pub struct QuantumReasoningConfig {
pub logical_reasoning: bool,
pub causal_reasoning: bool,
pub analogical_reasoning: bool,
pub reasoning_steps: usize,
pub circuit_depth: usize,
pub entanglement_strength: f64,
}
Expand description
Quantum reasoning configuration
Fields§
§logical_reasoning: bool
Enable quantum logical reasoning
causal_reasoning: bool
Enable quantum causal reasoning
analogical_reasoning: bool
Enable quantum analogical reasoning
reasoning_steps: usize
Number of reasoning steps
circuit_depth: usize
Reasoning circuit depth
entanglement_strength: f64
Quantum entanglement strength for reasoning
Implementations§
Source§impl QuantumReasoningConfig
impl QuantumReasoningConfig
Sourcepub fn default() -> Self
pub fn default() -> Self
Default reasoning configuration
Examples found in repository?
examples/quantum_llm.rs (line 210)
206fn quantum_reasoning_demo() -> Result<()> {
207 println!(" Testing quantum reasoning modules...");
208
209 let reasoning_configs = vec![
210 ("Basic Logical", QuantumReasoningConfig::default()),
211 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213 ];
214
215 for (name, config) in reasoning_configs {
216 println!("\n --- {} Reasoning ---", name);
217
218 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220 println!(" Reasoning capabilities:");
221 println!(" - Logical reasoning: {}", config.logical_reasoning);
222 println!(" - Causal reasoning: {}", config.causal_reasoning);
223 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
224 println!(" - Reasoning steps: {}", config.reasoning_steps);
225 println!(" - Circuit depth: {}", config.circuit_depth);
226 println!(
227 " - Entanglement strength: {:.2}",
228 config.entanglement_strength
229 );
230
231 // Test reasoning on sample hidden states
232 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233 // Create patterns that require reasoning
234 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235 let causal_pattern = s as f64 * 0.1;
236 let base_value = logical_pattern + causal_pattern;
237
238 base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239 });
240
241 println!(" Input hidden states shape: {:?}", hidden_states.dim());
242
243 // Apply quantum reasoning
244 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
246
247 // Analyze reasoning effects
248 let reasoning_enhancement =
249 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250 println!(" Reasoning enhancement metrics:");
251 println!(
252 " - Pattern amplification: {:.3}",
253 reasoning_enhancement.pattern_amplification
254 );
255 println!(
256 " - Logical consistency: {:.3}",
257 reasoning_enhancement.logical_consistency
258 );
259 println!(
260 " - Causal coherence: {:.3}",
261 reasoning_enhancement.causal_coherence
262 );
263
264 // Test quantum coherence during reasoning
265 let coherence = reasoning_module.measure_coherence()?;
266 println!(" Quantum coherence: {:.3}", coherence);
267
268 // Test token selection enhancement
269 let sample_logits = Array1::from_shape_fn(1000, |i| {
270 0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271 });
272
273 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274 let enhancement_effect = (&enhanced_logits - &sample_logits)
275 .mapv(|x| x.abs())
276 .mean()
277 .unwrap_or(0.0);
278 println!(" Token selection enhancement: {:.4}", enhancement_effect);
279 }
280
281 Ok(())
282}
Sourcepub fn enhanced() -> Self
pub fn enhanced() -> Self
Enhanced reasoning configuration
Examples found in repository?
examples/quantum_llm.rs (line 211)
206fn quantum_reasoning_demo() -> Result<()> {
207 println!(" Testing quantum reasoning modules...");
208
209 let reasoning_configs = vec![
210 ("Basic Logical", QuantumReasoningConfig::default()),
211 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213 ];
214
215 for (name, config) in reasoning_configs {
216 println!("\n --- {} Reasoning ---", name);
217
218 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220 println!(" Reasoning capabilities:");
221 println!(" - Logical reasoning: {}", config.logical_reasoning);
222 println!(" - Causal reasoning: {}", config.causal_reasoning);
223 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
224 println!(" - Reasoning steps: {}", config.reasoning_steps);
225 println!(" - Circuit depth: {}", config.circuit_depth);
226 println!(
227 " - Entanglement strength: {:.2}",
228 config.entanglement_strength
229 );
230
231 // Test reasoning on sample hidden states
232 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233 // Create patterns that require reasoning
234 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235 let causal_pattern = s as f64 * 0.1;
236 let base_value = logical_pattern + causal_pattern;
237
238 base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239 });
240
241 println!(" Input hidden states shape: {:?}", hidden_states.dim());
242
243 // Apply quantum reasoning
244 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
246
247 // Analyze reasoning effects
248 let reasoning_enhancement =
249 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250 println!(" Reasoning enhancement metrics:");
251 println!(
252 " - Pattern amplification: {:.3}",
253 reasoning_enhancement.pattern_amplification
254 );
255 println!(
256 " - Logical consistency: {:.3}",
257 reasoning_enhancement.logical_consistency
258 );
259 println!(
260 " - Causal coherence: {:.3}",
261 reasoning_enhancement.causal_coherence
262 );
263
264 // Test quantum coherence during reasoning
265 let coherence = reasoning_module.measure_coherence()?;
266 println!(" Quantum coherence: {:.3}", coherence);
267
268 // Test token selection enhancement
269 let sample_logits = Array1::from_shape_fn(1000, |i| {
270 0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271 });
272
273 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274 let enhancement_effect = (&enhanced_logits - &sample_logits)
275 .mapv(|x| x.abs())
276 .mean()
277 .unwrap_or(0.0);
278 println!(" Token selection enhancement: {:.4}", enhancement_effect);
279 }
280
281 Ok(())
282}
Sourcepub fn advanced() -> Self
pub fn advanced() -> Self
Advanced reasoning configuration
Examples found in repository?
examples/quantum_llm.rs (line 212)
206fn quantum_reasoning_demo() -> Result<()> {
207 println!(" Testing quantum reasoning modules...");
208
209 let reasoning_configs = vec![
210 ("Basic Logical", QuantumReasoningConfig::default()),
211 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213 ];
214
215 for (name, config) in reasoning_configs {
216 println!("\n --- {} Reasoning ---", name);
217
218 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220 println!(" Reasoning capabilities:");
221 println!(" - Logical reasoning: {}", config.logical_reasoning);
222 println!(" - Causal reasoning: {}", config.causal_reasoning);
223 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
224 println!(" - Reasoning steps: {}", config.reasoning_steps);
225 println!(" - Circuit depth: {}", config.circuit_depth);
226 println!(
227 " - Entanglement strength: {:.2}",
228 config.entanglement_strength
229 );
230
231 // Test reasoning on sample hidden states
232 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233 // Create patterns that require reasoning
234 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235 let causal_pattern = s as f64 * 0.1;
236 let base_value = logical_pattern + causal_pattern;
237
238 base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239 });
240
241 println!(" Input hidden states shape: {:?}", hidden_states.dim());
242
243 // Apply quantum reasoning
244 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
246
247 // Analyze reasoning effects
248 let reasoning_enhancement =
249 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250 println!(" Reasoning enhancement metrics:");
251 println!(
252 " - Pattern amplification: {:.3}",
253 reasoning_enhancement.pattern_amplification
254 );
255 println!(
256 " - Logical consistency: {:.3}",
257 reasoning_enhancement.logical_consistency
258 );
259 println!(
260 " - Causal coherence: {:.3}",
261 reasoning_enhancement.causal_coherence
262 );
263
264 // Test quantum coherence during reasoning
265 let coherence = reasoning_module.measure_coherence()?;
266 println!(" Quantum coherence: {:.3}", coherence);
267
268 // Test token selection enhancement
269 let sample_logits = Array1::from_shape_fn(1000, |i| {
270 0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271 });
272
273 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274 let enhancement_effect = (&enhanced_logits - &sample_logits)
275 .mapv(|x| x.abs())
276 .mean()
277 .unwrap_or(0.0);
278 println!(" Token selection enhancement: {:.4}", enhancement_effect);
279 }
280
281 Ok(())
282}
Trait Implementations§
Source§impl Clone for QuantumReasoningConfig
impl Clone for QuantumReasoningConfig
Source§fn clone(&self) -> QuantumReasoningConfig
fn clone(&self) -> QuantumReasoningConfig
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreAuto Trait Implementations§
impl Freeze for QuantumReasoningConfig
impl RefUnwindSafe for QuantumReasoningConfig
impl Send for QuantumReasoningConfig
impl Sync for QuantumReasoningConfig
impl Unpin for QuantumReasoningConfig
impl UnwindSafe for QuantumReasoningConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.