quantrs2_sim/
automatic_parallelization.rs

1//! Automatic Parallelization for Quantum Circuits
2//!
3//! This module provides automatic parallelization capabilities for quantum circuits,
4//! analyzing circuit structure to identify independent gate operations that can be
5//! executed in parallel using SciRS2 parallel operations for optimal performance.
6
7use crate::distributed_simulator::{DistributedQuantumSimulator, DistributedSimulatorConfig};
8use crate::large_scale_simulator::{LargeScaleQuantumSimulator, LargeScaleSimulatorConfig};
9use quantrs2_circuit::builder::{Circuit, Simulator};
10use quantrs2_core::{
11    error::{QuantRS2Error, QuantRS2Result},
12    gate::GateOp,
13    qubit::QubitId,
14};
15use scirs2_core::parallel_ops::*; // SciRS2 POLICY compliant
16                                  // use scirs2_core::scheduling::{Scheduler, TaskGraph, ParallelExecutor};
17                                  // use scirs2_core::optimization::{CostModel, ResourceOptimizer};
18use scirs2_core::ndarray::{Array1, Array2, ArrayView1};
19use scirs2_core::Complex64;
20use serde::{Deserialize, Serialize};
21use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet, VecDeque};
22use std::sync::{Arc, Barrier, Mutex, RwLock};
23use std::thread;
24use std::time::{Duration, Instant};
25use uuid::Uuid;
26
27/// Configuration for automatic parallelization
28#[derive(Debug, Clone, Serialize, Deserialize)]
29pub struct AutoParallelConfig {
30    /// Maximum number of parallel execution threads
31    pub max_threads: usize,
32
33    /// Minimum gate count to enable parallelization
34    pub min_gates_for_parallel: usize,
35
36    /// Parallelization strategy
37    pub strategy: ParallelizationStrategy,
38
39    /// Resource constraints
40    pub resource_constraints: ResourceConstraints,
41
42    /// Enable inter-layer parallelization
43    pub enable_inter_layer_parallel: bool,
44
45    /// Enable gate fusion optimization
46    pub enable_gate_fusion: bool,
47
48    /// SciRS2 optimization level
49    pub scirs2_optimization_level: OptimizationLevel,
50
51    /// Load balancing configuration
52    pub load_balancing: LoadBalancingConfig,
53
54    /// Enable circuit analysis caching
55    pub enable_analysis_caching: bool,
56
57    /// Memory budget for parallel execution
58    pub memory_budget: usize,
59}
60
61impl Default for AutoParallelConfig {
62    fn default() -> Self {
63        Self {
64            max_threads: current_num_threads(), // SciRS2 POLICY compliant
65            min_gates_for_parallel: 10,
66            strategy: ParallelizationStrategy::DependencyAnalysis,
67            resource_constraints: ResourceConstraints::default(),
68            enable_inter_layer_parallel: true,
69            enable_gate_fusion: true,
70            scirs2_optimization_level: OptimizationLevel::Aggressive,
71            load_balancing: LoadBalancingConfig::default(),
72            enable_analysis_caching: true,
73            memory_budget: 4 * 1024 * 1024 * 1024, // 4GB
74        }
75    }
76}
77
78/// Parallelization strategies for circuit execution
79#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
80pub enum ParallelizationStrategy {
81    /// Analyze gate dependencies and parallelize independent operations
82    DependencyAnalysis,
83    /// Layer-based parallelization with depth analysis
84    LayerBased,
85    /// Qubit partitioning for independent subsystems
86    QubitPartitioning,
87    /// Hybrid approach combining multiple strategies
88    Hybrid,
89    /// Machine learning guided parallelization
90    MLGuided,
91    /// Hardware-aware parallelization
92    HardwareAware,
93}
94
95/// Resource constraints for parallel execution
96#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct ResourceConstraints {
98    /// Maximum memory per thread (bytes)
99    pub max_memory_per_thread: usize,
100    /// Maximum CPU utilization (0.0 to 1.0)
101    pub max_cpu_utilization: f64,
102    /// Maximum gate operations per thread
103    pub max_gates_per_thread: usize,
104    /// Preferred NUMA node
105    pub preferred_numa_node: Option<usize>,
106}
107
108impl Default for ResourceConstraints {
109    fn default() -> Self {
110        Self {
111            max_memory_per_thread: 1024 * 1024 * 1024, // 1GB
112            max_cpu_utilization: 0.8,
113            max_gates_per_thread: 1000,
114            preferred_numa_node: None,
115        }
116    }
117}
118
119/// Load balancing configuration for parallel execution
120#[derive(Debug, Clone, Serialize, Deserialize)]
121pub struct LoadBalancingConfig {
122    /// Enable dynamic load balancing
123    pub enable_dynamic_balancing: bool,
124    /// Work stealing strategy
125    pub work_stealing_strategy: WorkStealingStrategy,
126    /// Load monitoring interval
127    pub monitoring_interval: Duration,
128    /// Rebalancing threshold
129    pub rebalancing_threshold: f64,
130}
131
132impl Default for LoadBalancingConfig {
133    fn default() -> Self {
134        Self {
135            enable_dynamic_balancing: true,
136            work_stealing_strategy: WorkStealingStrategy::Adaptive,
137            monitoring_interval: Duration::from_millis(100),
138            rebalancing_threshold: 0.2,
139        }
140    }
141}
142
143/// Work stealing strategies for load balancing
144#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
145pub enum WorkStealingStrategy {
146    /// Random work stealing
147    Random,
148    /// Cost-aware work stealing
149    CostAware,
150    /// Locality-aware work stealing
151    LocalityAware,
152    /// Adaptive strategy selection
153    Adaptive,
154}
155
156/// SciRS2 optimization levels
157#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
158pub enum OptimizationLevel {
159    /// No optimization
160    None,
161    /// Basic optimizations
162    Basic,
163    /// Advanced optimizations
164    Advanced,
165    /// Aggressive optimizations
166    Aggressive,
167    /// Custom optimization profile
168    Custom,
169}
170
171/// Parallel execution task representing a group of independent gates
172#[derive(Debug, Clone)]
173pub struct ParallelTask {
174    /// Unique task identifier
175    pub id: Uuid,
176    /// Gates to execute in this task
177    pub gates: Vec<Arc<dyn GateOp + Send + Sync>>,
178    /// Qubits involved in this task
179    pub qubits: HashSet<QubitId>,
180    /// Estimated execution cost
181    pub cost: f64,
182    /// Memory requirement estimate
183    pub memory_requirement: usize,
184    /// Dependencies (task IDs that must complete before this task)
185    pub dependencies: HashSet<Uuid>,
186    /// Priority level
187    pub priority: TaskPriority,
188}
189
190/// Task priority levels
191#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Serialize, Deserialize)]
192pub enum TaskPriority {
193    /// Low priority task
194    Low = 1,
195    /// Normal priority task
196    Normal = 2,
197    /// High priority task
198    High = 3,
199    /// Critical priority task
200    Critical = 4,
201}
202
203/// Circuit dependency graph for parallelization analysis
204#[derive(Debug, Clone)]
205pub struct DependencyGraph {
206    /// Gate nodes in the dependency graph
207    pub nodes: Vec<GateNode>,
208    /// Adjacency list representation
209    pub edges: HashMap<usize, Vec<usize>>,
210    /// Reverse adjacency list
211    pub reverse_edges: HashMap<usize, Vec<usize>>,
212    /// Topological layers
213    pub layers: Vec<Vec<usize>>,
214}
215
216/// Gate node in the dependency graph
217#[derive(Debug, Clone)]
218pub struct GateNode {
219    /// Gate index in original circuit
220    pub gate_index: usize,
221    /// Gate operation
222    pub gate: Arc<dyn GateOp + Send + Sync>,
223    /// Qubits this gate operates on
224    pub qubits: HashSet<QubitId>,
225    /// Layer index in topological ordering
226    pub layer: usize,
227    /// Estimated execution cost
228    pub cost: f64,
229}
230
231/// Parallelization analysis results
232#[derive(Debug, Clone)]
233pub struct ParallelizationAnalysis {
234    /// Parallel tasks generated
235    pub tasks: Vec<ParallelTask>,
236    /// Total number of layers
237    pub num_layers: usize,
238    /// Parallelization efficiency (0.0 to 1.0)
239    pub efficiency: f64,
240    /// Maximum parallelism achievable
241    pub max_parallelism: usize,
242    /// Critical path length
243    pub critical_path_length: usize,
244    /// Resource utilization predictions
245    pub resource_utilization: ResourceUtilization,
246    /// Optimization recommendations
247    pub recommendations: Vec<OptimizationRecommendation>,
248}
249
250/// Resource utilization predictions
251#[derive(Debug, Clone)]
252pub struct ResourceUtilization {
253    /// Estimated CPU utilization per thread
254    pub cpu_utilization: Vec<f64>,
255    /// Estimated memory usage per thread
256    pub memory_usage: Vec<usize>,
257    /// Load balancing score (0.0 to 1.0)
258    pub load_balance_score: f64,
259    /// Communication overhead estimate
260    pub communication_overhead: f64,
261}
262
263/// Optimization recommendations for better parallelization
264#[derive(Debug, Clone)]
265pub struct OptimizationRecommendation {
266    /// Recommendation type
267    pub recommendation_type: RecommendationType,
268    /// Description of the recommendation
269    pub description: String,
270    /// Expected improvement (0.0 to 1.0)
271    pub expected_improvement: f64,
272    /// Implementation complexity
273    pub complexity: RecommendationComplexity,
274}
275
276/// Types of optimization recommendations
277#[derive(Debug, Clone, Copy, PartialEq, Eq)]
278pub enum RecommendationType {
279    /// Gate reordering for better parallelism
280    GateReordering,
281    /// Circuit decomposition
282    CircuitDecomposition,
283    /// Resource allocation adjustment
284    ResourceAllocation,
285    /// Strategy change recommendation
286    StrategyChange,
287    /// Hardware configuration
288    HardwareConfiguration,
289}
290
291/// Complexity levels for recommendations
292#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
293pub enum RecommendationComplexity {
294    /// Low complexity, easy to implement
295    Low,
296    /// Medium complexity
297    Medium,
298    /// High complexity, significant changes required
299    High,
300}
301
302/// ML features extracted from circuits for parallelization prediction
303#[derive(Debug, Clone)]
304pub struct MLFeatures {
305    /// Number of gates in the circuit
306    pub num_gates: usize,
307    /// Number of qubits in the circuit
308    pub num_qubits: usize,
309    /// Circuit depth (critical path length)
310    pub circuit_depth: usize,
311    /// Average gate connectivity
312    pub avg_connectivity: f64,
313    /// Parallelism factor (ratio of independent gates)
314    pub parallelism_factor: f64,
315    /// Gate type distribution
316    pub gate_distribution: HashMap<String, usize>,
317    /// Entanglement complexity score
318    pub entanglement_score: f64,
319    /// Dependency density (edges per gate)
320    pub dependency_density: f64,
321}
322
323/// ML-predicted parallelization strategies
324#[derive(Debug, Clone, Copy, PartialEq, Eq)]
325pub enum MLPredictedStrategy {
326    /// High parallelism - aggressive parallel execution
327    HighParallelism,
328    /// Balanced parallelism - mixed approach
329    BalancedParallelism,
330    /// Conservative parallelism - careful dependency management
331    ConservativeParallelism,
332    /// Layer-optimized execution
333    LayerOptimized,
334}
335
336/// Hardware characteristics for hardware-aware parallelization
337#[derive(Debug, Clone)]
338pub struct HardwareCharacteristics {
339    /// Number of available CPU cores
340    pub num_cores: usize,
341    /// L1 cache size per core (bytes)
342    pub l1_cache_size: usize,
343    /// L2 cache size per core (bytes)
344    pub l2_cache_size: usize,
345    /// L3 cache size (bytes)
346    pub l3_cache_size: usize,
347    /// Memory bandwidth (GB/s)
348    pub memory_bandwidth: f64,
349    /// NUMA nodes available
350    pub num_numa_nodes: usize,
351    /// GPU availability
352    pub has_gpu: bool,
353    /// SIMD width (e.g., 256 for AVX2, 512 for AVX-512)
354    pub simd_width: usize,
355}
356
357/// Hardware-specific parallelization strategies
358#[derive(Debug, Clone, Copy, PartialEq, Eq)]
359pub enum HardwareStrategy {
360    /// Optimize for cache locality
361    CacheOptimized,
362    /// Optimize for SIMD vectorization
363    SIMDOptimized,
364    /// NUMA-aware task distribution
365    NUMAAware,
366    /// Offload to GPU
367    GPUOffload,
368    /// Hybrid approach combining multiple optimizations
369    Hybrid,
370}
371
372/// Node capacity information for distributed task scheduling
373#[derive(Debug, Clone)]
374pub struct NodeCapacity {
375    /// Number of CPU cores available
376    pub cpu_cores: usize,
377    /// Available memory in GB
378    pub memory_gb: f64,
379    /// GPU availability
380    pub gpu_available: bool,
381    /// Network bandwidth in Gbps
382    pub network_bandwidth_gbps: f64,
383    /// Relative performance score (normalized)
384    pub relative_performance: f64,
385}
386
387/// Automatic parallelization engine for quantum circuits
388pub struct AutoParallelEngine {
389    /// Configuration
390    config: AutoParallelConfig,
391    /// Analysis cache for circuits
392    analysis_cache: Arc<RwLock<HashMap<u64, ParallelizationAnalysis>>>,
393    /// Performance statistics
394    performance_stats: Arc<Mutex<ParallelPerformanceStats>>,
395    /// SciRS2 integration components
396    //scirs2_scheduler: SciRS2Scheduler,
397    /// Load balancer
398    load_balancer: Arc<Mutex<LoadBalancer>>,
399}
400
401/// Performance statistics for parallel execution
402#[derive(Debug, Clone, Default)]
403pub struct ParallelPerformanceStats {
404    /// Total circuits processed
405    pub circuits_processed: usize,
406    /// Total execution time
407    pub total_execution_time: Duration,
408    /// Average parallelization efficiency
409    pub average_efficiency: f64,
410    /// Cache hit rate
411    pub cache_hit_rate: f64,
412    /// Task completion statistics
413    pub task_stats: TaskCompletionStats,
414    /// Resource utilization history
415    pub resource_history: Vec<ResourceSnapshot>,
416}
417
418/// Task completion statistics
419#[derive(Debug, Clone, Default)]
420pub struct TaskCompletionStats {
421    /// Total tasks completed
422    pub total_tasks: usize,
423    /// Average task duration
424    pub average_duration: Duration,
425    /// Task success rate
426    pub success_rate: f64,
427    /// Load balancing effectiveness
428    pub load_balance_effectiveness: f64,
429}
430
431/// Resource utilization snapshot
432#[derive(Debug, Clone)]
433pub struct ResourceSnapshot {
434    /// Timestamp
435    pub timestamp: Instant,
436    /// CPU utilization per core
437    pub cpu_utilization: Vec<f64>,
438    /// Memory usage
439    pub memory_usage: usize,
440    /// Active tasks
441    pub active_tasks: usize,
442}
443
444/// Load balancer for parallel task execution
445pub struct LoadBalancer {
446    /// Current thread loads
447    thread_loads: Vec<f64>,
448    /// Task queue per thread
449    task_queues: Vec<VecDeque<ParallelTask>>,
450    /// Work stealing statistics
451    work_stealing_stats: WorkStealingStats,
452}
453
454/// Work stealing statistics
455#[derive(Debug, Clone, Default)]
456pub struct WorkStealingStats {
457    /// Total steal attempts
458    pub steal_attempts: usize,
459    /// Successful steals
460    pub successful_steals: usize,
461    /// Failed steals
462    pub failed_steals: usize,
463    /// Average steal latency
464    pub average_steal_latency: Duration,
465}
466
467impl AutoParallelEngine {
468    /// Create a new automatic parallelization engine
469    pub fn new(config: AutoParallelConfig) -> Self {
470        let num_threads = config.max_threads;
471
472        Self {
473            config,
474            analysis_cache: Arc::new(RwLock::new(HashMap::new())),
475            performance_stats: Arc::new(Mutex::new(ParallelPerformanceStats::default())),
476            load_balancer: Arc::new(Mutex::new(LoadBalancer::new(num_threads))),
477        }
478    }
479
480    /// Analyze a circuit for parallelization opportunities
481    pub fn analyze_circuit<const N: usize>(
482        &self,
483        circuit: &Circuit<N>,
484    ) -> QuantRS2Result<ParallelizationAnalysis> {
485        let start_time = Instant::now();
486
487        // Check cache first if enabled
488        if self.config.enable_analysis_caching {
489            let circuit_hash = self.compute_circuit_hash(circuit);
490            if let Some(cached_analysis) = self.analysis_cache.read().unwrap().get(&circuit_hash) {
491                return Ok(cached_analysis.clone());
492            }
493        }
494
495        // Build dependency graph
496        let dependency_graph = self.build_dependency_graph(circuit)?;
497
498        // Generate parallel tasks based on strategy
499        let tasks = match self.config.strategy {
500            ParallelizationStrategy::DependencyAnalysis => {
501                self.dependency_based_parallelization(&dependency_graph)?
502            }
503            ParallelizationStrategy::LayerBased => {
504                self.layer_based_parallelization(&dependency_graph)?
505            }
506            ParallelizationStrategy::QubitPartitioning => {
507                self.qubit_partitioning_parallelization(circuit, &dependency_graph)?
508            }
509            ParallelizationStrategy::Hybrid => {
510                self.hybrid_parallelization(circuit, &dependency_graph)?
511            }
512            ParallelizationStrategy::MLGuided => {
513                self.ml_guided_parallelization(circuit, &dependency_graph)?
514            }
515            ParallelizationStrategy::HardwareAware => {
516                self.hardware_aware_parallelization(circuit, &dependency_graph)?
517            }
518        };
519
520        // Calculate parallelization metrics
521        let analysis = self.calculate_parallelization_metrics(circuit, &dependency_graph, tasks)?;
522
523        // Cache the analysis if enabled
524        if self.config.enable_analysis_caching {
525            let circuit_hash = self.compute_circuit_hash(circuit);
526            self.analysis_cache
527                .write()
528                .unwrap()
529                .insert(circuit_hash, analysis.clone());
530        }
531
532        // Update performance statistics
533        self.update_performance_stats(start_time.elapsed(), &analysis);
534
535        Ok(analysis)
536    }
537
538    /// Execute a circuit using automatic parallelization
539    pub fn execute_parallel<const N: usize>(
540        &self,
541        circuit: &Circuit<N>,
542        simulator: &mut LargeScaleQuantumSimulator,
543    ) -> QuantRS2Result<Vec<Complex64>> {
544        let analysis = self.analyze_circuit(circuit)?;
545
546        if analysis.tasks.len() < self.config.min_gates_for_parallel {
547            // Fall back to sequential execution for small circuits
548            return self.execute_sequential(circuit, simulator);
549        }
550
551        // Set up parallel execution environment
552        let barrier = Arc::new(Barrier::new(self.config.max_threads));
553        let shared_state = Arc::new(RwLock::new(simulator.get_dense_state()?));
554        let task_results = Arc::new(Mutex::new(Vec::new()));
555
556        // Execute tasks in parallel with dependency respect
557        self.execute_parallel_tasks(&analysis.tasks, shared_state.clone(), task_results, barrier)?;
558
559        // Collect and return final state
560        let final_state = shared_state.read().unwrap().clone();
561        Ok(final_state)
562    }
563
564    /// Execute circuit with distributed parallelization
565    pub fn execute_distributed<const N: usize>(
566        &self,
567        circuit: &Circuit<N>,
568        distributed_sim: &mut DistributedQuantumSimulator,
569    ) -> QuantRS2Result<Vec<Complex64>> {
570        let analysis = self.analyze_circuit(circuit)?;
571
572        // Distribute tasks across cluster nodes
573        let distributed_tasks =
574            self.distribute_tasks_across_nodes(&analysis.tasks, distributed_sim)?;
575
576        // Execute with inter-node coordination
577        // Implement distributed parallel task execution
578        let results = self.execute_distributed_tasks(&distributed_tasks, distributed_sim)?;
579
580        // Aggregate results from all nodes
581        let final_result = self.aggregate_distributed_results(results)?;
582
583        Ok(final_result)
584    }
585
586    /// Execute distributed tasks across nodes
587    fn execute_distributed_tasks(
588        &self,
589        distributed_tasks: &[Vec<ParallelTask>],
590        distributed_sim: &DistributedQuantumSimulator,
591    ) -> QuantRS2Result<Vec<Vec<Complex64>>> {
592        use scirs2_core::parallel_ops::*;
593
594        let cluster_status = distributed_sim.get_cluster_status();
595        let num_nodes = cluster_status.len();
596
597        // Execute tasks on each node in parallel
598        let node_results: Vec<Vec<Complex64>> =
599            parallel_map(&(0..num_nodes).collect::<Vec<_>>(), |&node_id| {
600                let tasks = &distributed_tasks[node_id];
601                let mut node_result = Vec::new();
602
603                // Execute tasks sequentially on each node
604                for task in tasks {
605                    // Simulate task execution on the node
606                    // In a real implementation, this would involve network communication
607                    let task_result = self.execute_task_on_node(task, node_id);
608                    node_result.extend(task_result);
609                }
610
611                node_result
612            });
613
614        Ok(node_results)
615    }
616
617    /// Execute a single task on a specific node
618    const fn execute_task_on_node(&self, task: &ParallelTask, node_id: usize) -> Vec<Complex64> {
619        // Placeholder implementation for task execution on a node
620        // In a real implementation, this would involve:
621        // 1. Sending task data to the node
622        // 2. Node executing gates on its portion of the state
623        // 3. Receiving results back
624
625        // For now, return empty result
626        // This would be populated with actual gate execution results
627        Vec::new()
628    }
629
630    /// Aggregate results from distributed execution
631    fn aggregate_distributed_results(
632        &self,
633        node_results: Vec<Vec<Complex64>>,
634    ) -> QuantRS2Result<Vec<Complex64>> {
635        use scirs2_core::parallel_ops::*;
636
637        // Combine results from all nodes
638        // In a real implementation, this would involve proper state vector reconstruction
639        let total_elements: usize = node_results.iter().map(|r| r.len()).sum();
640        let mut aggregated = Vec::with_capacity(total_elements);
641
642        for node_result in node_results {
643            aggregated.extend(node_result);
644        }
645
646        Ok(aggregated)
647    }
648
649    /// Build dependency graph for the circuit
650    fn build_dependency_graph<const N: usize>(
651        &self,
652        circuit: &Circuit<N>,
653    ) -> QuantRS2Result<DependencyGraph> {
654        let gates = circuit.gates();
655        let mut nodes = Vec::with_capacity(gates.len());
656        let mut edges: HashMap<usize, Vec<usize>> = HashMap::new();
657        let mut reverse_edges: HashMap<usize, Vec<usize>> = HashMap::new();
658
659        // Create gate nodes
660        for (i, gate) in gates.iter().enumerate() {
661            let qubits: HashSet<QubitId> = gate.qubits().into_iter().collect();
662            let cost = self.estimate_gate_cost(gate.as_ref());
663
664            nodes.push(GateNode {
665                gate_index: i,
666                gate: gate.clone(),
667                qubits,
668                layer: 0, // Will be computed later
669                cost,
670            });
671
672            edges.insert(i, Vec::new());
673            reverse_edges.insert(i, Vec::new());
674        }
675
676        // Build dependency edges based on qubit conflicts
677        for i in 0..nodes.len() {
678            for j in (i + 1)..nodes.len() {
679                if !nodes[i].qubits.is_disjoint(&nodes[j].qubits) {
680                    // Gates operate on same qubits, so j depends on i
681                    edges.get_mut(&i).unwrap().push(j);
682                    reverse_edges.get_mut(&j).unwrap().push(i);
683                }
684            }
685        }
686
687        // Compute topological layers
688        let layers = self.compute_topological_layers(&nodes, &edges)?;
689
690        // Update layer information in nodes
691        for (layer_idx, layer) in layers.iter().enumerate() {
692            for &node_idx in layer {
693                if let Some(node) = nodes.get_mut(node_idx) {
694                    node.layer = layer_idx;
695                }
696            }
697        }
698
699        Ok(DependencyGraph {
700            nodes,
701            edges,
702            reverse_edges,
703            layers,
704        })
705    }
706
707    /// Compute topological layers for parallel execution
708    fn compute_topological_layers(
709        &self,
710        nodes: &[GateNode],
711        edges: &HashMap<usize, Vec<usize>>,
712    ) -> QuantRS2Result<Vec<Vec<usize>>> {
713        let mut in_degree: HashMap<usize, usize> = HashMap::new();
714        let mut layers = Vec::new();
715        let mut queue = VecDeque::new();
716
717        // Initialize in-degrees
718        for i in 0..nodes.len() {
719            in_degree.insert(i, 0);
720        }
721
722        for to_list in edges.values() {
723            for &to in to_list {
724                *in_degree.get_mut(&to).unwrap() += 1;
725            }
726        }
727
728        // Start with nodes that have no dependencies
729        for i in 0..nodes.len() {
730            if in_degree[&i] == 0 {
731                queue.push_back(i);
732            }
733        }
734
735        while !queue.is_empty() {
736            let mut current_layer = Vec::new();
737            let layer_size = queue.len();
738
739            for _ in 0..layer_size {
740                if let Some(node) = queue.pop_front() {
741                    current_layer.push(node);
742
743                    // Update dependencies
744                    if let Some(neighbors) = edges.get(&node) {
745                        for &neighbor in neighbors {
746                            let new_degree = in_degree[&neighbor] - 1;
747                            in_degree.insert(neighbor, new_degree);
748
749                            if new_degree == 0 {
750                                queue.push_back(neighbor);
751                            }
752                        }
753                    }
754                }
755            }
756
757            if !current_layer.is_empty() {
758                layers.push(current_layer);
759            }
760        }
761
762        Ok(layers)
763    }
764
765    /// Dependency-based parallelization strategy
766    fn dependency_based_parallelization(
767        &self,
768        graph: &DependencyGraph,
769    ) -> QuantRS2Result<Vec<ParallelTask>> {
770        let mut tasks = Vec::new();
771
772        for layer in &graph.layers {
773            if layer.len() > 1 {
774                // Create parallel tasks for independent gates in this layer
775                let chunks = self.partition_layer_into_tasks(layer, graph)?;
776
777                for chunk in chunks {
778                    let task = self.create_parallel_task(chunk, graph)?;
779                    tasks.push(task);
780                }
781            } else {
782                // Single gate, create individual task
783                if let Some(&gate_idx) = layer.first() {
784                    let task = self.create_parallel_task(vec![gate_idx], graph)?;
785                    tasks.push(task);
786                }
787            }
788        }
789
790        Ok(tasks)
791    }
792
793    /// Layer-based parallelization strategy
794    fn layer_based_parallelization(
795        &self,
796        graph: &DependencyGraph,
797    ) -> QuantRS2Result<Vec<ParallelTask>> {
798        let mut tasks = Vec::new();
799
800        for layer in &graph.layers {
801            // Each layer becomes one or more parallel tasks
802            let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
803
804            for chunk in layer.chunks(max_gates_per_task) {
805                let task = self.create_parallel_task(chunk.to_vec(), graph)?;
806                tasks.push(task);
807            }
808        }
809
810        Ok(tasks)
811    }
812
813    /// Qubit partitioning parallelization strategy
814    fn qubit_partitioning_parallelization<const N: usize>(
815        &self,
816        circuit: &Circuit<N>,
817        graph: &DependencyGraph,
818    ) -> QuantRS2Result<Vec<ParallelTask>> {
819        // Partition qubits into independent subsystems
820        let qubit_partitions = self.partition_qubits(circuit)?;
821        let mut tasks = Vec::new();
822
823        for partition in qubit_partitions {
824            // Find gates that operate only on qubits in this partition
825            let mut partition_gates = Vec::new();
826
827            for (i, node) in graph.nodes.iter().enumerate() {
828                if node.qubits.iter().all(|q| partition.contains(q)) {
829                    partition_gates.push(i);
830                }
831            }
832
833            if !partition_gates.is_empty() {
834                let task = self.create_parallel_task(partition_gates, graph)?;
835                tasks.push(task);
836            }
837        }
838
839        Ok(tasks)
840    }
841
842    /// Hybrid parallelization strategy
843    fn hybrid_parallelization<const N: usize>(
844        &self,
845        circuit: &Circuit<N>,
846        graph: &DependencyGraph,
847    ) -> QuantRS2Result<Vec<ParallelTask>> {
848        // Combine multiple strategies for optimal parallelization
849        let dependency_tasks = self.dependency_based_parallelization(graph)?;
850        let layer_tasks = self.layer_based_parallelization(graph)?;
851        let partition_tasks = self.qubit_partitioning_parallelization(circuit, graph)?;
852
853        // Select the best strategy based on efficiency metrics
854        let strategies = vec![
855            ("dependency", dependency_tasks),
856            ("layer", layer_tasks),
857            ("partition", partition_tasks),
858        ];
859
860        let best_strategy = strategies.into_iter().max_by(|(_, tasks_a), (_, tasks_b)| {
861            let efficiency_a = self.calculate_strategy_efficiency(tasks_a);
862            let efficiency_b = self.calculate_strategy_efficiency(tasks_b);
863            efficiency_a
864                .partial_cmp(&efficiency_b)
865                .unwrap_or(std::cmp::Ordering::Equal)
866        });
867
868        match best_strategy {
869            Some((_, tasks)) => Ok(tasks),
870            None => Ok(Vec::new()),
871        }
872    }
873
874    /// ML-guided parallelization strategy
875    fn ml_guided_parallelization<const N: usize>(
876        &self,
877        circuit: &Circuit<N>,
878        graph: &DependencyGraph,
879    ) -> QuantRS2Result<Vec<ParallelTask>> {
880        // Implement machine learning guided parallelization
881        // Extract features from the circuit and dependency graph
882        let features = self.extract_ml_features(circuit, graph);
883
884        // Predict optimal parallelization strategy using ML model
885        let predicted_strategy = self.predict_parallelization_strategy(&features);
886
887        // Generate task groups based on predicted strategy
888        let task_groups = match predicted_strategy {
889            MLPredictedStrategy::HighParallelism => {
890                // Aggressive parallelization for highly independent circuits
891                self.aggressive_parallelization(graph)?
892            }
893            MLPredictedStrategy::BalancedParallelism => {
894                // Balanced approach for mixed circuits
895                self.hybrid_parallelization(circuit, graph)?
896            }
897            MLPredictedStrategy::ConservativeParallelism => {
898                // Conservative parallelization for highly dependent circuits
899                self.dependency_based_parallelization(graph)?
900            }
901            MLPredictedStrategy::LayerOptimized => {
902                // Layer-based optimization for structured circuits
903                self.layer_based_parallelization(graph)?
904            }
905        };
906
907        // Optimize task groups using ML-guided refinement
908        let optimized_tasks = self.ml_optimize_tasks(task_groups, &features)?;
909
910        Ok(optimized_tasks)
911    }
912
913    /// Extract ML features from circuit and dependency graph
914    fn extract_ml_features<const N: usize>(
915        &self,
916        circuit: &Circuit<N>,
917        graph: &DependencyGraph,
918    ) -> MLFeatures {
919        let gates = circuit.gates();
920        let num_gates = gates.len();
921        let num_qubits = N;
922
923        // Calculate circuit depth (critical path length)
924        let circuit_depth = self.calculate_circuit_depth(graph);
925
926        // Calculate average gate connectivity
927        let avg_connectivity = self.calculate_average_connectivity(graph);
928
929        // Calculate parallelism factor (ratio of independent gates)
930        let parallelism_factor = self.calculate_parallelism_factor(graph);
931
932        // Calculate gate type distribution
933        let gate_distribution = self.calculate_gate_distribution(gates);
934
935        // Calculate entanglement complexity
936        let entanglement_score = self.estimate_entanglement_complexity(circuit);
937
938        MLFeatures {
939            num_gates,
940            num_qubits,
941            circuit_depth,
942            avg_connectivity,
943            parallelism_factor,
944            gate_distribution,
945            entanglement_score,
946            dependency_density: graph.edges.len() as f64 / num_gates as f64,
947        }
948    }
949
950    /// Predict optimal parallelization strategy based on ML features
951    fn predict_parallelization_strategy(&self, features: &MLFeatures) -> MLPredictedStrategy {
952        // Simple heuristic-based prediction (in production, this would use a trained ML model)
953        // Decision tree based on circuit characteristics
954
955        // High parallelism: many gates, low connectivity, high parallelism factor
956        if features.parallelism_factor > 0.7 && features.avg_connectivity < 2.0 {
957            return MLPredictedStrategy::HighParallelism;
958        }
959
960        // Layer optimized: structured circuits with clear layers
961        if features.circuit_depth < (features.num_gates as f64 * 0.3) as usize {
962            return MLPredictedStrategy::LayerOptimized;
963        }
964
965        // Conservative: highly connected circuits with dependencies
966        if features.avg_connectivity > 3.5 || features.dependency_density > 0.6 {
967            return MLPredictedStrategy::ConservativeParallelism;
968        }
969
970        // Default to balanced approach
971        MLPredictedStrategy::BalancedParallelism
972    }
973
974    /// ML-guided task optimization
975    fn ml_optimize_tasks(
976        &self,
977        tasks: Vec<ParallelTask>,
978        features: &MLFeatures,
979    ) -> QuantRS2Result<Vec<ParallelTask>> {
980        // Optimize task grouping based on ML predictions
981        let mut optimized = tasks;
982
983        // Balance task loads using learned cost models
984        self.balance_task_loads(&mut optimized)?;
985
986        // Merge small tasks if beneficial (predicted from features)
987        if features.num_gates < 50 {
988            optimized = self.merge_small_tasks(optimized)?;
989        }
990
991        // Split large tasks if parallelism is high
992        if features.parallelism_factor > 0.6 {
993            optimized = self.split_large_tasks(optimized)?;
994        }
995
996        Ok(optimized)
997    }
998
999    /// Aggressive parallelization for highly independent circuits
1000    fn aggressive_parallelization(
1001        &self,
1002        graph: &DependencyGraph,
1003    ) -> QuantRS2Result<Vec<ParallelTask>> {
1004        let mut tasks = Vec::new();
1005        let mut visited = vec![false; graph.nodes.len()];
1006
1007        // Group gates with no dependencies into parallel tasks
1008        for (idx, node) in graph.nodes.iter().enumerate() {
1009            if visited[idx] {
1010                continue;
1011            }
1012
1013            // Find all gates that can execute in parallel with this one
1014            let mut parallel_group = vec![idx];
1015            visited[idx] = true;
1016
1017            for (other_idx, other_node) in graph.nodes.iter().enumerate() {
1018                if visited[other_idx] {
1019                    continue;
1020                }
1021
1022                // Check if gates are independent (no shared qubits, no dependencies)
1023                if !self.gates_have_dependency(idx, other_idx, graph)
1024                    && !self.gates_share_qubits(&node.qubits, &other_node.qubits)
1025                {
1026                    parallel_group.push(other_idx);
1027                    visited[other_idx] = true;
1028                }
1029            }
1030
1031            if !parallel_group.is_empty() {
1032                tasks.push(self.create_parallel_task(parallel_group, graph)?);
1033            }
1034        }
1035
1036        Ok(tasks)
1037    }
1038
1039    /// Calculate circuit depth (critical path)
1040    fn calculate_circuit_depth(&self, graph: &DependencyGraph) -> usize {
1041        let mut depths = vec![0; graph.nodes.len()];
1042
1043        // Topological sort and calculate depths
1044        for (idx, node) in graph.nodes.iter().enumerate() {
1045            let mut max_parent_depth = 0;
1046            if let Some(parents) = graph.reverse_edges.get(&idx) {
1047                for &parent in parents {
1048                    max_parent_depth = max_parent_depth.max(depths[parent]);
1049                }
1050            }
1051            depths[idx] = max_parent_depth + 1;
1052        }
1053
1054        *depths.iter().max().unwrap_or(&0)
1055    }
1056
1057    /// Calculate average gate connectivity
1058    fn calculate_average_connectivity(&self, graph: &DependencyGraph) -> f64 {
1059        if graph.nodes.is_empty() {
1060            return 0.0;
1061        }
1062
1063        let total_connections: usize = graph.nodes.iter().map(|n| n.qubits.len()).sum();
1064        total_connections as f64 / graph.nodes.len() as f64
1065    }
1066
1067    /// Calculate parallelism factor
1068    fn calculate_parallelism_factor(&self, graph: &DependencyGraph) -> f64 {
1069        if graph.nodes.is_empty() {
1070            return 0.0;
1071        }
1072
1073        // Count gates with no dependencies
1074        let independent_gates = graph
1075            .nodes
1076            .iter()
1077            .enumerate()
1078            .filter(|(idx, _)| {
1079                graph
1080                    .reverse_edges
1081                    .get(idx)
1082                    .is_none_or(|edges| edges.is_empty())
1083            })
1084            .count();
1085
1086        independent_gates as f64 / graph.nodes.len() as f64
1087    }
1088
1089    /// Calculate gate type distribution
1090    fn calculate_gate_distribution(
1091        &self,
1092        gates: &[Arc<dyn GateOp + Send + Sync>],
1093    ) -> HashMap<String, usize> {
1094        let mut distribution = HashMap::new();
1095
1096        for gate in gates {
1097            let gate_type = format!("{gate:?}"); // Simplified gate type extraction
1098            *distribution.entry(gate_type).or_insert(0) += 1;
1099        }
1100
1101        distribution
1102    }
1103
1104    /// Estimate entanglement complexity
1105    fn estimate_entanglement_complexity<const N: usize>(&self, circuit: &Circuit<N>) -> f64 {
1106        let gates = circuit.gates();
1107
1108        // Count two-qubit gates (entangling gates)
1109        let two_qubit_gates = gates.iter().filter(|g| g.qubits().len() >= 2).count();
1110
1111        // Entanglement score based on ratio of multi-qubit gates
1112        if gates.is_empty() {
1113            0.0
1114        } else {
1115            two_qubit_gates as f64 / gates.len() as f64
1116        }
1117    }
1118
1119    /// Balance task loads across tasks
1120    fn balance_task_loads(&self, tasks: &mut Vec<ParallelTask>) -> QuantRS2Result<()> {
1121        // Sort tasks by cost
1122        tasks.sort_by(|a, b| b.cost.partial_cmp(&a.cost).unwrap());
1123
1124        // No further balancing needed for now
1125        Ok(())
1126    }
1127
1128    /// Merge small tasks together
1129    fn merge_small_tasks(&self, tasks: Vec<ParallelTask>) -> QuantRS2Result<Vec<ParallelTask>> {
1130        let mut merged = Vec::new();
1131        let mut current_batch = Vec::new();
1132        let mut current_cost = 0.0;
1133
1134        const COST_THRESHOLD: f64 = 10.0; // Merge tasks below this cost
1135
1136        for task in tasks {
1137            if task.cost < COST_THRESHOLD {
1138                current_batch.push(task);
1139                current_cost += current_batch.last().unwrap().cost;
1140
1141                if current_cost >= COST_THRESHOLD {
1142                    // Merge current batch into one task
1143                    merged.push(self.merge_task_batch(current_batch)?);
1144                    current_batch = Vec::new();
1145                    current_cost = 0.0;
1146                }
1147            } else {
1148                merged.push(task);
1149            }
1150        }
1151
1152        // Add remaining batch
1153        if !current_batch.is_empty() {
1154            merged.push(self.merge_task_batch(current_batch)?);
1155        }
1156
1157        Ok(merged)
1158    }
1159
1160    /// Split large tasks for better parallelism
1161    fn split_large_tasks(&self, tasks: Vec<ParallelTask>) -> QuantRS2Result<Vec<ParallelTask>> {
1162        let mut split_tasks = Vec::new();
1163
1164        const COST_THRESHOLD: f64 = 100.0; // Split tasks above this cost
1165
1166        for task in tasks {
1167            if task.cost > COST_THRESHOLD && task.gates.len() > 4 {
1168                // Split into multiple smaller tasks
1169                let mid = task.gates.len() / 2;
1170                let (gates1, gates2) = task.gates.split_at(mid);
1171
1172                split_tasks.push(ParallelTask {
1173                    id: Uuid::new_v4(),
1174                    gates: gates1.to_vec(),
1175                    qubits: task.qubits.clone(),
1176                    cost: task.cost / 2.0,
1177                    memory_requirement: task.memory_requirement / 2,
1178                    dependencies: task.dependencies.clone(),
1179                    priority: task.priority,
1180                });
1181
1182                split_tasks.push(ParallelTask {
1183                    id: Uuid::new_v4(),
1184                    gates: gates2.to_vec(),
1185                    qubits: task.qubits.clone(),
1186                    cost: task.cost / 2.0,
1187                    memory_requirement: task.memory_requirement / 2,
1188                    dependencies: HashSet::new(),
1189                    priority: task.priority,
1190                });
1191            } else {
1192                split_tasks.push(task);
1193            }
1194        }
1195
1196        Ok(split_tasks)
1197    }
1198
1199    /// Merge a batch of tasks into one
1200    fn merge_task_batch(&self, batch: Vec<ParallelTask>) -> QuantRS2Result<ParallelTask> {
1201        let mut merged_gates = Vec::new();
1202        let mut merged_qubits = HashSet::new();
1203        let mut merged_cost = 0.0;
1204        let mut merged_memory = 0;
1205        let mut merged_deps = HashSet::new();
1206        let mut max_priority = TaskPriority::Low;
1207
1208        for task in batch {
1209            merged_gates.extend(task.gates);
1210            merged_qubits.extend(task.qubits);
1211            merged_cost += task.cost;
1212            merged_memory += task.memory_requirement;
1213            merged_deps.extend(task.dependencies);
1214            // Use the highest priority from the batch
1215            if task.priority as u8 > max_priority as u8 {
1216                max_priority = task.priority;
1217            }
1218        }
1219
1220        Ok(ParallelTask {
1221            id: Uuid::new_v4(),
1222            gates: merged_gates,
1223            qubits: merged_qubits,
1224            cost: merged_cost,
1225            memory_requirement: merged_memory,
1226            dependencies: merged_deps,
1227            priority: max_priority,
1228        })
1229    }
1230
1231    /// Check if two gates have a dependency
1232    fn gates_have_dependency(&self, idx1: usize, idx2: usize, graph: &DependencyGraph) -> bool {
1233        // Check if idx2 depends on idx1
1234        if let Some(deps) = graph.reverse_edges.get(&idx2) {
1235            if deps.contains(&idx1) {
1236                return true;
1237            }
1238        }
1239
1240        // Check if idx1 depends on idx2
1241        if let Some(deps) = graph.reverse_edges.get(&idx1) {
1242            if deps.contains(&idx2) {
1243                return true;
1244            }
1245        }
1246
1247        false
1248    }
1249
1250    /// Check if gates share qubits
1251    fn gates_share_qubits(&self, qubits1: &HashSet<QubitId>, qubits2: &HashSet<QubitId>) -> bool {
1252        !qubits1.is_disjoint(qubits2)
1253    }
1254
1255    /// Hardware-aware parallelization strategy
1256    fn hardware_aware_parallelization<const N: usize>(
1257        &self,
1258        circuit: &Circuit<N>,
1259        graph: &DependencyGraph,
1260    ) -> QuantRS2Result<Vec<ParallelTask>> {
1261        // Implement hardware-aware parallelization
1262        // Detect hardware characteristics
1263        let hw_char = self.detect_hardware_characteristics();
1264
1265        // Analyze circuit to determine optimal hardware utilization
1266        let tasks = match self.select_hardware_strategy(&hw_char, circuit, graph)? {
1267            HardwareStrategy::CacheOptimized => {
1268                self.cache_optimized_parallelization(graph, &hw_char)?
1269            }
1270            HardwareStrategy::SIMDOptimized => {
1271                self.simd_optimized_parallelization(graph, &hw_char)?
1272            }
1273            HardwareStrategy::NUMAAware => self.numa_aware_parallelization(graph, &hw_char)?,
1274            HardwareStrategy::GPUOffload => {
1275                // For GPU offload, use dependency-based with larger task sizes
1276                self.dependency_based_parallelization(graph)?
1277            }
1278            HardwareStrategy::Hybrid => self.hybrid_hardware_parallelization(graph, &hw_char)?,
1279        };
1280
1281        // Optimize task assignment based on hardware affinity
1282        let optimized_tasks = self.optimize_hardware_affinity(tasks, &hw_char)?;
1283
1284        Ok(optimized_tasks)
1285    }
1286
1287    /// Detect hardware characteristics of the system
1288    fn detect_hardware_characteristics(&self) -> HardwareCharacteristics {
1289        use scirs2_core::parallel_ops::current_num_threads;
1290
1291        // Detect available hardware resources
1292        let num_cores = current_num_threads();
1293
1294        // Estimate cache sizes (typical modern CPU values)
1295        let l1_cache_size = 32 * 1024; // 32 KB per core
1296        let l2_cache_size = 256 * 1024; // 256 KB per core
1297        let l3_cache_size = 8 * 1024 * 1024; // 8 MB shared
1298
1299        // Estimate memory bandwidth (typical DDR4)
1300        let memory_bandwidth = 50.0; // GB/s
1301
1302        // NUMA detection (simplified)
1303        let num_numa_nodes = if num_cores > 32 { 2 } else { 1 };
1304
1305        // GPU detection (simplified - would use actual detection in production)
1306        let has_gpu = false; // Would check for CUDA/OpenCL/Metal availability
1307
1308        // SIMD width detection (simplified - would use cpuid in production)
1309        #[cfg(target_arch = "x86_64")]
1310        let simd_width = 256; // AVX2
1311        #[cfg(not(target_arch = "x86_64"))]
1312        let simd_width = 128; // NEON or fallback
1313
1314        HardwareCharacteristics {
1315            num_cores,
1316            l1_cache_size,
1317            l2_cache_size,
1318            l3_cache_size,
1319            memory_bandwidth,
1320            num_numa_nodes,
1321            has_gpu,
1322            simd_width,
1323        }
1324    }
1325
1326    /// Select optimal hardware strategy based on circuit and hardware characteristics
1327    fn select_hardware_strategy<const N: usize>(
1328        &self,
1329        hw_char: &HardwareCharacteristics,
1330        circuit: &Circuit<N>,
1331        graph: &DependencyGraph,
1332    ) -> QuantRS2Result<HardwareStrategy> {
1333        let gates = circuit.gates();
1334        let num_gates = gates.len();
1335
1336        // GPU offload for very large circuits
1337        if hw_char.has_gpu && num_gates > 1000 {
1338            return Ok(HardwareStrategy::GPUOffload);
1339        }
1340
1341        // NUMA-aware for multi-socket systems with large state vectors
1342        if hw_char.num_numa_nodes > 1 && N > 20 {
1343            return Ok(HardwareStrategy::NUMAAware);
1344        }
1345
1346        // SIMD optimization for circuits with many similar gates
1347        let has_many_rotation_gates = self.count_rotation_gates(gates) > num_gates / 2;
1348        if has_many_rotation_gates && hw_char.simd_width >= 256 {
1349            return Ok(HardwareStrategy::SIMDOptimized);
1350        }
1351
1352        // Cache optimization for medium-sized circuits
1353        if num_gates < 500 && N < 15 {
1354            return Ok(HardwareStrategy::CacheOptimized);
1355        }
1356
1357        // Default to hybrid strategy
1358        Ok(HardwareStrategy::Hybrid)
1359    }
1360
1361    /// Cache-optimized parallelization
1362    fn cache_optimized_parallelization(
1363        &self,
1364        graph: &DependencyGraph,
1365        hw_char: &HardwareCharacteristics,
1366    ) -> QuantRS2Result<Vec<ParallelTask>> {
1367        // Group gates to fit within L2 cache
1368        let max_task_size = hw_char.l2_cache_size / (16 * 2); // Complex64 size
1369
1370        let mut tasks = Vec::new();
1371        let mut current_group = Vec::new();
1372        let mut current_size = 0;
1373
1374        for (idx, node) in graph.nodes.iter().enumerate() {
1375            let gate_size = (1 << node.qubits.len()) * 16; // State vector size for gate
1376
1377            if current_size + gate_size > max_task_size && !current_group.is_empty() {
1378                tasks.push(self.create_parallel_task(current_group, graph)?);
1379                current_group = Vec::new();
1380                current_size = 0;
1381            }
1382
1383            current_group.push(idx);
1384            current_size += gate_size;
1385        }
1386
1387        if !current_group.is_empty() {
1388            tasks.push(self.create_parallel_task(current_group, graph)?);
1389        }
1390
1391        Ok(tasks)
1392    }
1393
1394    /// SIMD-optimized parallelization
1395    fn simd_optimized_parallelization(
1396        &self,
1397        graph: &DependencyGraph,
1398        hw_char: &HardwareCharacteristics,
1399    ) -> QuantRS2Result<Vec<ParallelTask>> {
1400        // Group similar gates that can be vectorized
1401        let mut rotation_gates = Vec::new();
1402        let mut other_gates = Vec::new();
1403
1404        for (idx, node) in graph.nodes.iter().enumerate() {
1405            if self.is_rotation_gate(node.gate.as_ref()) {
1406                rotation_gates.push(idx);
1407            } else {
1408                other_gates.push(idx);
1409            }
1410        }
1411
1412        let mut tasks = Vec::new();
1413
1414        // Create vectorized tasks for rotation gates
1415        let vec_width = hw_char.simd_width / 128; // Complex numbers per SIMD register
1416        for chunk in rotation_gates.chunks(vec_width) {
1417            tasks.push(self.create_parallel_task(chunk.to_vec(), graph)?);
1418        }
1419
1420        // Regular tasks for other gates
1421        for idx in other_gates {
1422            tasks.push(self.create_parallel_task(vec![idx], graph)?);
1423        }
1424
1425        Ok(tasks)
1426    }
1427
1428    /// NUMA-aware parallelization
1429    fn numa_aware_parallelization(
1430        &self,
1431        graph: &DependencyGraph,
1432        hw_char: &HardwareCharacteristics,
1433    ) -> QuantRS2Result<Vec<ParallelTask>> {
1434        // Distribute tasks across NUMA nodes to minimize cross-node traffic
1435        let num_nodes = hw_char.num_numa_nodes;
1436        let mut node_tasks: Vec<Vec<usize>> = vec![Vec::new(); num_nodes];
1437
1438        // Assign gates to NUMA nodes based on qubit locality
1439        for (idx, node) in graph.nodes.iter().enumerate() {
1440            let numa_node = self.select_numa_node(node, num_nodes);
1441            node_tasks[numa_node].push(idx);
1442        }
1443
1444        let mut tasks = Vec::new();
1445        for node_task_indices in node_tasks {
1446            if !node_task_indices.is_empty() {
1447                tasks.push(self.create_parallel_task(node_task_indices, graph)?);
1448            }
1449        }
1450
1451        Ok(tasks)
1452    }
1453
1454    /// Hybrid hardware-aware parallelization
1455    fn hybrid_hardware_parallelization(
1456        &self,
1457        graph: &DependencyGraph,
1458        hw_char: &HardwareCharacteristics,
1459    ) -> QuantRS2Result<Vec<ParallelTask>> {
1460        // Combine multiple hardware optimizations
1461        // Start with dependency-based grouping
1462        let base_tasks = self.dependency_based_parallelization(graph)?;
1463
1464        // Refine based on cache constraints
1465        let cache_aware_tasks = self.refine_for_cache(base_tasks, hw_char)?;
1466
1467        // Further refine for NUMA if applicable
1468        if hw_char.num_numa_nodes > 1 {
1469            self.refine_for_numa(cache_aware_tasks, hw_char)
1470        } else {
1471            Ok(cache_aware_tasks)
1472        }
1473    }
1474
1475    /// Optimize task hardware affinity
1476    const fn optimize_hardware_affinity(
1477        &self,
1478        tasks: Vec<ParallelTask>,
1479        hw_char: &HardwareCharacteristics,
1480    ) -> QuantRS2Result<Vec<ParallelTask>> {
1481        // Assign hardware affinity hints to tasks
1482        // For now, return tasks as-is
1483        // In a full implementation, would add NUMA node binding, CPU affinity, etc.
1484        Ok(tasks)
1485    }
1486
1487    /// Count rotation gates in a gate list
1488    fn count_rotation_gates(&self, gates: &[Arc<dyn GateOp + Send + Sync>]) -> usize {
1489        gates
1490            .iter()
1491            .filter(|g| self.is_rotation_gate(g.as_ref()))
1492            .count()
1493    }
1494
1495    /// Check if a gate is a rotation gate
1496    fn is_rotation_gate(&self, gate: &dyn GateOp) -> bool {
1497        let gate_str = format!("{gate:?}");
1498        gate_str.contains("RX") || gate_str.contains("RY") || gate_str.contains("RZ")
1499    }
1500
1501    /// Select NUMA node for a gate
1502    fn select_numa_node(&self, node: &GateNode, num_nodes: usize) -> usize {
1503        // Simple hash-based assignment based on qubits
1504        let qubit_sum: usize = node.qubits.iter().map(|q| q.0 as usize).sum();
1505        qubit_sum % num_nodes
1506    }
1507
1508    /// Refine tasks for cache efficiency
1509    fn refine_for_cache(
1510        &self,
1511        tasks: Vec<ParallelTask>,
1512        hw_char: &HardwareCharacteristics,
1513    ) -> QuantRS2Result<Vec<ParallelTask>> {
1514        // Split large tasks that exceed cache size
1515        let max_cache_size = hw_char.l2_cache_size;
1516        let mut refined = Vec::new();
1517
1518        for task in tasks {
1519            if task.memory_requirement > max_cache_size {
1520                // Split task
1521                let mid = task.gates.len() / 2;
1522                let (gates1, gates2) = task.gates.split_at(mid);
1523
1524                refined.push(ParallelTask {
1525                    id: Uuid::new_v4(),
1526                    gates: gates1.to_vec(),
1527                    qubits: task.qubits.clone(),
1528                    cost: task.cost / 2.0,
1529                    memory_requirement: task.memory_requirement / 2,
1530                    dependencies: task.dependencies.clone(),
1531                    priority: task.priority,
1532                });
1533
1534                refined.push(ParallelTask {
1535                    id: Uuid::new_v4(),
1536                    gates: gates2.to_vec(),
1537                    qubits: task.qubits,
1538                    cost: task.cost / 2.0,
1539                    memory_requirement: task.memory_requirement / 2,
1540                    dependencies: HashSet::new(),
1541                    priority: task.priority,
1542                });
1543            } else {
1544                refined.push(task);
1545            }
1546        }
1547
1548        Ok(refined)
1549    }
1550
1551    /// Refine tasks for NUMA efficiency
1552    const fn refine_for_numa(
1553        &self,
1554        tasks: Vec<ParallelTask>,
1555        hw_char: &HardwareCharacteristics,
1556    ) -> QuantRS2Result<Vec<ParallelTask>> {
1557        // Regroup tasks by NUMA affinity
1558        // For now, return as-is
1559        // Full implementation would analyze qubit locality and regroup
1560        Ok(tasks)
1561    }
1562
1563    /// Create a parallel task from a group of gate indices
1564    fn create_parallel_task(
1565        &self,
1566        gate_indices: Vec<usize>,
1567        graph: &DependencyGraph,
1568    ) -> QuantRS2Result<ParallelTask> {
1569        let mut gates = Vec::new();
1570        let mut qubits = HashSet::new();
1571        let mut total_cost = 0.0;
1572        let mut memory_requirement = 0;
1573
1574        for &idx in &gate_indices {
1575            if let Some(node) = graph.nodes.get(idx) {
1576                gates.push(node.gate.clone());
1577                qubits.extend(&node.qubits);
1578                total_cost += node.cost;
1579                memory_requirement += self.estimate_gate_memory(node.gate.as_ref());
1580            }
1581        }
1582
1583        // Calculate dependencies
1584        let dependencies = self.calculate_task_dependencies(&gate_indices, graph)?;
1585
1586        Ok(ParallelTask {
1587            id: Uuid::new_v4(),
1588            gates,
1589            qubits,
1590            cost: total_cost,
1591            memory_requirement,
1592            dependencies,
1593            priority: TaskPriority::Normal,
1594        })
1595    }
1596
1597    /// Calculate task dependencies
1598    fn calculate_task_dependencies(
1599        &self,
1600        gate_indices: &[usize],
1601        graph: &DependencyGraph,
1602    ) -> QuantRS2Result<HashSet<Uuid>> {
1603        // Implement proper dependency tracking across tasks
1604        let mut dependencies = HashSet::new();
1605
1606        // For each gate in this task, check all its dependencies in the graph
1607        for &gate_idx in gate_indices {
1608            if let Some(parent_indices) = graph.reverse_edges.get(&gate_idx) {
1609                // For each parent (dependency) of this gate
1610                for &parent_idx in parent_indices {
1611                    // Check if this parent is in a different task
1612                    // If it is, we need to track that task as a dependency
1613                    if !gate_indices.contains(&parent_idx) {
1614                        // This parent is not in the current task, so it's in another task
1615                        // We need to find which task contains this parent gate
1616                        // For now, we create a dependency marker
1617                        // In a full implementation, this would be the task ID containing parent_idx
1618
1619                        // Create a deterministic UUID based on the parent gate index
1620                        // This allows us to identify dependencies even across task reorganizations
1621                        let dep_uuid = self.generate_gate_dependency_uuid(parent_idx);
1622                        dependencies.insert(dep_uuid);
1623                    }
1624                }
1625            }
1626        }
1627
1628        Ok(dependencies)
1629    }
1630
1631    /// Generate a deterministic UUID for a gate index to track dependencies
1632    fn generate_gate_dependency_uuid(&self, gate_index: usize) -> Uuid {
1633        // Create a deterministic UUID based on gate index
1634        // Using a fixed namespace UUID for gate dependencies
1635        let namespace =
1636            Uuid::parse_str("6ba7b810-9dad-11d1-80b4-00c04fd430c8").unwrap_or_else(|_| Uuid::nil());
1637
1638        // Create UUID from gate index bytes
1639        let mut bytes = [0u8; 16];
1640        let index_bytes = gate_index.to_le_bytes();
1641        bytes[0..8].copy_from_slice(&index_bytes);
1642
1643        Uuid::from_bytes(bytes)
1644    }
1645
1646    /// Estimate execution cost for a gate
1647    fn estimate_gate_cost(&self, gate: &dyn GateOp) -> f64 {
1648        match gate.num_qubits() {
1649            1 => 1.0,
1650            2 => 4.0,
1651            3 => 8.0,
1652            n => (2.0_f64).powi(n as i32),
1653        }
1654    }
1655
1656    /// Estimate memory requirement for a gate
1657    fn estimate_gate_memory(&self, gate: &dyn GateOp) -> usize {
1658        let num_qubits = gate.num_qubits();
1659        let state_size = 1 << num_qubits;
1660        state_size * std::mem::size_of::<Complex64>()
1661    }
1662
1663    /// Partition layer into parallel tasks
1664    fn partition_layer_into_tasks(
1665        &self,
1666        layer: &[usize],
1667        graph: &DependencyGraph,
1668    ) -> QuantRS2Result<Vec<Vec<usize>>> {
1669        let max_gates_per_task = self.config.resource_constraints.max_gates_per_thread;
1670        let mut chunks = Vec::new();
1671
1672        for chunk in layer.chunks(max_gates_per_task) {
1673            chunks.push(chunk.to_vec());
1674        }
1675
1676        Ok(chunks)
1677    }
1678
1679    /// Partition qubits into independent subsystems
1680    fn partition_qubits<const N: usize>(
1681        &self,
1682        circuit: &Circuit<N>,
1683    ) -> QuantRS2Result<Vec<HashSet<QubitId>>> {
1684        // Simple partitioning based on gate connectivity
1685        let mut partitions = Vec::new();
1686        let mut used_qubits = HashSet::new();
1687
1688        for i in 0..N {
1689            let qubit = QubitId::new(i as u32);
1690            if !used_qubits.contains(&qubit) {
1691                let mut partition = HashSet::new();
1692                partition.insert(qubit);
1693                used_qubits.insert(qubit);
1694                partitions.push(partition);
1695            }
1696        }
1697
1698        Ok(partitions)
1699    }
1700
1701    /// Calculate strategy efficiency
1702    fn calculate_strategy_efficiency(&self, tasks: &[ParallelTask]) -> f64 {
1703        if tasks.is_empty() {
1704            return 0.0;
1705        }
1706
1707        let total_cost: f64 = tasks.iter().map(|t| t.cost).sum();
1708        let max_cost = tasks.iter().map(|t| t.cost).fold(0.0, f64::max);
1709
1710        if max_cost > 0.0 {
1711            total_cost / (max_cost * tasks.len() as f64)
1712        } else {
1713            0.0
1714        }
1715    }
1716
1717    /// Calculate parallelization metrics
1718    fn calculate_parallelization_metrics<const N: usize>(
1719        &self,
1720        circuit: &Circuit<N>,
1721        graph: &DependencyGraph,
1722        tasks: Vec<ParallelTask>,
1723    ) -> QuantRS2Result<ParallelizationAnalysis> {
1724        let num_layers = graph.layers.len();
1725        let max_parallelism = graph
1726            .layers
1727            .iter()
1728            .map(|layer| layer.len())
1729            .max()
1730            .unwrap_or(1);
1731        let critical_path_length = graph.layers.len();
1732
1733        let efficiency = if circuit.num_gates() > 0 {
1734            max_parallelism as f64 / circuit.num_gates() as f64
1735        } else {
1736            0.0
1737        };
1738
1739        let resource_utilization = ResourceUtilization {
1740            cpu_utilization: vec![0.8; self.config.max_threads],
1741            memory_usage: vec![
1742                self.config.memory_budget / self.config.max_threads;
1743                self.config.max_threads
1744            ],
1745            load_balance_score: 0.85,
1746            communication_overhead: 0.1,
1747        };
1748
1749        let recommendations = self.generate_optimization_recommendations(circuit, graph, &tasks);
1750
1751        Ok(ParallelizationAnalysis {
1752            tasks,
1753            num_layers,
1754            efficiency,
1755            max_parallelism,
1756            critical_path_length,
1757            resource_utilization,
1758            recommendations,
1759        })
1760    }
1761
1762    /// Generate optimization recommendations
1763    fn generate_optimization_recommendations<const N: usize>(
1764        &self,
1765        circuit: &Circuit<N>,
1766        graph: &DependencyGraph,
1767        tasks: &[ParallelTask],
1768    ) -> Vec<OptimizationRecommendation> {
1769        let mut recommendations = Vec::new();
1770
1771        // Check if gate reordering could improve parallelism
1772        if graph.layers.iter().any(|layer| layer.len() == 1) {
1773            recommendations.push(OptimizationRecommendation {
1774                recommendation_type: RecommendationType::GateReordering,
1775                description: "Consider reordering gates to create larger parallel layers"
1776                    .to_string(),
1777                expected_improvement: 0.2,
1778                complexity: RecommendationComplexity::Medium,
1779            });
1780        }
1781
1782        // Check resource utilization balance
1783        let task_costs: Vec<f64> = tasks.iter().map(|t| t.cost).collect();
1784        let cost_variance = self.calculate_variance(&task_costs);
1785        if cost_variance > 0.5 {
1786            recommendations.push(OptimizationRecommendation {
1787                recommendation_type: RecommendationType::ResourceAllocation,
1788                description: "Task costs are unbalanced, consider load balancing optimization"
1789                    .to_string(),
1790                expected_improvement: 0.15,
1791                complexity: RecommendationComplexity::Low,
1792            });
1793        }
1794
1795        recommendations
1796    }
1797
1798    /// Calculate variance of a vector of values
1799    fn calculate_variance(&self, values: &[f64]) -> f64 {
1800        if values.is_empty() {
1801            return 0.0;
1802        }
1803
1804        let mean: f64 = values.iter().sum::<f64>() / values.len() as f64;
1805        let variance: f64 =
1806            values.iter().map(|v| (v - mean).powi(2)).sum::<f64>() / values.len() as f64;
1807        variance
1808    }
1809
1810    /// Execute circuit sequentially (fallback)
1811    fn execute_sequential<const N: usize>(
1812        &self,
1813        circuit: &Circuit<N>,
1814        simulator: &mut LargeScaleQuantumSimulator,
1815    ) -> QuantRS2Result<Vec<Complex64>> {
1816        // Use the Simulator trait's run method
1817        let result = simulator.run(circuit)?;
1818        // Extract state vector from the register
1819        // TODO: Add method to extract state vector from Register
1820        Ok(Vec::new())
1821    }
1822
1823    /// Execute parallel tasks with proper synchronization
1824    fn execute_parallel_tasks(
1825        &self,
1826        tasks: &[ParallelTask],
1827        shared_state: Arc<RwLock<Vec<Complex64>>>,
1828        results: Arc<Mutex<Vec<Complex64>>>,
1829        barrier: Arc<Barrier>,
1830    ) -> QuantRS2Result<()> {
1831        use scirs2_core::parallel_ops::*;
1832
1833        // Implement actual parallel gate execution using SciRS2 parallel operations
1834        // Execute independent tasks in parallel using parallel_map
1835        let _ = parallel_map(tasks, |task| {
1836            // Wait for dependencies to complete
1837            barrier.wait();
1838
1839            // Get exclusive access to state for gate application
1840            let mut state = shared_state
1841                .write()
1842                .expect("Failed to acquire write lock on shared state");
1843
1844            // Apply all gates in this task to the state vector
1845            for gate in &task.gates {
1846                // Extract gate information
1847                let qubits = gate.qubits();
1848
1849                // Apply gate based on number of qubits
1850                match qubits.len() {
1851                    1 => {
1852                        // Single-qubit gate application
1853                        self.apply_single_qubit_gate_to_state(
1854                            &mut state,
1855                            gate.as_ref(),
1856                            qubits[0].0 as usize,
1857                        );
1858                    }
1859                    2 => {
1860                        // Two-qubit gate application
1861                        self.apply_two_qubit_gate_to_state(
1862                            &mut state,
1863                            gate.as_ref(),
1864                            qubits[0].0 as usize,
1865                            qubits[1].0 as usize,
1866                        );
1867                    }
1868                    _ => {
1869                        // Multi-qubit gate - fall back to sequential application
1870                        eprintln!(
1871                            "Warning: {}-qubit gates not optimized for parallel execution",
1872                            qubits.len()
1873                        );
1874                    }
1875                }
1876            }
1877
1878            // Synchronize after task completion
1879            barrier.wait();
1880        });
1881
1882        // Collect results
1883        let final_state = shared_state
1884            .read()
1885            .expect("Failed to acquire read lock on shared state");
1886        let mut result_vec = results.lock().expect("Failed to acquire lock on results");
1887        result_vec.clone_from(&final_state);
1888
1889        Ok(())
1890    }
1891
1892    /// Apply a single-qubit gate to a state vector
1893    fn apply_single_qubit_gate_to_state(
1894        &self,
1895        state: &mut [Complex64],
1896        gate: &dyn GateOp,
1897        qubit: usize,
1898    ) {
1899        // Simplified single-qubit gate application
1900        // In a full implementation, this would extract the actual gate matrix
1901        // and apply it using optimized SIMD operations
1902
1903        let num_qubits = (state.len() as f64).log2() as usize;
1904        let stride = 1 << qubit;
1905
1906        // Process pairs of amplitudes
1907        for base in 0..state.len() {
1908            if (base & stride) == 0 {
1909                // This is the |0⟩ component for this qubit
1910                let idx0 = base;
1911                let idx1 = base | stride;
1912
1913                // Simple identity operation (placeholder)
1914                // In reality, would apply actual gate matrix
1915                let amp0 = state[idx0];
1916                let amp1 = state[idx1];
1917
1918                // Apply gate transformation (simplified as identity for now)
1919                state[idx0] = amp0;
1920                state[idx1] = amp1;
1921            }
1922        }
1923    }
1924
1925    /// Apply a two-qubit gate to a state vector
1926    fn apply_two_qubit_gate_to_state(
1927        &self,
1928        state: &mut [Complex64],
1929        gate: &dyn GateOp,
1930        qubit1: usize,
1931        qubit2: usize,
1932    ) {
1933        // Simplified two-qubit gate application
1934        // In a full implementation, this would apply the actual gate matrix
1935
1936        let num_qubits = (state.len() as f64).log2() as usize;
1937        let stride1 = 1 << qubit1;
1938        let stride2 = 1 << qubit2;
1939
1940        // Process quartets of amplitudes
1941        for base in 0..state.len() {
1942            if (base & stride1) == 0 && (base & stride2) == 0 {
1943                let idx00 = base;
1944                let idx01 = base | stride1;
1945                let idx10 = base | stride2;
1946                let idx11 = base | stride1 | stride2;
1947
1948                // Get current amplitudes
1949                let amp00 = state[idx00];
1950                let amp01 = state[idx01];
1951                let amp10 = state[idx10];
1952                let amp11 = state[idx11];
1953
1954                // Apply gate transformation (simplified as identity for now)
1955                state[idx00] = amp00;
1956                state[idx01] = amp01;
1957                state[idx10] = amp10;
1958                state[idx11] = amp11;
1959            }
1960        }
1961    }
1962
1963    /// Distribute tasks across cluster nodes
1964    fn distribute_tasks_across_nodes(
1965        &self,
1966        tasks: &[ParallelTask],
1967        distributed_sim: &DistributedQuantumSimulator,
1968    ) -> QuantRS2Result<Vec<Vec<ParallelTask>>> {
1969        // Implement intelligent task distribution based on node capabilities
1970        let cluster_status = distributed_sim.get_cluster_status();
1971        let num_nodes = cluster_status.len();
1972
1973        if num_nodes == 0 {
1974            return Ok(vec![tasks.to_vec()]);
1975        }
1976
1977        // Analyze node capabilities from cluster status
1978        let node_capacities = self.analyze_node_capabilities(&cluster_status);
1979
1980        // Sort tasks by cost (descending) for better load balancing
1981        let mut sorted_tasks: Vec<_> = tasks.to_vec();
1982        sorted_tasks.sort_by(|a, b| b.cost.partial_cmp(&a.cost).unwrap());
1983
1984        // Use a greedy bin-packing approach for task distribution
1985        let mut distributed_tasks = vec![Vec::new(); num_nodes];
1986        let mut node_loads = vec![0.0; num_nodes];
1987
1988        for task in sorted_tasks {
1989            // Find the node with the most capacity relative to its load
1990            let best_node = self.select_best_node_for_task(&task, &node_capacities, &node_loads);
1991
1992            // Assign task to the selected node
1993            distributed_tasks[best_node].push(task.clone());
1994            node_loads[best_node] += task.cost;
1995        }
1996
1997        // Rebalance if any node is significantly overloaded
1998        self.rebalance_node_distribution(
1999            &mut distributed_tasks,
2000            &node_capacities,
2001            &mut node_loads,
2002        )?;
2003
2004        Ok(distributed_tasks)
2005    }
2006
2007    /// Analyze node capabilities from cluster status
2008    fn analyze_node_capabilities(
2009        &self,
2010        cluster_status: &HashMap<Uuid, crate::distributed_simulator::NodeInfo>,
2011    ) -> Vec<NodeCapacity> {
2012        cluster_status
2013            .values()
2014            .map(|info| {
2015                // Extract capacity information from NodeInfo
2016                // Using reasonable defaults where information is not available
2017                NodeCapacity {
2018                    cpu_cores: 4,                 // Default: 4 cores
2019                    memory_gb: 16.0,              // Default: 16 GB
2020                    gpu_available: false,         // Default: no GPU
2021                    network_bandwidth_gbps: 10.0, // Default: 10 Gbps
2022                    relative_performance: 1.0,    // Default: normalized performance
2023                }
2024            })
2025            .collect()
2026    }
2027
2028    /// Select the best node for a given task
2029    fn select_best_node_for_task(
2030        &self,
2031        task: &ParallelTask,
2032        node_capacities: &[NodeCapacity],
2033        node_loads: &[f64],
2034    ) -> usize {
2035        let mut best_node = 0;
2036        let mut best_score = f64::NEG_INFINITY;
2037
2038        for (idx, capacity) in node_capacities.iter().enumerate() {
2039            // Calculate a score for this node based on:
2040            // 1. Available capacity (inversely proportional to current load)
2041            // 2. Node performance characteristics
2042            // 3. Task requirements
2043
2044            let load_factor = 1.0 - (node_loads[idx] / capacity.relative_performance).min(1.0);
2045            let memory_factor = if task.memory_requirement
2046                < (capacity.memory_gb * 1024.0 * 1024.0 * 1024.0) as usize
2047            {
2048                1.0
2049            } else {
2050                0.5 // Penalize if task might exceed memory
2051            };
2052
2053            let score = load_factor * capacity.relative_performance * memory_factor;
2054
2055            if score > best_score {
2056                best_score = score;
2057                best_node = idx;
2058            }
2059        }
2060
2061        best_node
2062    }
2063
2064    /// Rebalance task distribution if needed
2065    fn rebalance_node_distribution(
2066        &self,
2067        distributed_tasks: &mut [Vec<ParallelTask>],
2068        node_capacities: &[NodeCapacity],
2069        node_loads: &mut [f64],
2070    ) -> QuantRS2Result<()> {
2071        // Calculate average load
2072        let total_load: f64 = node_loads.iter().sum();
2073        let avg_load = total_load / node_loads.len() as f64;
2074
2075        // Find overloaded and underloaded nodes
2076        const IMBALANCE_THRESHOLD: f64 = 0.3; // 30% deviation threshold
2077
2078        for _ in 0..5 {
2079            // Maximum 5 rebalancing iterations
2080            let mut rebalanced = false;
2081
2082            // Find nodes that need rebalancing
2083            let heavy_nodes: Vec<usize> = node_loads
2084                .iter()
2085                .enumerate()
2086                .filter(|(_, load)| **load > avg_load * (1.0 + IMBALANCE_THRESHOLD))
2087                .map(|(idx, _)| idx)
2088                .collect();
2089
2090            let light_nodes: Vec<usize> = node_loads
2091                .iter()
2092                .enumerate()
2093                .filter(|(_, load)| **load < avg_load * (1.0 - IMBALANCE_THRESHOLD))
2094                .map(|(idx, _)| idx)
2095                .collect();
2096
2097            for &heavy_idx in &heavy_nodes {
2098                for &light_idx in &light_nodes {
2099                    if heavy_idx != light_idx {
2100                        // Try to move a task from heavy to light node
2101                        if let Some(task) = distributed_tasks[heavy_idx].pop() {
2102                            node_loads[heavy_idx] -= task.cost;
2103                            distributed_tasks[light_idx].push(task.clone());
2104                            node_loads[light_idx] += task.cost;
2105                            rebalanced = true;
2106                            break;
2107                        }
2108                    }
2109                }
2110                if rebalanced {
2111                    break;
2112                }
2113            }
2114
2115            if !rebalanced {
2116                break; // No more rebalancing possible
2117            }
2118        }
2119
2120        Ok(())
2121    }
2122
2123    /// Compute hash for circuit caching
2124    fn compute_circuit_hash<const N: usize>(&self, circuit: &Circuit<N>) -> u64 {
2125        use std::collections::hash_map::DefaultHasher;
2126        use std::hash::{Hash, Hasher};
2127
2128        let mut hasher = DefaultHasher::new();
2129
2130        // Hash circuit structure
2131        circuit.num_gates().hash(&mut hasher);
2132        circuit.num_qubits().hash(&mut hasher);
2133
2134        // Hash gate names (simplified)
2135        for gate in circuit.gates() {
2136            gate.name().hash(&mut hasher);
2137            gate.qubits().len().hash(&mut hasher);
2138        }
2139
2140        hasher.finish()
2141    }
2142
2143    /// Update performance statistics
2144    fn update_performance_stats(
2145        &self,
2146        execution_time: Duration,
2147        analysis: &ParallelizationAnalysis,
2148    ) {
2149        let mut stats = self.performance_stats.lock().unwrap();
2150        stats.circuits_processed += 1;
2151        stats.total_execution_time += execution_time;
2152        stats.average_efficiency = stats
2153            .average_efficiency
2154            .mul_add((stats.circuits_processed - 1) as f64, analysis.efficiency)
2155            / stats.circuits_processed as f64;
2156    }
2157}
2158
2159impl LoadBalancer {
2160    /// Create a new load balancer
2161    pub fn new(num_threads: usize) -> Self {
2162        Self {
2163            thread_loads: vec![0.0; num_threads],
2164            task_queues: vec![VecDeque::new(); num_threads],
2165            work_stealing_stats: WorkStealingStats::default(),
2166        }
2167    }
2168
2169    /// Balance load across threads
2170    pub fn balance_load(&mut self, tasks: Vec<ParallelTask>) -> Vec<Vec<ParallelTask>> {
2171        let mut balanced_tasks = vec![Vec::new(); self.thread_loads.len()];
2172
2173        // Simple round-robin distribution for now
2174        for (i, task) in tasks.into_iter().enumerate() {
2175            let thread_index = i % self.thread_loads.len();
2176            balanced_tasks[thread_index].push(task);
2177        }
2178
2179        balanced_tasks
2180    }
2181}
2182
2183/// Benchmark automatic parallelization performance
2184pub fn benchmark_automatic_parallelization<const N: usize>(
2185    circuits: Vec<Circuit<N>>,
2186    config: AutoParallelConfig,
2187) -> QuantRS2Result<AutoParallelBenchmarkResults> {
2188    let engine = AutoParallelEngine::new(config);
2189    let mut results = Vec::new();
2190    let start_time = Instant::now();
2191
2192    for circuit in circuits {
2193        let analysis_start = Instant::now();
2194        let analysis = engine.analyze_circuit(&circuit)?;
2195        let analysis_time = analysis_start.elapsed();
2196
2197        results.push(CircuitParallelResult {
2198            circuit_size: circuit.num_gates(),
2199            num_qubits: circuit.num_qubits(),
2200            analysis_time,
2201            efficiency: analysis.efficiency,
2202            max_parallelism: analysis.max_parallelism,
2203            num_tasks: analysis.tasks.len(),
2204        });
2205    }
2206
2207    let total_time = start_time.elapsed();
2208
2209    Ok(AutoParallelBenchmarkResults {
2210        total_time,
2211        average_efficiency: results.iter().map(|r| r.efficiency).sum::<f64>()
2212            / results.len() as f64,
2213        average_parallelism: results.iter().map(|r| r.max_parallelism).sum::<usize>()
2214            / results.len(),
2215        circuit_results: results,
2216    })
2217}
2218
2219/// Results from automatic parallelization benchmark
2220#[derive(Debug, Clone)]
2221pub struct AutoParallelBenchmarkResults {
2222    /// Total benchmark time
2223    pub total_time: Duration,
2224    /// Results for individual circuits
2225    pub circuit_results: Vec<CircuitParallelResult>,
2226    /// Average parallelization efficiency
2227    pub average_efficiency: f64,
2228    /// Average maximum parallelism
2229    pub average_parallelism: usize,
2230}
2231
2232/// Parallelization results for a single circuit
2233#[derive(Debug, Clone)]
2234pub struct CircuitParallelResult {
2235    /// Circuit size (number of gates)
2236    pub circuit_size: usize,
2237    /// Number of qubits
2238    pub num_qubits: usize,
2239    /// Time to analyze parallelization
2240    pub analysis_time: Duration,
2241    /// Parallelization efficiency
2242    pub efficiency: f64,
2243    /// Maximum parallelism achieved
2244    pub max_parallelism: usize,
2245    /// Number of parallel tasks generated
2246    pub num_tasks: usize,
2247}