QuantumPositionEncoding

Struct QuantumPositionEncoding 

Source
pub struct QuantumPositionEncoding { /* private fields */ }
Expand description

Quantum position encoding module

Implementations§

Source§

impl QuantumPositionEncoding

Source

pub fn new( encoding_type: PositionEncodingType, model_dim: usize, max_seq_len: usize, num_qubits: usize, ) -> Result<Self>

Create new quantum position encoding

Examples found in repository?
examples/quantum_transformer.rs (line 212)
193fn position_encoding_demo() -> Result<()> {
194    println!("   Testing quantum position encoding variants...");
195
196    let encoding_types = vec![
197        ("Sinusoidal", PositionEncodingType::Sinusoidal),
198        ("Quantum Phase", PositionEncodingType::QuantumPhase),
199        ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
200        ("Relative", PositionEncodingType::Relative),
201        ("Rotary (RoPE)", PositionEncodingType::Rotary),
202    ];
203
204    let model_dim = 128;
205    let max_seq_len = 64;
206    let num_qubits = 8;
207
208    for (name, encoding_type) in encoding_types {
209        println!("\n   --- {} Position Encoding ---", name);
210
211        let pos_enc =
212            QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
213
214        let batch_size = 3;
215        let seq_len = 32;
216
217        let encodings = pos_enc.forward(seq_len, batch_size)?;
218        println!("   Encoding shape: {:?}", encodings.dim());
219
220        // Analyze position encoding properties
221        let encoding_range = {
222            let min_val = encodings.iter().cloned().fold(f64::INFINITY, f64::min);
223            let max_val = encodings.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
224            max_val - min_val
225        };
226
227        println!("   Value range: {:.4}", encoding_range);
228
229        // Check position distinguishability
230        let pos1 = encodings.slice(scirs2_core::ndarray::s![0, 0, ..]).to_owned();
231        let pos2 = encodings.slice(scirs2_core::ndarray::s![0, seq_len - 1, ..]).to_owned();
232        let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
233
234        println!(
235            "   Distance between first and last position: {:.4}",
236            position_distance
237        );
238
239        // Analyze periodicity for sinusoidal encodings
240        if name == "Sinusoidal" {
241            let mut periodicities = Vec::new();
242            for d in (0..model_dim).step_by(10) {
243                let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
244
245                // Simple periodicity check
246                let period = find_period(&values);
247                if period > 0 {
248                    periodicities.push(period);
249                }
250            }
251
252            if !periodicities.is_empty() {
253                let avg_period =
254                    periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
255                println!("   Average period length: {:.1}", avg_period);
256            }
257        }
258
259        // Check quantum phase encoding properties
260        if name == "Quantum Phase" {
261            let phase_variance = encodings.var(0.0);
262            println!("   Phase encoding variance: {:.4}", phase_variance);
263        }
264    }
265
266    Ok(())
267}
Source

pub fn forward(&self, seq_len: usize, batch_size: usize) -> Result<Array3<f64>>

Generate position encodings for input sequence

Examples found in repository?
examples/quantum_transformer.rs (line 217)
193fn position_encoding_demo() -> Result<()> {
194    println!("   Testing quantum position encoding variants...");
195
196    let encoding_types = vec![
197        ("Sinusoidal", PositionEncodingType::Sinusoidal),
198        ("Quantum Phase", PositionEncodingType::QuantumPhase),
199        ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
200        ("Relative", PositionEncodingType::Relative),
201        ("Rotary (RoPE)", PositionEncodingType::Rotary),
202    ];
203
204    let model_dim = 128;
205    let max_seq_len = 64;
206    let num_qubits = 8;
207
208    for (name, encoding_type) in encoding_types {
209        println!("\n   --- {} Position Encoding ---", name);
210
211        let pos_enc =
212            QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
213
214        let batch_size = 3;
215        let seq_len = 32;
216
217        let encodings = pos_enc.forward(seq_len, batch_size)?;
218        println!("   Encoding shape: {:?}", encodings.dim());
219
220        // Analyze position encoding properties
221        let encoding_range = {
222            let min_val = encodings.iter().cloned().fold(f64::INFINITY, f64::min);
223            let max_val = encodings.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
224            max_val - min_val
225        };
226
227        println!("   Value range: {:.4}", encoding_range);
228
229        // Check position distinguishability
230        let pos1 = encodings.slice(scirs2_core::ndarray::s![0, 0, ..]).to_owned();
231        let pos2 = encodings.slice(scirs2_core::ndarray::s![0, seq_len - 1, ..]).to_owned();
232        let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
233
234        println!(
235            "   Distance between first and last position: {:.4}",
236            position_distance
237        );
238
239        // Analyze periodicity for sinusoidal encodings
240        if name == "Sinusoidal" {
241            let mut periodicities = Vec::new();
242            for d in (0..model_dim).step_by(10) {
243                let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
244
245                // Simple periodicity check
246                let period = find_period(&values);
247                if period > 0 {
248                    periodicities.push(period);
249                }
250            }
251
252            if !periodicities.is_empty() {
253                let avg_period =
254                    periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
255                println!("   Average period length: {:.1}", avg_period);
256            }
257        }
258
259        // Check quantum phase encoding properties
260        if name == "Quantum Phase" {
261            let phase_variance = encodings.var(0.0);
262            println!("   Phase encoding variance: {:.4}", phase_variance);
263        }
264    }
265
266    Ok(())
267}

Trait Implementations§

Source§

impl Clone for QuantumPositionEncoding

Source§

fn clone(&self) -> QuantumPositionEncoding

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumPositionEncoding

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,