quantrs2_ml/
few_shot.rs

1//! Quantum Few-Shot Learning
2//!
3//! This module implements quantum few-shot learning algorithms that enable quantum models
4//! to learn from very limited training examples. It includes support for meta-learning,
5//! prototypical networks, and metric learning approaches adapted for quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::kernels::QuantumKernel;
10use crate::optimization::OptimizationMethod;
11use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14    single::{RotationX, RotationY, RotationZ},
15    GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
19use scirs2_core::random::prelude::*;
20use scirs2_core::SliceRandomExt;
21use std::collections::HashMap;
22
23/// Few-shot learning algorithm types
24#[derive(Debug, Clone, Copy, PartialEq)]
25pub enum FewShotMethod {
26    /// Prototypical networks in quantum feature space
27    PrototypicalNetworks,
28
29    /// Model-Agnostic Meta-Learning (MAML) for quantum circuits
30    MAML { inner_steps: usize, inner_lr: f64 },
31
32    /// Metric learning with quantum kernels
33    MetricLearning,
34
35    /// Siamese networks with quantum encoders
36    SiameseNetworks,
37
38    /// Matching networks with quantum attention
39    MatchingNetworks,
40}
41
42/// Episode configuration for few-shot learning
43#[derive(Debug, Clone)]
44pub struct Episode {
45    /// Support set (few labeled examples per class)
46    pub support_set: Vec<(Array1<f64>, usize)>,
47
48    /// Query set (examples to classify)
49    pub query_set: Vec<(Array1<f64>, usize)>,
50
51    /// Number of classes in this episode (N-way)
52    pub num_classes: usize,
53
54    /// Number of examples per class in support set (K-shot)
55    pub k_shot: usize,
56}
57
58/// Quantum prototypical network for few-shot learning
59pub struct QuantumPrototypicalNetwork {
60    /// Quantum encoder network
61    encoder: QuantumNeuralNetwork,
62
63    /// Feature dimension in quantum space
64    feature_dim: usize,
65
66    /// Distance metric to use
67    distance_metric: DistanceMetric,
68}
69
70/// Distance metrics for prototype comparison
71#[derive(Debug, Clone, Copy)]
72pub enum DistanceMetric {
73    /// Euclidean distance in feature space
74    Euclidean,
75
76    /// Cosine similarity
77    Cosine,
78
79    /// Quantum kernel distance
80    QuantumKernel,
81}
82
83impl QuantumPrototypicalNetwork {
84    /// Create a new quantum prototypical network
85    pub fn new(
86        encoder: QuantumNeuralNetwork,
87        feature_dim: usize,
88        distance_metric: DistanceMetric,
89    ) -> Self {
90        Self {
91            encoder,
92            feature_dim,
93            distance_metric,
94        }
95    }
96
97    /// Encode data into quantum feature space
98    pub fn encode(&self, data: &Array1<f64>) -> Result<Array1<f64>> {
99        // Placeholder - would use quantum circuit for encoding
100        let features = self.extract_features_placeholder()?;
101
102        Ok(features)
103    }
104
105    /// Extract features from quantum state (placeholder)
106    fn extract_features_placeholder(&self) -> Result<Array1<f64>> {
107        // Placeholder - would measure specific observables
108        let features = Array1::zeros(self.feature_dim);
109        Ok(features)
110    }
111
112    /// Compute prototype for a class from support examples
113    pub fn compute_prototype(&self, support_examples: &[Array1<f64>]) -> Result<Array1<f64>> {
114        let mut prototype = Array1::zeros(self.feature_dim);
115
116        // Encode and average support examples
117        for example in support_examples {
118            let encoded = self.encode(example)?;
119            prototype = prototype + encoded;
120        }
121
122        prototype = prototype / support_examples.len() as f64;
123        Ok(prototype)
124    }
125
126    /// Classify query example based on prototypes
127    pub fn classify(&self, query: &Array1<f64>, prototypes: &[Array1<f64>]) -> Result<usize> {
128        let query_encoded = self.encode(query)?;
129
130        // Find nearest prototype
131        let mut min_distance = f64::INFINITY;
132        let mut predicted_class = 0;
133
134        for (class_idx, prototype) in prototypes.iter().enumerate() {
135            let distance = match self.distance_metric {
136                DistanceMetric::Euclidean => {
137                    (&query_encoded - prototype).mapv(|x| x * x).sum().sqrt()
138                }
139                DistanceMetric::Cosine => {
140                    let dot = (&query_encoded * prototype).sum();
141                    let norm_q = query_encoded.mapv(|x| x * x).sum().sqrt();
142                    let norm_p = prototype.mapv(|x| x * x).sum().sqrt();
143                    1.0 - dot / (norm_q * norm_p + 1e-8)
144                }
145                DistanceMetric::QuantumKernel => {
146                    // Use quantum kernel distance
147                    self.quantum_distance(&query_encoded, prototype)?
148                }
149            };
150
151            if distance < min_distance {
152                min_distance = distance;
153                predicted_class = class_idx;
154            }
155        }
156
157        Ok(predicted_class)
158    }
159
160    /// Compute quantum kernel distance
161    fn quantum_distance(&self, x: &Array1<f64>, y: &Array1<f64>) -> Result<f64> {
162        // Placeholder - would compute quantum kernel
163        Ok((x - y).mapv(|v| v * v).sum().sqrt())
164    }
165
166    /// Train on an episode
167    pub fn train_episode(
168        &mut self,
169        episode: &Episode,
170        optimizer: &mut dyn Optimizer,
171    ) -> Result<f64> {
172        // Compute prototypes for each class
173        let mut prototypes = Vec::new();
174        let mut class_examples = HashMap::new();
175
176        // Group support examples by class
177        for (data, label) in &episode.support_set {
178            class_examples
179                .entry(*label)
180                .or_insert(Vec::new())
181                .push(data.clone());
182        }
183
184        // Compute prototype for each class
185        for class_id in 0..episode.num_classes {
186            if let Some(examples) = class_examples.get(&class_id) {
187                let prototype = self.compute_prototype(examples)?;
188                prototypes.push(prototype);
189            }
190        }
191
192        // Evaluate on query set
193        let mut correct = 0;
194        let mut total_loss = 0.0;
195
196        for (query, true_label) in &episode.query_set {
197            let predicted = self.classify(query, &prototypes)?;
198
199            if predicted == *true_label {
200                correct += 1;
201            }
202
203            // Compute loss
204            let query_encoded = self.encode(query)?;
205            let loss = self.prototypical_loss(&query_encoded, &prototypes, *true_label)?;
206            total_loss += loss;
207        }
208
209        let accuracy = correct as f64 / episode.query_set.len() as f64;
210        let avg_loss = total_loss / episode.query_set.len() as f64;
211
212        // Update encoder parameters
213        self.update_parameters(optimizer, avg_loss)?;
214
215        Ok(accuracy)
216    }
217
218    /// Compute prototypical loss
219    fn prototypical_loss(
220        &self,
221        query: &Array1<f64>,
222        prototypes: &[Array1<f64>],
223        true_label: usize,
224    ) -> Result<f64> {
225        let mut distances = Vec::new();
226
227        // Compute distances to all prototypes
228        for prototype in prototypes {
229            let distance = match self.distance_metric {
230                DistanceMetric::Euclidean => (query - prototype).mapv(|x| x * x).sum(),
231                _ => {
232                    // Other metrics
233                    (query - prototype).mapv(|x| x * x).sum()
234                }
235            };
236            distances.push(-distance); // Negative for softmax
237        }
238
239        // Softmax and cross-entropy loss
240        let max_val = distances.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
241        let exp_sum: f64 = distances.iter().map(|&d| (d - max_val).exp()).sum();
242        let log_prob = distances[true_label] - max_val - exp_sum.ln();
243
244        Ok(-log_prob)
245    }
246
247    /// Update encoder parameters
248    fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
249        // Placeholder - would compute gradients and update
250        Ok(())
251    }
252}
253
254/// Quantum MAML for few-shot learning
255pub struct QuantumMAML {
256    /// Base quantum model
257    model: QuantumNeuralNetwork,
258
259    /// Inner loop learning rate
260    inner_lr: f64,
261
262    /// Number of inner loop steps
263    inner_steps: usize,
264
265    /// Task-specific parameters
266    task_params: HashMap<String, Array1<f64>>,
267}
268
269impl QuantumMAML {
270    /// Create a new Quantum MAML instance
271    pub fn new(model: QuantumNeuralNetwork, inner_lr: f64, inner_steps: usize) -> Self {
272        Self {
273            model,
274            inner_lr,
275            inner_steps,
276            task_params: HashMap::new(),
277        }
278    }
279
280    /// Inner loop adaptation for a specific task
281    pub fn adapt_to_task(
282        &mut self,
283        support_set: &[(Array1<f64>, usize)],
284        task_id: &str,
285    ) -> Result<()> {
286        // Clone current parameters
287        let mut adapted_params = self.model.parameters.clone();
288
289        // Perform inner loop updates
290        for _ in 0..self.inner_steps {
291            // Compute gradients on support set
292            let gradients = self.compute_task_gradients(support_set, &adapted_params)?;
293
294            // Update parameters
295            adapted_params = adapted_params - self.inner_lr * &gradients;
296        }
297
298        // Store task-specific parameters
299        self.task_params.insert(task_id.to_string(), adapted_params);
300
301        Ok(())
302    }
303
304    /// Compute gradients for a specific task
305    fn compute_task_gradients(
306        &self,
307        support_set: &[(Array1<f64>, usize)],
308        params: &Array1<f64>,
309    ) -> Result<Array1<f64>> {
310        // Placeholder - would compute actual quantum gradients
311        Ok(Array1::zeros(params.len()))
312    }
313
314    /// Predict using task-adapted parameters
315    pub fn predict_adapted(&self, query: &Array1<f64>, task_id: &str) -> Result<usize> {
316        let params = self
317            .task_params
318            .get(task_id)
319            .ok_or(MLError::ModelCreationError("Task not adapted".to_string()))?;
320
321        // Use adapted parameters for prediction
322        // Placeholder implementation
323        Ok(0)
324    }
325
326    /// Meta-train on multiple tasks
327    pub fn meta_train(
328        &mut self,
329        tasks: &[Episode],
330        meta_optimizer: &mut dyn Optimizer,
331        meta_epochs: usize,
332    ) -> Result<Vec<f64>> {
333        let mut meta_losses = Vec::new();
334
335        for epoch in 0..meta_epochs {
336            let mut epoch_loss = 0.0;
337
338            for (task_idx, episode) in tasks.iter().enumerate() {
339                let task_id = format!("task_{}", task_idx);
340
341                // Inner loop: adapt to task
342                self.adapt_to_task(&episode.support_set, &task_id)?;
343
344                // Outer loop: evaluate on query set
345                let mut task_loss = 0.0;
346                for (query, label) in &episode.query_set {
347                    let predicted = self.predict_adapted(query, &task_id)?;
348                    task_loss += if predicted == *label { 0.0 } else { 1.0 };
349                }
350
351                epoch_loss += task_loss / episode.query_set.len() as f64;
352            }
353
354            // Meta-update
355            let meta_loss = epoch_loss / tasks.len() as f64;
356            meta_losses.push(meta_loss);
357
358            // Update base model parameters
359            self.meta_update(meta_optimizer, meta_loss)?;
360        }
361
362        Ok(meta_losses)
363    }
364
365    /// Perform meta-update on base model
366    fn meta_update(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
367        // Placeholder - would compute meta-gradients
368        Ok(())
369    }
370}
371
372/// Few-shot learning manager
373pub struct FewShotLearner {
374    /// Learning method
375    method: FewShotMethod,
376
377    /// Base model
378    model: QuantumNeuralNetwork,
379
380    /// Training history
381    history: Vec<f64>,
382}
383
384impl FewShotLearner {
385    /// Create a new few-shot learner
386    pub fn new(method: FewShotMethod, model: QuantumNeuralNetwork) -> Self {
387        Self {
388            method,
389            model,
390            history: Vec::new(),
391        }
392    }
393
394    /// Generate episode from dataset
395    pub fn generate_episode(
396        data: &Array2<f64>,
397        labels: &Array1<usize>,
398        num_classes: usize,
399        k_shot: usize,
400        query_per_class: usize,
401    ) -> Result<Episode> {
402        let mut support_set = Vec::new();
403        let mut query_set = Vec::new();
404
405        // Sample classes
406        let selected_classes: Vec<usize> = (0..num_classes).collect();
407
408        for class_id in selected_classes {
409            // Find all examples of this class
410            let class_indices: Vec<usize> = labels
411                .iter()
412                .enumerate()
413                .filter(|(_, &l)| l == class_id)
414                .map(|(i, _)| i)
415                .collect();
416
417            if class_indices.len() < k_shot + query_per_class {
418                return Err(MLError::ModelCreationError(format!(
419                    "Not enough examples for class {}",
420                    class_id
421                )));
422            }
423
424            // Sample support and query examples
425            let mut rng = thread_rng();
426            let mut shuffled = class_indices.clone();
427            shuffled.shuffle(&mut rng);
428
429            // Support set
430            for i in 0..k_shot {
431                let idx = shuffled[i];
432                support_set.push((data.row(idx).to_owned(), class_id));
433            }
434
435            // Query set
436            for i in k_shot..(k_shot + query_per_class) {
437                let idx = shuffled[i];
438                query_set.push((data.row(idx).to_owned(), class_id));
439            }
440        }
441
442        Ok(Episode {
443            support_set,
444            query_set,
445            num_classes,
446            k_shot,
447        })
448    }
449
450    /// Train the few-shot learner
451    pub fn train(
452        &mut self,
453        episodes: &[Episode],
454        optimizer: &mut dyn Optimizer,
455        epochs: usize,
456    ) -> Result<Vec<f64>> {
457        match self.method {
458            FewShotMethod::PrototypicalNetworks => {
459                let mut proto_net = QuantumPrototypicalNetwork::new(
460                    self.model.clone(),
461                    16, // feature dimension
462                    DistanceMetric::Euclidean,
463                );
464
465                for epoch in 0..epochs {
466                    let mut epoch_acc = 0.0;
467
468                    for episode in episodes {
469                        let acc = proto_net.train_episode(episode, optimizer)?;
470                        epoch_acc += acc;
471                    }
472
473                    let avg_acc = epoch_acc / episodes.len() as f64;
474                    self.history.push(avg_acc);
475                }
476            }
477            FewShotMethod::MAML {
478                inner_steps,
479                inner_lr,
480            } => {
481                let mut maml = QuantumMAML::new(self.model.clone(), inner_lr, inner_steps);
482
483                let losses = maml.meta_train(episodes, optimizer, epochs)?;
484                self.history.extend(losses);
485            }
486            _ => {
487                return Err(MLError::ModelCreationError(
488                    "Method not implemented".to_string(),
489                ));
490            }
491        }
492
493        Ok(self.history.clone())
494    }
495}
496
497#[cfg(test)]
498mod tests {
499    use super::*;
500    use crate::autodiff::optimizers::Adam;
501    use crate::qnn::QNNLayerType;
502
503    #[test]
504    fn test_episode_generation() {
505        let num_samples = 100;
506        let num_features = 4;
507        let num_classes = 5;
508
509        // Generate synthetic data
510        let data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
511            (i as f64 * 0.1 + j as f64 * 0.2).sin()
512        });
513        let labels = Array1::from_shape_fn(num_samples, |i| i % num_classes);
514
515        // Generate episode
516        let episode = FewShotLearner::generate_episode(
517            &data, &labels, 3, // 3-way
518            5, // 5-shot
519            5, // 5 query per class
520        )
521        .expect("Episode generation should succeed");
522
523        assert_eq!(episode.num_classes, 3);
524        assert_eq!(episode.k_shot, 5);
525        assert_eq!(episode.support_set.len(), 15); // 3 classes * 5 shots
526        assert_eq!(episode.query_set.len(), 15); // 3 classes * 5 queries
527    }
528
529    #[test]
530    fn test_prototypical_network() {
531        let layers = vec![
532            QNNLayerType::EncodingLayer { num_features: 4 },
533            QNNLayerType::VariationalLayer { num_params: 8 },
534            QNNLayerType::MeasurementLayer {
535                measurement_basis: "computational".to_string(),
536            },
537        ];
538
539        let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).expect("Failed to create QNN");
540        let proto_net = QuantumPrototypicalNetwork::new(qnn, 8, DistanceMetric::Euclidean);
541
542        // Test encoding
543        let data = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
544        let encoded = proto_net.encode(&data).expect("Encoding should succeed");
545        assert_eq!(encoded.len(), 8);
546
547        // Test prototype computation
548        let examples = vec![
549            Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]),
550            Array1::from_vec(vec![0.2, 0.3, 0.4, 0.5]),
551        ];
552        let prototype = proto_net
553            .compute_prototype(&examples)
554            .expect("Prototype computation should succeed");
555        assert_eq!(prototype.len(), 8);
556    }
557
558    #[test]
559    fn test_maml_adaptation() {
560        let layers = vec![
561            QNNLayerType::EncodingLayer { num_features: 4 },
562            QNNLayerType::VariationalLayer { num_params: 6 },
563        ];
564
565        let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).expect("Failed to create QNN");
566        let mut maml = QuantumMAML::new(qnn, 0.01, 5);
567
568        // Create support set
569        let support_set = vec![
570            (Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]), 0),
571            (Array1::from_vec(vec![0.5, 0.6, 0.7, 0.8]), 1),
572        ];
573
574        // Adapt to task
575        maml.adapt_to_task(&support_set, "test_task")
576            .expect("Task adaptation should succeed");
577
578        // Check that task parameters were stored
579        assert!(maml.task_params.contains_key("test_task"));
580    }
581}