analysis_start = Instant::now();
2194 let analysis = engine.analyze_circuit(&circuit)?;
2195 let analysis_time = analysis_start.elapsed();
2196
2197 results.push(CircuitParallelResult {
2198 circuit_size: circuit.num_gates(),
2199 num_qubits: circuit.num_qubits(),
2200 analysis_time,
2201 efficiency: analysis.efficiency,
2202 max_parallelism: analysis.max_parallelism,
2203 num_tasks: analysis.tasks.len(),
2204 });
2205 }
2206
2207 let total_time = start_time.elapsed();
2208
2209 Ok(AutoParallelBenchmarkResults {
2210 total_time,
2211 average_efficiency: results.iter().map(|r| r.efficiency).sum::<f64>()
2212 / results.len() as f64,
2213 average_parallelism: results.iter().map(|r| r.max_parallelism).sum::<usize>()
2214 / results.len(),
2215 circuit_results: results,
2216 })
2217}
2218
2219#[derive(Debug, Clone)]
2221pub struct AutoParallelBenchmarkResults {
2222 pub total_time: Duration,
2224 pub circuit_results: Vec<CircuitParallelResult>,
2226 pub average_efficiency: f64,
2228 pub average_parallelism: usize,
2230}
2231
2232#[derive(Debug, Clone)]
2234pub struct CircuitParallelResult {
2235 pub circuit_size: usize,
2237 pub num_qubits: usize,
2239 pub analysis_time: Duration,
2241 pub efficiency: f64,
2243 pub max_parallelism: usize,
2245 pub num_tasks: usize,
2247}