pub struct SciRS2Serializer;Expand description
SciRS2 model serialization interface
Implementations§
Source§impl SciRS2Serializer
impl SciRS2Serializer
Sourcepub fn save_model(
params: &HashMap<String, SciRS2Array>,
path: &str,
) -> Result<()>
pub fn save_model( params: &HashMap<String, SciRS2Array>, path: &str, ) -> Result<()>
Serialize model parameters to SciRS2 format
Examples found in repository?
examples/scirs2_distributed_demo.rs (lines 246-249)
14fn main() -> Result<()> {
15 println!("=== SciRS2 Distributed Training Demo ===\n");
16
17 // Step 1: Initialize SciRS2 distributed environment
18 println!("1. Initializing SciRS2 distributed environment...");
19
20 let distributed_trainer = SciRS2DistributedTrainer::new(
21 4, // world_size
22 0, // rank
23 );
24
25 println!(" - Workers: 4");
26 println!(" - Backend: {}", distributed_trainer.backend);
27 println!(" - World size: {}", distributed_trainer.world_size);
28
29 // Step 2: Create SciRS2 tensors and arrays
30 println!("\n2. Creating SciRS2 tensors and arrays...");
31
32 let data_shape = (1000, 8);
33 let mut scirs2_array =
34 SciRS2Array::new(ArrayD::zeros(IxDyn(&[data_shape.0, data_shape.1])), true);
35 scirs2_array.requires_grad = true;
36
37 // Placeholder for quantum-friendly data initialization
38 // scirs2_array.fill_quantum_data("quantum_normal", 42)?; // would be implemented
39
40 println!(" - Array shape: {:?}", scirs2_array.shape());
41 println!(" - Requires grad: {}", scirs2_array.requires_grad);
42 println!(" - Device: CPU"); // Placeholder
43
44 // Create SciRS2 tensor for quantum parameters
45 let param_data = ArrayD::zeros(IxDyn(&[4, 6])); // 4 qubits, 6 parameters per qubit
46 let mut quantum_params = SciRS2Array::new(param_data, true);
47
48 // Placeholder for quantum parameter initialization
49 // quantum_params.quantum_parameter_init("quantum_aware")?; // would be implemented
50
51 println!(
52 " - Quantum parameters shape: {:?}",
53 quantum_params.data.shape()
54 );
55 println!(
56 " - Parameter range: [{:.4}, {:.4}]",
57 quantum_params
58 .data
59 .iter()
60 .fold(f64::INFINITY, |a, &b| a.min(b)),
61 quantum_params
62 .data
63 .iter()
64 .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
65 );
66
67 // Step 3: Setup distributed quantum model
68 println!("\n3. Setting up distributed quantum model...");
69
70 let quantum_model = create_distributed_quantum_model(&quantum_params)?;
71
72 // Wrap model for distributed training
73 let distributed_model = distributed_trainer.wrap_model(quantum_model)?;
74
75 println!(
76 " - Model parameters: {}",
77 distributed_model.num_parameters()
78 );
79 println!(" - Distributed: {}", distributed_model.is_distributed());
80
81 // Step 4: Create SciRS2 optimizers
82 println!("\n4. Configuring SciRS2 optimizers...");
83
84 let optimizer = SciRS2Optimizer::new("adam");
85
86 // Configure distributed optimizer
87 let mut distributed_optimizer = distributed_trainer.wrap_model(optimizer)?;
88
89 println!(" - Optimizer: Adam with SciRS2 backend");
90 println!(" - Learning rate: 0.001"); // Placeholder
91 println!(" - Distributed synchronization: enabled");
92
93 // Step 5: Distributed data loading
94 println!("\n5. Setting up distributed data loading...");
95
96 let dataset = create_large_quantum_dataset(10000, 8)?;
97 println!(" - Dataset created with {} samples", dataset.size);
98 println!(" - Distributed sampling configured");
99
100 // Create data loader
101 let mut data_loader = SciRS2DataLoader::new(dataset, 64);
102
103 println!(" - Total dataset size: {}", data_loader.dataset.size);
104 println!(" - Local batches per worker: 156"); // placeholder
105 println!(" - Global batch size: 64"); // placeholder
106
107 // Step 6: Distributed training loop
108 println!("\n6. Starting distributed training...");
109
110 let num_epochs = 10;
111 let mut training_metrics = SciRS2TrainingMetrics::new();
112
113 for epoch in 0..num_epochs {
114 // distributed_trainer.barrier()?; // Synchronize all workers - placeholder
115
116 let mut epoch_loss = 0.0;
117 let mut num_batches = 0;
118
119 for (batch_idx, (data, targets)) in data_loader.enumerate() {
120 // Convert to SciRS2 tensors
121 let data_tensor = data.clone();
122 let target_tensor = targets.clone();
123
124 // Zero gradients
125 // distributed_optimizer.zero_grad()?; // placeholder
126
127 // Forward pass
128 let outputs = distributed_model.forward(&data_tensor)?;
129 let loss = compute_quantum_loss(&outputs, &target_tensor)?;
130
131 // Backward pass with automatic differentiation
132 // loss.backward()?; // placeholder
133
134 // Gradient synchronization across workers
135 // distributed_trainer.all_reduce_gradients(&distributed_model)?; // placeholder
136
137 // Optimizer step
138 // distributed_optimizer.step()?; // placeholder
139
140 epoch_loss += loss.data.iter().sum::<f64>();
141 num_batches += 1;
142
143 if batch_idx % 10 == 0 {
144 println!(
145 " Epoch {}, Batch {}: loss = {:.6}",
146 epoch,
147 batch_idx,
148 loss.data.iter().sum::<f64>()
149 );
150 }
151 }
152
153 // Collect metrics across all workers
154 let avg_loss = distributed_trainer.all_reduce_scalar(epoch_loss / num_batches as f64)?;
155 training_metrics.record_epoch(epoch, avg_loss);
156
157 println!(" Epoch {} completed: avg_loss = {:.6}", epoch, avg_loss);
158 }
159
160 // Step 7: Distributed evaluation
161 println!("\n7. Distributed model evaluation...");
162
163 let test_dataset = create_test_quantum_dataset(2000, 8)?;
164 // let test_sampler = distributed_trainer.create_sampler(&test_dataset)?; // placeholder
165 println!(
166 " - Test dataset configured with {} samples",
167 test_dataset.size
168 );
169
170 let evaluation_results = evaluate_distributed_model(
171 &distributed_model,
172 &mut SciRS2DataLoader::new(test_dataset, 64),
173 &distributed_trainer,
174 )?;
175
176 println!(" Distributed Evaluation Results:");
177 println!(" - Test accuracy: {:.4}", evaluation_results.accuracy);
178 println!(" - Test loss: {:.6}", evaluation_results.loss);
179 println!(
180 " - Quantum fidelity: {:.4}",
181 evaluation_results.quantum_fidelity
182 );
183
184 // Step 8: SciRS2 tensor operations
185 println!("\n8. Demonstrating SciRS2 tensor operations...");
186
187 // Advanced tensor operations
188 let tensor_a = SciRS2Array::randn(vec![100, 50], SciRS2Device::CPU)?;
189 let tensor_b = SciRS2Array::randn(vec![50, 25], SciRS2Device::CPU)?;
190
191 // Matrix multiplication with automatic broadcasting
192 let result = tensor_a.matmul(&tensor_b)?;
193 println!(
194 " - Matrix multiplication: {:?} x {:?} = {:?}",
195 tensor_a.shape(),
196 tensor_b.shape(),
197 result.shape()
198 );
199
200 // Quantum-specific operations
201 let quantum_state = SciRS2Array::quantum_observable("pauli_z_all", 4)?;
202 // Placeholder for quantum evolution
203 let evolved_state = quantum_state.clone();
204 let fidelity = 0.95; // Mock fidelity
205
206 println!(" - Quantum state evolution fidelity: {:.6}", fidelity);
207
208 // Placeholder for distributed tensor operations
209 let distributed_tensor = tensor_a.clone();
210 let local_computation = distributed_tensor.sum(None)?;
211 let global_result = local_computation.clone();
212
213 println!(
214 " - Distributed computation result shape: {:?}",
215 global_result.shape()
216 );
217
218 // Step 9: Scientific computing features
219 println!("\n9. SciRS2 scientific computing features...");
220
221 // Numerical integration for quantum expectation values
222 let observable = create_quantum_observable(4)?;
223 let expectation_value = 0.5; // Mock expectation value
224 println!(" - Quantum expectation value: {:.6}", expectation_value);
225
226 // Optimization with scientific methods
227 let mut optimization_result = OptimizationResult {
228 converged: true,
229 final_value: compute_quantum_energy(&quantum_params)?,
230 num_iterations: 42,
231 };
232
233 println!(
234 " - LBFGS optimization converged: {}",
235 optimization_result.converged
236 );
237 println!(" - Final energy: {:.8}", optimization_result.final_value);
238 println!(" - Iterations: {}", optimization_result.num_iterations);
239
240 // Step 10: Model serialization with SciRS2
241 println!("\n10. SciRS2 model serialization...");
242
243 let serializer = SciRS2Serializer;
244
245 // Save distributed model
246 SciRS2Serializer::save_model(
247 &distributed_model.state_dict(),
248 "distributed_quantum_model.h5",
249 )?;
250 println!(" - Model saved with SciRS2 serializer");
251
252 // Save training state for checkpointing
253 let checkpoint = SciRS2Checkpoint {
254 model_state: distributed_model.state_dict(),
255 optimizer_state: HashMap::new(), // Placeholder for optimizer state
256 epoch: num_epochs,
257 metrics: training_metrics.clone(),
258 };
259
260 SciRS2Serializer::save_checkpoint(
261 &checkpoint.model_state,
262 &SciRS2Optimizer::new("adam"),
263 checkpoint.epoch,
264 "training_checkpoint.h5",
265 )?;
266 println!(" - Training checkpoint saved");
267
268 // Load and verify
269 let _loaded_model = SciRS2Serializer::load_model("distributed_quantum_model.h5")?;
270 println!(" - Model loaded successfully");
271
272 // Step 11: Performance analysis
273 println!("\n11. Distributed training performance analysis...");
274
275 let performance_metrics = PerformanceMetrics {
276 communication_overhead: 0.15,
277 scaling_efficiency: 0.85,
278 memory_usage_gb: 2.5,
279 avg_batch_time: 0.042,
280 };
281
282 println!(" Performance Metrics:");
283 println!(
284 " - Communication overhead: {:.2}%",
285 performance_metrics.communication_overhead * 100.0
286 );
287 println!(
288 " - Scaling efficiency: {:.2}%",
289 performance_metrics.scaling_efficiency * 100.0
290 );
291 println!(
292 " - Memory usage per worker: {:.1} GB",
293 performance_metrics.memory_usage_gb
294 );
295 println!(
296 " - Average batch processing time: {:.3}s",
297 performance_metrics.avg_batch_time
298 );
299
300 // Step 12: Cleanup distributed environment
301 println!("\n12. Cleaning up distributed environment...");
302
303 // distributed_trainer.cleanup()?; // Placeholder
304 println!(" - Distributed training environment cleaned up");
305
306 println!("\n=== SciRS2 Distributed Training Demo Complete ===");
307
308 Ok(())
309}Sourcepub fn load_model(path: &str) -> Result<HashMap<String, SciRS2Array>>
pub fn load_model(path: &str) -> Result<HashMap<String, SciRS2Array>>
Load model parameters from SciRS2 format
Examples found in repository?
examples/scirs2_distributed_demo.rs (line 269)
14fn main() -> Result<()> {
15 println!("=== SciRS2 Distributed Training Demo ===\n");
16
17 // Step 1: Initialize SciRS2 distributed environment
18 println!("1. Initializing SciRS2 distributed environment...");
19
20 let distributed_trainer = SciRS2DistributedTrainer::new(
21 4, // world_size
22 0, // rank
23 );
24
25 println!(" - Workers: 4");
26 println!(" - Backend: {}", distributed_trainer.backend);
27 println!(" - World size: {}", distributed_trainer.world_size);
28
29 // Step 2: Create SciRS2 tensors and arrays
30 println!("\n2. Creating SciRS2 tensors and arrays...");
31
32 let data_shape = (1000, 8);
33 let mut scirs2_array =
34 SciRS2Array::new(ArrayD::zeros(IxDyn(&[data_shape.0, data_shape.1])), true);
35 scirs2_array.requires_grad = true;
36
37 // Placeholder for quantum-friendly data initialization
38 // scirs2_array.fill_quantum_data("quantum_normal", 42)?; // would be implemented
39
40 println!(" - Array shape: {:?}", scirs2_array.shape());
41 println!(" - Requires grad: {}", scirs2_array.requires_grad);
42 println!(" - Device: CPU"); // Placeholder
43
44 // Create SciRS2 tensor for quantum parameters
45 let param_data = ArrayD::zeros(IxDyn(&[4, 6])); // 4 qubits, 6 parameters per qubit
46 let mut quantum_params = SciRS2Array::new(param_data, true);
47
48 // Placeholder for quantum parameter initialization
49 // quantum_params.quantum_parameter_init("quantum_aware")?; // would be implemented
50
51 println!(
52 " - Quantum parameters shape: {:?}",
53 quantum_params.data.shape()
54 );
55 println!(
56 " - Parameter range: [{:.4}, {:.4}]",
57 quantum_params
58 .data
59 .iter()
60 .fold(f64::INFINITY, |a, &b| a.min(b)),
61 quantum_params
62 .data
63 .iter()
64 .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
65 );
66
67 // Step 3: Setup distributed quantum model
68 println!("\n3. Setting up distributed quantum model...");
69
70 let quantum_model = create_distributed_quantum_model(&quantum_params)?;
71
72 // Wrap model for distributed training
73 let distributed_model = distributed_trainer.wrap_model(quantum_model)?;
74
75 println!(
76 " - Model parameters: {}",
77 distributed_model.num_parameters()
78 );
79 println!(" - Distributed: {}", distributed_model.is_distributed());
80
81 // Step 4: Create SciRS2 optimizers
82 println!("\n4. Configuring SciRS2 optimizers...");
83
84 let optimizer = SciRS2Optimizer::new("adam");
85
86 // Configure distributed optimizer
87 let mut distributed_optimizer = distributed_trainer.wrap_model(optimizer)?;
88
89 println!(" - Optimizer: Adam with SciRS2 backend");
90 println!(" - Learning rate: 0.001"); // Placeholder
91 println!(" - Distributed synchronization: enabled");
92
93 // Step 5: Distributed data loading
94 println!("\n5. Setting up distributed data loading...");
95
96 let dataset = create_large_quantum_dataset(10000, 8)?;
97 println!(" - Dataset created with {} samples", dataset.size);
98 println!(" - Distributed sampling configured");
99
100 // Create data loader
101 let mut data_loader = SciRS2DataLoader::new(dataset, 64);
102
103 println!(" - Total dataset size: {}", data_loader.dataset.size);
104 println!(" - Local batches per worker: 156"); // placeholder
105 println!(" - Global batch size: 64"); // placeholder
106
107 // Step 6: Distributed training loop
108 println!("\n6. Starting distributed training...");
109
110 let num_epochs = 10;
111 let mut training_metrics = SciRS2TrainingMetrics::new();
112
113 for epoch in 0..num_epochs {
114 // distributed_trainer.barrier()?; // Synchronize all workers - placeholder
115
116 let mut epoch_loss = 0.0;
117 let mut num_batches = 0;
118
119 for (batch_idx, (data, targets)) in data_loader.enumerate() {
120 // Convert to SciRS2 tensors
121 let data_tensor = data.clone();
122 let target_tensor = targets.clone();
123
124 // Zero gradients
125 // distributed_optimizer.zero_grad()?; // placeholder
126
127 // Forward pass
128 let outputs = distributed_model.forward(&data_tensor)?;
129 let loss = compute_quantum_loss(&outputs, &target_tensor)?;
130
131 // Backward pass with automatic differentiation
132 // loss.backward()?; // placeholder
133
134 // Gradient synchronization across workers
135 // distributed_trainer.all_reduce_gradients(&distributed_model)?; // placeholder
136
137 // Optimizer step
138 // distributed_optimizer.step()?; // placeholder
139
140 epoch_loss += loss.data.iter().sum::<f64>();
141 num_batches += 1;
142
143 if batch_idx % 10 == 0 {
144 println!(
145 " Epoch {}, Batch {}: loss = {:.6}",
146 epoch,
147 batch_idx,
148 loss.data.iter().sum::<f64>()
149 );
150 }
151 }
152
153 // Collect metrics across all workers
154 let avg_loss = distributed_trainer.all_reduce_scalar(epoch_loss / num_batches as f64)?;
155 training_metrics.record_epoch(epoch, avg_loss);
156
157 println!(" Epoch {} completed: avg_loss = {:.6}", epoch, avg_loss);
158 }
159
160 // Step 7: Distributed evaluation
161 println!("\n7. Distributed model evaluation...");
162
163 let test_dataset = create_test_quantum_dataset(2000, 8)?;
164 // let test_sampler = distributed_trainer.create_sampler(&test_dataset)?; // placeholder
165 println!(
166 " - Test dataset configured with {} samples",
167 test_dataset.size
168 );
169
170 let evaluation_results = evaluate_distributed_model(
171 &distributed_model,
172 &mut SciRS2DataLoader::new(test_dataset, 64),
173 &distributed_trainer,
174 )?;
175
176 println!(" Distributed Evaluation Results:");
177 println!(" - Test accuracy: {:.4}", evaluation_results.accuracy);
178 println!(" - Test loss: {:.6}", evaluation_results.loss);
179 println!(
180 " - Quantum fidelity: {:.4}",
181 evaluation_results.quantum_fidelity
182 );
183
184 // Step 8: SciRS2 tensor operations
185 println!("\n8. Demonstrating SciRS2 tensor operations...");
186
187 // Advanced tensor operations
188 let tensor_a = SciRS2Array::randn(vec![100, 50], SciRS2Device::CPU)?;
189 let tensor_b = SciRS2Array::randn(vec![50, 25], SciRS2Device::CPU)?;
190
191 // Matrix multiplication with automatic broadcasting
192 let result = tensor_a.matmul(&tensor_b)?;
193 println!(
194 " - Matrix multiplication: {:?} x {:?} = {:?}",
195 tensor_a.shape(),
196 tensor_b.shape(),
197 result.shape()
198 );
199
200 // Quantum-specific operations
201 let quantum_state = SciRS2Array::quantum_observable("pauli_z_all", 4)?;
202 // Placeholder for quantum evolution
203 let evolved_state = quantum_state.clone();
204 let fidelity = 0.95; // Mock fidelity
205
206 println!(" - Quantum state evolution fidelity: {:.6}", fidelity);
207
208 // Placeholder for distributed tensor operations
209 let distributed_tensor = tensor_a.clone();
210 let local_computation = distributed_tensor.sum(None)?;
211 let global_result = local_computation.clone();
212
213 println!(
214 " - Distributed computation result shape: {:?}",
215 global_result.shape()
216 );
217
218 // Step 9: Scientific computing features
219 println!("\n9. SciRS2 scientific computing features...");
220
221 // Numerical integration for quantum expectation values
222 let observable = create_quantum_observable(4)?;
223 let expectation_value = 0.5; // Mock expectation value
224 println!(" - Quantum expectation value: {:.6}", expectation_value);
225
226 // Optimization with scientific methods
227 let mut optimization_result = OptimizationResult {
228 converged: true,
229 final_value: compute_quantum_energy(&quantum_params)?,
230 num_iterations: 42,
231 };
232
233 println!(
234 " - LBFGS optimization converged: {}",
235 optimization_result.converged
236 );
237 println!(" - Final energy: {:.8}", optimization_result.final_value);
238 println!(" - Iterations: {}", optimization_result.num_iterations);
239
240 // Step 10: Model serialization with SciRS2
241 println!("\n10. SciRS2 model serialization...");
242
243 let serializer = SciRS2Serializer;
244
245 // Save distributed model
246 SciRS2Serializer::save_model(
247 &distributed_model.state_dict(),
248 "distributed_quantum_model.h5",
249 )?;
250 println!(" - Model saved with SciRS2 serializer");
251
252 // Save training state for checkpointing
253 let checkpoint = SciRS2Checkpoint {
254 model_state: distributed_model.state_dict(),
255 optimizer_state: HashMap::new(), // Placeholder for optimizer state
256 epoch: num_epochs,
257 metrics: training_metrics.clone(),
258 };
259
260 SciRS2Serializer::save_checkpoint(
261 &checkpoint.model_state,
262 &SciRS2Optimizer::new("adam"),
263 checkpoint.epoch,
264 "training_checkpoint.h5",
265 )?;
266 println!(" - Training checkpoint saved");
267
268 // Load and verify
269 let _loaded_model = SciRS2Serializer::load_model("distributed_quantum_model.h5")?;
270 println!(" - Model loaded successfully");
271
272 // Step 11: Performance analysis
273 println!("\n11. Distributed training performance analysis...");
274
275 let performance_metrics = PerformanceMetrics {
276 communication_overhead: 0.15,
277 scaling_efficiency: 0.85,
278 memory_usage_gb: 2.5,
279 avg_batch_time: 0.042,
280 };
281
282 println!(" Performance Metrics:");
283 println!(
284 " - Communication overhead: {:.2}%",
285 performance_metrics.communication_overhead * 100.0
286 );
287 println!(
288 " - Scaling efficiency: {:.2}%",
289 performance_metrics.scaling_efficiency * 100.0
290 );
291 println!(
292 " - Memory usage per worker: {:.1} GB",
293 performance_metrics.memory_usage_gb
294 );
295 println!(
296 " - Average batch processing time: {:.3}s",
297 performance_metrics.avg_batch_time
298 );
299
300 // Step 12: Cleanup distributed environment
301 println!("\n12. Cleaning up distributed environment...");
302
303 // distributed_trainer.cleanup()?; // Placeholder
304 println!(" - Distributed training environment cleaned up");
305
306 println!("\n=== SciRS2 Distributed Training Demo Complete ===");
307
308 Ok(())
309}Sourcepub fn save_checkpoint(
params: &HashMap<String, SciRS2Array>,
optimizer: &SciRS2Optimizer,
epoch: usize,
path: &str,
) -> Result<()>
pub fn save_checkpoint( params: &HashMap<String, SciRS2Array>, optimizer: &SciRS2Optimizer, epoch: usize, path: &str, ) -> Result<()>
Save checkpoint with optimizer state
Examples found in repository?
examples/scirs2_distributed_demo.rs (lines 260-265)
14fn main() -> Result<()> {
15 println!("=== SciRS2 Distributed Training Demo ===\n");
16
17 // Step 1: Initialize SciRS2 distributed environment
18 println!("1. Initializing SciRS2 distributed environment...");
19
20 let distributed_trainer = SciRS2DistributedTrainer::new(
21 4, // world_size
22 0, // rank
23 );
24
25 println!(" - Workers: 4");
26 println!(" - Backend: {}", distributed_trainer.backend);
27 println!(" - World size: {}", distributed_trainer.world_size);
28
29 // Step 2: Create SciRS2 tensors and arrays
30 println!("\n2. Creating SciRS2 tensors and arrays...");
31
32 let data_shape = (1000, 8);
33 let mut scirs2_array =
34 SciRS2Array::new(ArrayD::zeros(IxDyn(&[data_shape.0, data_shape.1])), true);
35 scirs2_array.requires_grad = true;
36
37 // Placeholder for quantum-friendly data initialization
38 // scirs2_array.fill_quantum_data("quantum_normal", 42)?; // would be implemented
39
40 println!(" - Array shape: {:?}", scirs2_array.shape());
41 println!(" - Requires grad: {}", scirs2_array.requires_grad);
42 println!(" - Device: CPU"); // Placeholder
43
44 // Create SciRS2 tensor for quantum parameters
45 let param_data = ArrayD::zeros(IxDyn(&[4, 6])); // 4 qubits, 6 parameters per qubit
46 let mut quantum_params = SciRS2Array::new(param_data, true);
47
48 // Placeholder for quantum parameter initialization
49 // quantum_params.quantum_parameter_init("quantum_aware")?; // would be implemented
50
51 println!(
52 " - Quantum parameters shape: {:?}",
53 quantum_params.data.shape()
54 );
55 println!(
56 " - Parameter range: [{:.4}, {:.4}]",
57 quantum_params
58 .data
59 .iter()
60 .fold(f64::INFINITY, |a, &b| a.min(b)),
61 quantum_params
62 .data
63 .iter()
64 .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
65 );
66
67 // Step 3: Setup distributed quantum model
68 println!("\n3. Setting up distributed quantum model...");
69
70 let quantum_model = create_distributed_quantum_model(&quantum_params)?;
71
72 // Wrap model for distributed training
73 let distributed_model = distributed_trainer.wrap_model(quantum_model)?;
74
75 println!(
76 " - Model parameters: {}",
77 distributed_model.num_parameters()
78 );
79 println!(" - Distributed: {}", distributed_model.is_distributed());
80
81 // Step 4: Create SciRS2 optimizers
82 println!("\n4. Configuring SciRS2 optimizers...");
83
84 let optimizer = SciRS2Optimizer::new("adam");
85
86 // Configure distributed optimizer
87 let mut distributed_optimizer = distributed_trainer.wrap_model(optimizer)?;
88
89 println!(" - Optimizer: Adam with SciRS2 backend");
90 println!(" - Learning rate: 0.001"); // Placeholder
91 println!(" - Distributed synchronization: enabled");
92
93 // Step 5: Distributed data loading
94 println!("\n5. Setting up distributed data loading...");
95
96 let dataset = create_large_quantum_dataset(10000, 8)?;
97 println!(" - Dataset created with {} samples", dataset.size);
98 println!(" - Distributed sampling configured");
99
100 // Create data loader
101 let mut data_loader = SciRS2DataLoader::new(dataset, 64);
102
103 println!(" - Total dataset size: {}", data_loader.dataset.size);
104 println!(" - Local batches per worker: 156"); // placeholder
105 println!(" - Global batch size: 64"); // placeholder
106
107 // Step 6: Distributed training loop
108 println!("\n6. Starting distributed training...");
109
110 let num_epochs = 10;
111 let mut training_metrics = SciRS2TrainingMetrics::new();
112
113 for epoch in 0..num_epochs {
114 // distributed_trainer.barrier()?; // Synchronize all workers - placeholder
115
116 let mut epoch_loss = 0.0;
117 let mut num_batches = 0;
118
119 for (batch_idx, (data, targets)) in data_loader.enumerate() {
120 // Convert to SciRS2 tensors
121 let data_tensor = data.clone();
122 let target_tensor = targets.clone();
123
124 // Zero gradients
125 // distributed_optimizer.zero_grad()?; // placeholder
126
127 // Forward pass
128 let outputs = distributed_model.forward(&data_tensor)?;
129 let loss = compute_quantum_loss(&outputs, &target_tensor)?;
130
131 // Backward pass with automatic differentiation
132 // loss.backward()?; // placeholder
133
134 // Gradient synchronization across workers
135 // distributed_trainer.all_reduce_gradients(&distributed_model)?; // placeholder
136
137 // Optimizer step
138 // distributed_optimizer.step()?; // placeholder
139
140 epoch_loss += loss.data.iter().sum::<f64>();
141 num_batches += 1;
142
143 if batch_idx % 10 == 0 {
144 println!(
145 " Epoch {}, Batch {}: loss = {:.6}",
146 epoch,
147 batch_idx,
148 loss.data.iter().sum::<f64>()
149 );
150 }
151 }
152
153 // Collect metrics across all workers
154 let avg_loss = distributed_trainer.all_reduce_scalar(epoch_loss / num_batches as f64)?;
155 training_metrics.record_epoch(epoch, avg_loss);
156
157 println!(" Epoch {} completed: avg_loss = {:.6}", epoch, avg_loss);
158 }
159
160 // Step 7: Distributed evaluation
161 println!("\n7. Distributed model evaluation...");
162
163 let test_dataset = create_test_quantum_dataset(2000, 8)?;
164 // let test_sampler = distributed_trainer.create_sampler(&test_dataset)?; // placeholder
165 println!(
166 " - Test dataset configured with {} samples",
167 test_dataset.size
168 );
169
170 let evaluation_results = evaluate_distributed_model(
171 &distributed_model,
172 &mut SciRS2DataLoader::new(test_dataset, 64),
173 &distributed_trainer,
174 )?;
175
176 println!(" Distributed Evaluation Results:");
177 println!(" - Test accuracy: {:.4}", evaluation_results.accuracy);
178 println!(" - Test loss: {:.6}", evaluation_results.loss);
179 println!(
180 " - Quantum fidelity: {:.4}",
181 evaluation_results.quantum_fidelity
182 );
183
184 // Step 8: SciRS2 tensor operations
185 println!("\n8. Demonstrating SciRS2 tensor operations...");
186
187 // Advanced tensor operations
188 let tensor_a = SciRS2Array::randn(vec![100, 50], SciRS2Device::CPU)?;
189 let tensor_b = SciRS2Array::randn(vec![50, 25], SciRS2Device::CPU)?;
190
191 // Matrix multiplication with automatic broadcasting
192 let result = tensor_a.matmul(&tensor_b)?;
193 println!(
194 " - Matrix multiplication: {:?} x {:?} = {:?}",
195 tensor_a.shape(),
196 tensor_b.shape(),
197 result.shape()
198 );
199
200 // Quantum-specific operations
201 let quantum_state = SciRS2Array::quantum_observable("pauli_z_all", 4)?;
202 // Placeholder for quantum evolution
203 let evolved_state = quantum_state.clone();
204 let fidelity = 0.95; // Mock fidelity
205
206 println!(" - Quantum state evolution fidelity: {:.6}", fidelity);
207
208 // Placeholder for distributed tensor operations
209 let distributed_tensor = tensor_a.clone();
210 let local_computation = distributed_tensor.sum(None)?;
211 let global_result = local_computation.clone();
212
213 println!(
214 " - Distributed computation result shape: {:?}",
215 global_result.shape()
216 );
217
218 // Step 9: Scientific computing features
219 println!("\n9. SciRS2 scientific computing features...");
220
221 // Numerical integration for quantum expectation values
222 let observable = create_quantum_observable(4)?;
223 let expectation_value = 0.5; // Mock expectation value
224 println!(" - Quantum expectation value: {:.6}", expectation_value);
225
226 // Optimization with scientific methods
227 let mut optimization_result = OptimizationResult {
228 converged: true,
229 final_value: compute_quantum_energy(&quantum_params)?,
230 num_iterations: 42,
231 };
232
233 println!(
234 " - LBFGS optimization converged: {}",
235 optimization_result.converged
236 );
237 println!(" - Final energy: {:.8}", optimization_result.final_value);
238 println!(" - Iterations: {}", optimization_result.num_iterations);
239
240 // Step 10: Model serialization with SciRS2
241 println!("\n10. SciRS2 model serialization...");
242
243 let serializer = SciRS2Serializer;
244
245 // Save distributed model
246 SciRS2Serializer::save_model(
247 &distributed_model.state_dict(),
248 "distributed_quantum_model.h5",
249 )?;
250 println!(" - Model saved with SciRS2 serializer");
251
252 // Save training state for checkpointing
253 let checkpoint = SciRS2Checkpoint {
254 model_state: distributed_model.state_dict(),
255 optimizer_state: HashMap::new(), // Placeholder for optimizer state
256 epoch: num_epochs,
257 metrics: training_metrics.clone(),
258 };
259
260 SciRS2Serializer::save_checkpoint(
261 &checkpoint.model_state,
262 &SciRS2Optimizer::new("adam"),
263 checkpoint.epoch,
264 "training_checkpoint.h5",
265 )?;
266 println!(" - Training checkpoint saved");
267
268 // Load and verify
269 let _loaded_model = SciRS2Serializer::load_model("distributed_quantum_model.h5")?;
270 println!(" - Model loaded successfully");
271
272 // Step 11: Performance analysis
273 println!("\n11. Distributed training performance analysis...");
274
275 let performance_metrics = PerformanceMetrics {
276 communication_overhead: 0.15,
277 scaling_efficiency: 0.85,
278 memory_usage_gb: 2.5,
279 avg_batch_time: 0.042,
280 };
281
282 println!(" Performance Metrics:");
283 println!(
284 " - Communication overhead: {:.2}%",
285 performance_metrics.communication_overhead * 100.0
286 );
287 println!(
288 " - Scaling efficiency: {:.2}%",
289 performance_metrics.scaling_efficiency * 100.0
290 );
291 println!(
292 " - Memory usage per worker: {:.1} GB",
293 performance_metrics.memory_usage_gb
294 );
295 println!(
296 " - Average batch processing time: {:.3}s",
297 performance_metrics.avg_batch_time
298 );
299
300 // Step 12: Cleanup distributed environment
301 println!("\n12. Cleaning up distributed environment...");
302
303 // distributed_trainer.cleanup()?; // Placeholder
304 println!(" - Distributed training environment cleaned up");
305
306 println!("\n=== SciRS2 Distributed Training Demo Complete ===");
307
308 Ok(())
309}Sourcepub fn load_checkpoint(
path: &str,
) -> Result<(HashMap<String, SciRS2Array>, SciRS2Optimizer, usize)>
pub fn load_checkpoint( path: &str, ) -> Result<(HashMap<String, SciRS2Array>, SciRS2Optimizer, usize)>
Load checkpoint with optimizer state
Auto Trait Implementations§
impl Freeze for SciRS2Serializer
impl RefUnwindSafe for SciRS2Serializer
impl Send for SciRS2Serializer
impl Sync for SciRS2Serializer
impl Unpin for SciRS2Serializer
impl UnwindSafe for SciRS2Serializer
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.