pub struct ComplexSimdOps;
Expand description
High-performance complex arithmetic operations using SciRS2 SIMD
Implementations§
Source§impl ComplexSimdOps
impl ComplexSimdOps
Sourcepub fn complex_mul_simd(
a: &ComplexSimdVector,
b: &ComplexSimdVector,
c: &mut ComplexSimdVector,
)
pub fn complex_mul_simd( a: &ComplexSimdVector, b: &ComplexSimdVector, c: &mut ComplexSimdVector, )
Complex multiplication: c = a * b, vectorized
Sourcepub fn complex_add_simd(
a: &ComplexSimdVector,
b: &ComplexSimdVector,
c: &mut ComplexSimdVector,
)
pub fn complex_add_simd( a: &ComplexSimdVector, b: &ComplexSimdVector, c: &mut ComplexSimdVector, )
Complex addition: c = a + b, vectorized
Sourcepub fn complex_sub_simd(
a: &ComplexSimdVector,
b: &ComplexSimdVector,
c: &mut ComplexSimdVector,
)
pub fn complex_sub_simd( a: &ComplexSimdVector, b: &ComplexSimdVector, c: &mut ComplexSimdVector, )
Complex subtraction: c = a - b, vectorized
Sourcepub fn complex_scalar_mul_simd(
a: &ComplexSimdVector,
scalar: Complex64,
c: &mut ComplexSimdVector,
)
pub fn complex_scalar_mul_simd( a: &ComplexSimdVector, scalar: Complex64, c: &mut ComplexSimdVector, )
Scalar complex multiplication: c = a * scalar, vectorized
Sourcepub fn complex_conj_simd(a: &ComplexSimdVector, c: &mut ComplexSimdVector)
pub fn complex_conj_simd(a: &ComplexSimdVector, c: &mut ComplexSimdVector)
Complex conjugate: c = conj(a), vectorized
Sourcepub fn complex_norm_squared_simd(a: &ComplexSimdVector) -> Vec<f64>
pub fn complex_norm_squared_simd(a: &ComplexSimdVector) -> Vec<f64>
Complex magnitude squared: |a|^2, vectorized
Auto Trait Implementations§
impl Freeze for ComplexSimdOps
impl RefUnwindSafe for ComplexSimdOps
impl Send for ComplexSimdOps
impl Sync for ComplexSimdOps
impl Unpin for ComplexSimdOps
impl UnwindSafe for ComplexSimdOps
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.