1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::kernels::QuantumKernel;
10use crate::optimization::OptimizationMethod;
11use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14 single::{RotationX, RotationY, RotationZ},
15 GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
19use scirs2_core::random::prelude::*;
20use scirs2_core::SliceRandomExt;
21use std::collections::HashMap;
22
23#[derive(Debug, Clone, Copy, PartialEq)]
25pub enum FewShotMethod {
26 PrototypicalNetworks,
28
29 MAML { inner_steps: usize, inner_lr: f64 },
31
32 MetricLearning,
34
35 SiameseNetworks,
37
38 MatchingNetworks,
40}
41
42#[derive(Debug, Clone)]
44pub struct Episode {
45 pub support_set: Vec<(Array1<f64>, usize)>,
47
48 pub query_set: Vec<(Array1<f64>, usize)>,
50
51 pub num_classes: usize,
53
54 pub k_shot: usize,
56}
57
58pub struct QuantumPrototypicalNetwork {
60 encoder: QuantumNeuralNetwork,
62
63 feature_dim: usize,
65
66 distance_metric: DistanceMetric,
68}
69
70#[derive(Debug, Clone, Copy)]
72pub enum DistanceMetric {
73 Euclidean,
75
76 Cosine,
78
79 QuantumKernel,
81}
82
83impl QuantumPrototypicalNetwork {
84 pub fn new(
86 encoder: QuantumNeuralNetwork,
87 feature_dim: usize,
88 distance_metric: DistanceMetric,
89 ) -> Self {
90 Self {
91 encoder,
92 feature_dim,
93 distance_metric,
94 }
95 }
96
97 pub fn encode(&self, data: &Array1<f64>) -> Result<Array1<f64>> {
99 let features = self.extract_features_placeholder()?;
101
102 Ok(features)
103 }
104
105 fn extract_features_placeholder(&self) -> Result<Array1<f64>> {
107 let features = Array1::zeros(self.feature_dim);
109 Ok(features)
110 }
111
112 pub fn compute_prototype(&self, support_examples: &[Array1<f64>]) -> Result<Array1<f64>> {
114 let mut prototype = Array1::zeros(self.feature_dim);
115
116 for example in support_examples {
118 let encoded = self.encode(example)?;
119 prototype = prototype + encoded;
120 }
121
122 prototype = prototype / support_examples.len() as f64;
123 Ok(prototype)
124 }
125
126 pub fn classify(&self, query: &Array1<f64>, prototypes: &[Array1<f64>]) -> Result<usize> {
128 let query_encoded = self.encode(query)?;
129
130 let mut min_distance = f64::INFINITY;
132 let mut predicted_class = 0;
133
134 for (class_idx, prototype) in prototypes.iter().enumerate() {
135 let distance = match self.distance_metric {
136 DistanceMetric::Euclidean => {
137 (&query_encoded - prototype).mapv(|x| x * x).sum().sqrt()
138 }
139 DistanceMetric::Cosine => {
140 let dot = (&query_encoded * prototype).sum();
141 let norm_q = query_encoded.mapv(|x| x * x).sum().sqrt();
142 let norm_p = prototype.mapv(|x| x * x).sum().sqrt();
143 1.0 - dot / (norm_q * norm_p + 1e-8)
144 }
145 DistanceMetric::QuantumKernel => {
146 self.quantum_distance(&query_encoded, prototype)?
148 }
149 };
150
151 if distance < min_distance {
152 min_distance = distance;
153 predicted_class = class_idx;
154 }
155 }
156
157 Ok(predicted_class)
158 }
159
160 fn quantum_distance(&self, x: &Array1<f64>, y: &Array1<f64>) -> Result<f64> {
162 Ok((x - y).mapv(|v| v * v).sum().sqrt())
164 }
165
166 pub fn train_episode(
168 &mut self,
169 episode: &Episode,
170 optimizer: &mut dyn Optimizer,
171 ) -> Result<f64> {
172 let mut prototypes = Vec::new();
174 let mut class_examples = HashMap::new();
175
176 for (data, label) in &episode.support_set {
178 class_examples
179 .entry(*label)
180 .or_insert(Vec::new())
181 .push(data.clone());
182 }
183
184 for class_id in 0..episode.num_classes {
186 if let Some(examples) = class_examples.get(&class_id) {
187 let prototype = self.compute_prototype(examples)?;
188 prototypes.push(prototype);
189 }
190 }
191
192 let mut correct = 0;
194 let mut total_loss = 0.0;
195
196 for (query, true_label) in &episode.query_set {
197 let predicted = self.classify(query, &prototypes)?;
198
199 if predicted == *true_label {
200 correct += 1;
201 }
202
203 let query_encoded = self.encode(query)?;
205 let loss = self.prototypical_loss(&query_encoded, &prototypes, *true_label)?;
206 total_loss += loss;
207 }
208
209 let accuracy = correct as f64 / episode.query_set.len() as f64;
210 let avg_loss = total_loss / episode.query_set.len() as f64;
211
212 self.update_parameters(optimizer, avg_loss)?;
214
215 Ok(accuracy)
216 }
217
218 fn prototypical_loss(
220 &self,
221 query: &Array1<f64>,
222 prototypes: &[Array1<f64>],
223 true_label: usize,
224 ) -> Result<f64> {
225 let mut distances = Vec::new();
226
227 for prototype in prototypes {
229 let distance = match self.distance_metric {
230 DistanceMetric::Euclidean => (query - prototype).mapv(|x| x * x).sum(),
231 _ => {
232 (query - prototype).mapv(|x| x * x).sum()
234 }
235 };
236 distances.push(-distance); }
238
239 let max_val = distances.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
241 let exp_sum: f64 = distances.iter().map(|&d| (d - max_val).exp()).sum();
242 let log_prob = distances[true_label] - max_val - exp_sum.ln();
243
244 Ok(-log_prob)
245 }
246
247 fn update_parameters(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
249 Ok(())
251 }
252}
253
254pub struct QuantumMAML {
256 model: QuantumNeuralNetwork,
258
259 inner_lr: f64,
261
262 inner_steps: usize,
264
265 task_params: HashMap<String, Array1<f64>>,
267}
268
269impl QuantumMAML {
270 pub fn new(model: QuantumNeuralNetwork, inner_lr: f64, inner_steps: usize) -> Self {
272 Self {
273 model,
274 inner_lr,
275 inner_steps,
276 task_params: HashMap::new(),
277 }
278 }
279
280 pub fn adapt_to_task(
282 &mut self,
283 support_set: &[(Array1<f64>, usize)],
284 task_id: &str,
285 ) -> Result<()> {
286 let mut adapted_params = self.model.parameters.clone();
288
289 for _ in 0..self.inner_steps {
291 let gradients = self.compute_task_gradients(support_set, &adapted_params)?;
293
294 adapted_params = adapted_params - self.inner_lr * &gradients;
296 }
297
298 self.task_params.insert(task_id.to_string(), adapted_params);
300
301 Ok(())
302 }
303
304 fn compute_task_gradients(
306 &self,
307 support_set: &[(Array1<f64>, usize)],
308 params: &Array1<f64>,
309 ) -> Result<Array1<f64>> {
310 Ok(Array1::zeros(params.len()))
312 }
313
314 pub fn predict_adapted(&self, query: &Array1<f64>, task_id: &str) -> Result<usize> {
316 let params = self
317 .task_params
318 .get(task_id)
319 .ok_or(MLError::ModelCreationError("Task not adapted".to_string()))?;
320
321 Ok(0)
324 }
325
326 pub fn meta_train(
328 &mut self,
329 tasks: &[Episode],
330 meta_optimizer: &mut dyn Optimizer,
331 meta_epochs: usize,
332 ) -> Result<Vec<f64>> {
333 let mut meta_losses = Vec::new();
334
335 for epoch in 0..meta_epochs {
336 let mut epoch_loss = 0.0;
337
338 for (task_idx, episode) in tasks.iter().enumerate() {
339 let task_id = format!("task_{}", task_idx);
340
341 self.adapt_to_task(&episode.support_set, &task_id)?;
343
344 let mut task_loss = 0.0;
346 for (query, label) in &episode.query_set {
347 let predicted = self.predict_adapted(query, &task_id)?;
348 task_loss += if predicted == *label { 0.0 } else { 1.0 };
349 }
350
351 epoch_loss += task_loss / episode.query_set.len() as f64;
352 }
353
354 let meta_loss = epoch_loss / tasks.len() as f64;
356 meta_losses.push(meta_loss);
357
358 self.meta_update(meta_optimizer, meta_loss)?;
360 }
361
362 Ok(meta_losses)
363 }
364
365 fn meta_update(&mut self, optimizer: &mut dyn Optimizer, loss: f64) -> Result<()> {
367 Ok(())
369 }
370}
371
372pub struct FewShotLearner {
374 method: FewShotMethod,
376
377 model: QuantumNeuralNetwork,
379
380 history: Vec<f64>,
382}
383
384impl FewShotLearner {
385 pub fn new(method: FewShotMethod, model: QuantumNeuralNetwork) -> Self {
387 Self {
388 method,
389 model,
390 history: Vec::new(),
391 }
392 }
393
394 pub fn generate_episode(
396 data: &Array2<f64>,
397 labels: &Array1<usize>,
398 num_classes: usize,
399 k_shot: usize,
400 query_per_class: usize,
401 ) -> Result<Episode> {
402 let mut support_set = Vec::new();
403 let mut query_set = Vec::new();
404
405 let selected_classes: Vec<usize> = (0..num_classes).collect();
407
408 for class_id in selected_classes {
409 let class_indices: Vec<usize> = labels
411 .iter()
412 .enumerate()
413 .filter(|(_, &l)| l == class_id)
414 .map(|(i, _)| i)
415 .collect();
416
417 if class_indices.len() < k_shot + query_per_class {
418 return Err(MLError::ModelCreationError(format!(
419 "Not enough examples for class {}",
420 class_id
421 )));
422 }
423
424 let mut rng = thread_rng();
426 let mut shuffled = class_indices.clone();
427 shuffled.shuffle(&mut rng);
428
429 for i in 0..k_shot {
431 let idx = shuffled[i];
432 support_set.push((data.row(idx).to_owned(), class_id));
433 }
434
435 for i in k_shot..(k_shot + query_per_class) {
437 let idx = shuffled[i];
438 query_set.push((data.row(idx).to_owned(), class_id));
439 }
440 }
441
442 Ok(Episode {
443 support_set,
444 query_set,
445 num_classes,
446 k_shot,
447 })
448 }
449
450 pub fn train(
452 &mut self,
453 episodes: &[Episode],
454 optimizer: &mut dyn Optimizer,
455 epochs: usize,
456 ) -> Result<Vec<f64>> {
457 match self.method {
458 FewShotMethod::PrototypicalNetworks => {
459 let mut proto_net = QuantumPrototypicalNetwork::new(
460 self.model.clone(),
461 16, DistanceMetric::Euclidean,
463 );
464
465 for epoch in 0..epochs {
466 let mut epoch_acc = 0.0;
467
468 for episode in episodes {
469 let acc = proto_net.train_episode(episode, optimizer)?;
470 epoch_acc += acc;
471 }
472
473 let avg_acc = epoch_acc / episodes.len() as f64;
474 self.history.push(avg_acc);
475 }
476 }
477 FewShotMethod::MAML {
478 inner_steps,
479 inner_lr,
480 } => {
481 let mut maml = QuantumMAML::new(self.model.clone(), inner_lr, inner_steps);
482
483 let losses = maml.meta_train(episodes, optimizer, epochs)?;
484 self.history.extend(losses);
485 }
486 _ => {
487 return Err(MLError::ModelCreationError(
488 "Method not implemented".to_string(),
489 ));
490 }
491 }
492
493 Ok(self.history.clone())
494 }
495}
496
497#[cfg(test)]
498mod tests {
499 use super::*;
500 use crate::autodiff::optimizers::Adam;
501 use crate::qnn::QNNLayerType;
502
503 #[test]
504 fn test_episode_generation() {
505 let num_samples = 100;
506 let num_features = 4;
507 let num_classes = 5;
508
509 let data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
511 (i as f64 * 0.1 + j as f64 * 0.2).sin()
512 });
513 let labels = Array1::from_shape_fn(num_samples, |i| i % num_classes);
514
515 let episode = FewShotLearner::generate_episode(
517 &data, &labels, 3, 5, 5, )
521 .expect("Episode generation should succeed");
522
523 assert_eq!(episode.num_classes, 3);
524 assert_eq!(episode.k_shot, 5);
525 assert_eq!(episode.support_set.len(), 15); assert_eq!(episode.query_set.len(), 15); }
528
529 #[test]
530 fn test_prototypical_network() {
531 let layers = vec![
532 QNNLayerType::EncodingLayer { num_features: 4 },
533 QNNLayerType::VariationalLayer { num_params: 8 },
534 QNNLayerType::MeasurementLayer {
535 measurement_basis: "computational".to_string(),
536 },
537 ];
538
539 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).expect("Failed to create QNN");
540 let proto_net = QuantumPrototypicalNetwork::new(qnn, 8, DistanceMetric::Euclidean);
541
542 let data = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
544 let encoded = proto_net.encode(&data).expect("Encoding should succeed");
545 assert_eq!(encoded.len(), 8);
546
547 let examples = vec![
549 Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]),
550 Array1::from_vec(vec![0.2, 0.3, 0.4, 0.5]),
551 ];
552 let prototype = proto_net
553 .compute_prototype(&examples)
554 .expect("Prototype computation should succeed");
555 assert_eq!(prototype.len(), 8);
556 }
557
558 #[test]
559 fn test_maml_adaptation() {
560 let layers = vec![
561 QNNLayerType::EncodingLayer { num_features: 4 },
562 QNNLayerType::VariationalLayer { num_params: 6 },
563 ];
564
565 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2).expect("Failed to create QNN");
566 let mut maml = QuantumMAML::new(qnn, 0.01, 5);
567
568 let support_set = vec![
570 (Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]), 0),
571 (Array1::from_vec(vec![0.5, 0.6, 0.7, 0.8]), 1),
572 ];
573
574 maml.adapt_to_task(&support_set, "test_task")
576 .expect("Task adaptation should succeed");
577
578 assert!(maml.task_params.contains_key("test_task"));
580 }
581}