pub struct QuantumPositionEncoding { /* private fields */ }
Expand description
Quantum position encoding module
Implementations§
Source§impl QuantumPositionEncoding
impl QuantumPositionEncoding
Sourcepub fn new(
encoding_type: PositionEncodingType,
model_dim: usize,
max_seq_len: usize,
num_qubits: usize,
) -> Result<Self>
pub fn new( encoding_type: PositionEncodingType, model_dim: usize, max_seq_len: usize, num_qubits: usize, ) -> Result<Self>
Create new quantum position encoding
Examples found in repository?
examples/quantum_transformer.rs (line 212)
193fn position_encoding_demo() -> Result<()> {
194 println!(" Testing quantum position encoding variants...");
195
196 let encoding_types = vec![
197 ("Sinusoidal", PositionEncodingType::Sinusoidal),
198 ("Quantum Phase", PositionEncodingType::QuantumPhase),
199 ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
200 ("Relative", PositionEncodingType::Relative),
201 ("Rotary (RoPE)", PositionEncodingType::Rotary),
202 ];
203
204 let model_dim = 128;
205 let max_seq_len = 64;
206 let num_qubits = 8;
207
208 for (name, encoding_type) in encoding_types {
209 println!("\n --- {} Position Encoding ---", name);
210
211 let pos_enc =
212 QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
213
214 let batch_size = 3;
215 let seq_len = 32;
216
217 let encodings = pos_enc.forward(seq_len, batch_size)?;
218 println!(" Encoding shape: {:?}", encodings.dim());
219
220 // Analyze position encoding properties
221 let encoding_range = {
222 let min_val = encodings.iter().cloned().fold(f64::INFINITY, f64::min);
223 let max_val = encodings.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
224 max_val - min_val
225 };
226
227 println!(" Value range: {:.4}", encoding_range);
228
229 // Check position distinguishability
230 let pos1 = encodings.slice(scirs2_core::ndarray::s![0, 0, ..]).to_owned();
231 let pos2 = encodings.slice(scirs2_core::ndarray::s![0, seq_len - 1, ..]).to_owned();
232 let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
233
234 println!(
235 " Distance between first and last position: {:.4}",
236 position_distance
237 );
238
239 // Analyze periodicity for sinusoidal encodings
240 if name == "Sinusoidal" {
241 let mut periodicities = Vec::new();
242 for d in (0..model_dim).step_by(10) {
243 let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
244
245 // Simple periodicity check
246 let period = find_period(&values);
247 if period > 0 {
248 periodicities.push(period);
249 }
250 }
251
252 if !periodicities.is_empty() {
253 let avg_period =
254 periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
255 println!(" Average period length: {:.1}", avg_period);
256 }
257 }
258
259 // Check quantum phase encoding properties
260 if name == "Quantum Phase" {
261 let phase_variance = encodings.var(0.0);
262 println!(" Phase encoding variance: {:.4}", phase_variance);
263 }
264 }
265
266 Ok(())
267}
Sourcepub fn forward(&self, seq_len: usize, batch_size: usize) -> Result<Array3<f64>>
pub fn forward(&self, seq_len: usize, batch_size: usize) -> Result<Array3<f64>>
Generate position encodings for input sequence
Examples found in repository?
examples/quantum_transformer.rs (line 217)
193fn position_encoding_demo() -> Result<()> {
194 println!(" Testing quantum position encoding variants...");
195
196 let encoding_types = vec![
197 ("Sinusoidal", PositionEncodingType::Sinusoidal),
198 ("Quantum Phase", PositionEncodingType::QuantumPhase),
199 ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
200 ("Relative", PositionEncodingType::Relative),
201 ("Rotary (RoPE)", PositionEncodingType::Rotary),
202 ];
203
204 let model_dim = 128;
205 let max_seq_len = 64;
206 let num_qubits = 8;
207
208 for (name, encoding_type) in encoding_types {
209 println!("\n --- {} Position Encoding ---", name);
210
211 let pos_enc =
212 QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
213
214 let batch_size = 3;
215 let seq_len = 32;
216
217 let encodings = pos_enc.forward(seq_len, batch_size)?;
218 println!(" Encoding shape: {:?}", encodings.dim());
219
220 // Analyze position encoding properties
221 let encoding_range = {
222 let min_val = encodings.iter().cloned().fold(f64::INFINITY, f64::min);
223 let max_val = encodings.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
224 max_val - min_val
225 };
226
227 println!(" Value range: {:.4}", encoding_range);
228
229 // Check position distinguishability
230 let pos1 = encodings.slice(scirs2_core::ndarray::s![0, 0, ..]).to_owned();
231 let pos2 = encodings.slice(scirs2_core::ndarray::s![0, seq_len - 1, ..]).to_owned();
232 let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
233
234 println!(
235 " Distance between first and last position: {:.4}",
236 position_distance
237 );
238
239 // Analyze periodicity for sinusoidal encodings
240 if name == "Sinusoidal" {
241 let mut periodicities = Vec::new();
242 for d in (0..model_dim).step_by(10) {
243 let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
244
245 // Simple periodicity check
246 let period = find_period(&values);
247 if period > 0 {
248 periodicities.push(period);
249 }
250 }
251
252 if !periodicities.is_empty() {
253 let avg_period =
254 periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
255 println!(" Average period length: {:.1}", avg_period);
256 }
257 }
258
259 // Check quantum phase encoding properties
260 if name == "Quantum Phase" {
261 let phase_variance = encodings.var(0.0);
262 println!(" Phase encoding variance: {:.4}", phase_variance);
263 }
264 }
265
266 Ok(())
267}
Trait Implementations§
Source§impl Clone for QuantumPositionEncoding
impl Clone for QuantumPositionEncoding
Source§fn clone(&self) -> QuantumPositionEncoding
fn clone(&self) -> QuantumPositionEncoding
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreAuto Trait Implementations§
impl Freeze for QuantumPositionEncoding
impl !RefUnwindSafe for QuantumPositionEncoding
impl Send for QuantumPositionEncoding
impl Sync for QuantumPositionEncoding
impl Unpin for QuantumPositionEncoding
impl !UnwindSafe for QuantumPositionEncoding
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.