pub struct QuantumTransformerConfig {
pub model_dim: usize,
pub num_heads: usize,
pub ff_dim: usize,
pub num_layers: usize,
pub max_seq_len: usize,
pub num_qubits: usize,
pub dropout_rate: f64,
pub attention_type: QuantumAttentionType,
pub position_encoding: PositionEncodingType,
}
Expand description
Quantum transformer model configuration
Fields§
§model_dim: usize
Model dimension (d_model)
num_heads: usize
Number of attention heads
ff_dim: usize
Feedforward dimension
num_layers: usize
Number of transformer layers
max_seq_len: usize
Maximum sequence length
num_qubits: usize
Number of qubits for quantum computation
dropout_rate: f64
Dropout rate
attention_type: QuantumAttentionType
Attention mechanism type
position_encoding: PositionEncodingType
Position encoding type
Implementations§
Source§impl QuantumTransformerConfig
impl QuantumTransformerConfig
Sourcepub fn default() -> Self
pub fn default() -> Self
Create default transformer configuration
Examples found in repository?
examples/quantum_transformer.rs (line 64)
53fn config_demo() -> Result<()> {
54 println!(" Creating various transformer configurations...");
55
56 // Small efficient model
57 let small_config = QuantumTransformerConfig::small();
58 println!(
59 " Small model: {} params, {} heads, {} layers",
60 small_config.model_dim, small_config.num_heads, small_config.num_layers
61 );
62
63 // Standard model
64 let default_config = QuantumTransformerConfig::default();
65 println!(
66 " Default model: {} params, {} heads, {} layers",
67 default_config.model_dim, default_config.num_heads, default_config.num_layers
68 );
69
70 // Large model
71 let large_config = QuantumTransformerConfig::large();
72 println!(
73 " Large model: {} params, {} heads, {} layers",
74 large_config.model_dim, large_config.num_heads, large_config.num_layers
75 );
76
77 // Custom configuration
78 let custom_config = QuantumTransformerConfig {
79 model_dim: 384,
80 num_heads: 6,
81 ff_dim: 1536,
82 num_layers: 8,
83 max_seq_len: 1024,
84 num_qubits: 12,
85 dropout_rate: 0.15,
86 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
87 position_encoding: PositionEncodingType::Rotary,
88 };
89
90 println!(
91 " Custom model: {} dim, {} qubits, {:?} attention",
92 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
93 );
94
95 // Create transformer with custom config
96 let transformer = QuantumTransformer::new(custom_config)?;
97 println!(
98 " Created transformer with {} total parameters",
99 transformer.num_parameters()
100 );
101
102 Ok(())
103}
Sourcepub fn large() -> Self
pub fn large() -> Self
Create configuration for large model
Examples found in repository?
examples/quantum_transformer.rs (line 71)
53fn config_demo() -> Result<()> {
54 println!(" Creating various transformer configurations...");
55
56 // Small efficient model
57 let small_config = QuantumTransformerConfig::small();
58 println!(
59 " Small model: {} params, {} heads, {} layers",
60 small_config.model_dim, small_config.num_heads, small_config.num_layers
61 );
62
63 // Standard model
64 let default_config = QuantumTransformerConfig::default();
65 println!(
66 " Default model: {} params, {} heads, {} layers",
67 default_config.model_dim, default_config.num_heads, default_config.num_layers
68 );
69
70 // Large model
71 let large_config = QuantumTransformerConfig::large();
72 println!(
73 " Large model: {} params, {} heads, {} layers",
74 large_config.model_dim, large_config.num_heads, large_config.num_layers
75 );
76
77 // Custom configuration
78 let custom_config = QuantumTransformerConfig {
79 model_dim: 384,
80 num_heads: 6,
81 ff_dim: 1536,
82 num_layers: 8,
83 max_seq_len: 1024,
84 num_qubits: 12,
85 dropout_rate: 0.15,
86 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
87 position_encoding: PositionEncodingType::Rotary,
88 };
89
90 println!(
91 " Custom model: {} dim, {} qubits, {:?} attention",
92 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
93 );
94
95 // Create transformer with custom config
96 let transformer = QuantumTransformer::new(custom_config)?;
97 println!(
98 " Created transformer with {} total parameters",
99 transformer.num_parameters()
100 );
101
102 Ok(())
103}
Sourcepub fn small() -> Self
pub fn small() -> Self
Create configuration for small/efficient model
Examples found in repository?
examples/quantum_transformer.rs (line 57)
53fn config_demo() -> Result<()> {
54 println!(" Creating various transformer configurations...");
55
56 // Small efficient model
57 let small_config = QuantumTransformerConfig::small();
58 println!(
59 " Small model: {} params, {} heads, {} layers",
60 small_config.model_dim, small_config.num_heads, small_config.num_layers
61 );
62
63 // Standard model
64 let default_config = QuantumTransformerConfig::default();
65 println!(
66 " Default model: {} params, {} heads, {} layers",
67 default_config.model_dim, default_config.num_heads, default_config.num_layers
68 );
69
70 // Large model
71 let large_config = QuantumTransformerConfig::large();
72 println!(
73 " Large model: {} params, {} heads, {} layers",
74 large_config.model_dim, large_config.num_heads, large_config.num_layers
75 );
76
77 // Custom configuration
78 let custom_config = QuantumTransformerConfig {
79 model_dim: 384,
80 num_heads: 6,
81 ff_dim: 1536,
82 num_layers: 8,
83 max_seq_len: 1024,
84 num_qubits: 12,
85 dropout_rate: 0.15,
86 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
87 position_encoding: PositionEncodingType::Rotary,
88 };
89
90 println!(
91 " Custom model: {} dim, {} qubits, {:?} attention",
92 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
93 );
94
95 // Create transformer with custom config
96 let transformer = QuantumTransformer::new(custom_config)?;
97 println!(
98 " Created transformer with {} total parameters",
99 transformer.num_parameters()
100 );
101
102 Ok(())
103}
Trait Implementations§
Source§impl Clone for QuantumTransformerConfig
impl Clone for QuantumTransformerConfig
Source§fn clone(&self) -> QuantumTransformerConfig
fn clone(&self) -> QuantumTransformerConfig
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreAuto Trait Implementations§
impl Freeze for QuantumTransformerConfig
impl RefUnwindSafe for QuantumTransformerConfig
impl Send for QuantumTransformerConfig
impl Sync for QuantumTransformerConfig
impl Unpin for QuantumTransformerConfig
impl UnwindSafe for QuantumTransformerConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.