QuantumLLM

Struct QuantumLLM 

Source
pub struct QuantumLLM { /* private fields */ }
Expand description

Main Quantum Large Language Model

Implementations§

Source§

impl QuantumLLM

Source

pub fn new(config: QuantumLLMConfig) -> Result<Self>

Create new quantum large language model

Examples found in repository?
examples/quantum_llm.rs (line 80)
53fn model_configurations_demo() -> Result<()> {
54    println!("   Creating quantum LLM configurations...");
55
56    let vocab_size = 50000;
57
58    // Small model for edge deployment
59    let small_config = QuantumLLMConfig::small(vocab_size);
60    println!("   Small Model Configuration:");
61    println!("   - Vocabulary size: {}", small_config.vocab_size);
62    println!(
63        "   - Model dimension: {}",
64        small_config.transformer_config.model_dim
65    );
66    println!(
67        "   - Number of heads: {}",
68        small_config.transformer_config.num_heads
69    );
70    println!(
71        "   - Number of layers: {}",
72        small_config.transformer_config.num_layers
73    );
74    println!(
75        "   - Quantum qubits: {}",
76        small_config.transformer_config.num_qubits
77    );
78    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
79
80    let small_model = QuantumLLM::new(small_config)?;
81    println!(
82        "   Small model parameters: {:.1}M",
83        small_model.num_parameters() as f64 / 1_000_000.0
84    );
85
86    // Medium model for general use
87    let medium_config = QuantumLLMConfig::medium(vocab_size);
88    println!("\n   Medium Model Configuration:");
89    println!(
90        "   - Model dimension: {}",
91        medium_config.transformer_config.model_dim
92    );
93    println!(
94        "   - Number of layers: {}",
95        medium_config.transformer_config.num_layers
96    );
97    println!(
98        "   - Quantum qubits: {}",
99        medium_config.transformer_config.num_qubits
100    );
101    println!(
102        "   - Max context length: {}",
103        medium_config.max_context_length
104    );
105
106    let medium_model = QuantumLLM::new(medium_config)?;
107    println!(
108        "   Medium model parameters: {:.1}M",
109        medium_model.num_parameters() as f64 / 1_000_000.0
110    );
111
112    // Large model for research and advanced applications
113    let large_config = QuantumLLMConfig::large(vocab_size);
114    println!("\n   Large Model Configuration:");
115    println!(
116        "   - Model dimension: {}",
117        large_config.transformer_config.model_dim
118    );
119    println!(
120        "   - Number of layers: {}",
121        large_config.transformer_config.num_layers
122    );
123    println!(
124        "   - Quantum qubits: {}",
125        large_config.transformer_config.num_qubits
126    );
127    println!(
128        "   - Max context length: {}",
129        large_config.max_context_length
130    );
131    println!(
132        "   - Reasoning steps: {}",
133        large_config.reasoning_config.reasoning_steps
134    );
135
136    let large_model = QuantumLLM::new(large_config)?;
137    println!(
138        "   Large model parameters: {:.1}B",
139        large_model.num_parameters() as f64 / 1_000_000_000.0
140    );
141
142    // Compare quantum vs classical parameter efficiency
143    println!("\n   Quantum Efficiency Analysis:");
144    let quantum_efficiency =
145        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
146    println!(
147        "   - Quantum parameter efficiency: {:.2}x classical equivalent",
148        quantum_efficiency
149    );
150
151    Ok(())
152}
153
154/// Demonstrate quantum memory systems
155fn quantum_memory_demo() -> Result<()> {
156    println!("   Testing quantum memory systems...");
157
158    // Test different memory configurations
159    let memory_configs = vec![
160        ("Basic Associative", QuantumMemoryConfig::default()),
161        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
162        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
163    ];
164
165    for (name, config) in memory_configs {
166        println!("\n   --- {} Memory ---", name);
167
168        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
169        println!("   Memory configuration:");
170        println!("   - Memory size: {}", config.memory_size);
171        println!("   - Associative memory: {}", config.associative_memory);
172        println!("   - Episodic memory: {}", config.episodic_memory);
173        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
174        println!("   - Quantum compression: {}", config.quantum_compression);
175
176        // Test memory storage and retrieval
177        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
178            0.1 * (b as f64 + s as f64 * 0.1 + d as f64 * 0.01)
179        });
180
181        // Enhance embeddings with memory
182        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
183        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
184
185        // Measure memory enhancement effect
186        let original_variance = test_embeddings.var(0.0);
187        let enhanced_variance = enhanced.var(0.0);
188        let enhancement_factor = enhanced_variance / original_variance;
189
190        println!("   Memory enhancement factor: {:.3}", enhancement_factor);
191
192        // Test memory update
193        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
194        memory_system.update_memory(&enhanced, &input_ids)?;
195
196        println!("   Memory updated with new experiences");
197
198        // Test memory retrieval patterns
199        test_memory_patterns(&memory_system, &config)?;
200    }
201
202    Ok(())
203}
204
205/// Demonstrate quantum reasoning capabilities
206fn quantum_reasoning_demo() -> Result<()> {
207    println!("   Testing quantum reasoning modules...");
208
209    let reasoning_configs = vec![
210        ("Basic Logical", QuantumReasoningConfig::default()),
211        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213    ];
214
215    for (name, config) in reasoning_configs {
216        println!("\n   --- {} Reasoning ---", name);
217
218        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220        println!("   Reasoning capabilities:");
221        println!("   - Logical reasoning: {}", config.logical_reasoning);
222        println!("   - Causal reasoning: {}", config.causal_reasoning);
223        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
224        println!("   - Reasoning steps: {}", config.reasoning_steps);
225        println!("   - Circuit depth: {}", config.circuit_depth);
226        println!(
227            "   - Entanglement strength: {:.2}",
228            config.entanglement_strength
229        );
230
231        // Test reasoning on sample hidden states
232        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233            // Create patterns that require reasoning
234            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235            let causal_pattern = s as f64 * 0.1;
236            let base_value = logical_pattern + causal_pattern;
237
238            base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239        });
240
241        println!("   Input hidden states shape: {:?}", hidden_states.dim());
242
243        // Apply quantum reasoning
244        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
246
247        // Analyze reasoning effects
248        let reasoning_enhancement =
249            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250        println!("   Reasoning enhancement metrics:");
251        println!(
252            "   - Pattern amplification: {:.3}",
253            reasoning_enhancement.pattern_amplification
254        );
255        println!(
256            "   - Logical consistency: {:.3}",
257            reasoning_enhancement.logical_consistency
258        );
259        println!(
260            "   - Causal coherence: {:.3}",
261            reasoning_enhancement.causal_coherence
262        );
263
264        // Test quantum coherence during reasoning
265        let coherence = reasoning_module.measure_coherence()?;
266        println!("   Quantum coherence: {:.3}", coherence);
267
268        // Test token selection enhancement
269        let sample_logits = Array1::from_shape_fn(1000, |i| {
270            0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271        });
272
273        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274        let enhancement_effect = (&enhanced_logits - &sample_logits)
275            .mapv(|x| x.abs())
276            .mean()
277            .unwrap_or(0.0);
278        println!("   Token selection enhancement: {:.4}", enhancement_effect);
279    }
280
281    Ok(())
282}
283
284/// Demonstrate quantum-enhanced text generation
285fn text_generation_demo() -> Result<()> {
286    println!("   Testing quantum-enhanced text generation...");
287
288    let config = QuantumLLMConfig::small(10000);
289    let mut model = QuantumLLM::new(config)?;
290
291    // Test different generation configurations
292    let generation_configs = vec![
293        ("Default", GenerationConfig::default()),
294        ("Creative", GenerationConfig::creative()),
295        ("Precise", GenerationConfig::precise()),
296    ];
297
298    let test_prompts = vec![
299        "The quantum computer",
300        "Artificial intelligence will",
301        "In the future, quantum computing",
302        "The relationship between quantum mechanics and consciousness",
303    ];
304
305    for (config_name, gen_config) in generation_configs {
306        println!("\n   --- {} Generation ---", config_name);
307        println!("   Configuration:");
308        println!("   - Max length: {}", gen_config.max_length);
309        println!("   - Temperature: {:.1}", gen_config.temperature);
310        println!("   - Top-k: {:?}", gen_config.top_k);
311        println!("   - Top-p: {:?}", gen_config.top_p);
312        println!(
313            "   - Quantum reasoning: {}",
314            gen_config.use_quantum_reasoning
315        );
316        println!("   - Memory usage: {}", gen_config.use_memory);
317        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
318
319        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
320            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
321
322            let start_time = std::time::Instant::now();
323            let generated = model.generate(prompt, gen_config.clone())?;
324            let generation_time = start_time.elapsed();
325
326            // Display partial generated text (first 100 chars)
327            let display_text = if generated.len() > 100 {
328                format!("{}...", &generated[..100])
329            } else {
330                generated.clone()
331            };
332
333            println!("   Generated: \"{}\"", display_text);
334            println!("   Generation time: {:.2?}", generation_time);
335
336            // Analyze generation quality
337            let quality = analyze_generation_quality(&generated, &gen_config)?;
338            println!("   Quality metrics:");
339            println!("   - Fluency: {:.2}", quality.fluency);
340            println!("   - Coherence: {:.2}", quality.coherence);
341            println!("   - Novelty: {:.2}", quality.novelty);
342            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
343        }
344    }
345
346    // Display generation statistics
347    let stats = model.generation_stats();
348    println!("\n   Generation Statistics:");
349    println!("   - Total tokens generated: {}", stats.total_tokens);
350    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
351    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
352    println!("   - Memory retrievals: {}", stats.memory_retrievals);
353
354    Ok(())
355}
356
357/// Demonstrate language understanding capabilities
358fn language_understanding_demo() -> Result<()> {
359    println!("   Testing quantum language understanding...");
360
361    let config = QuantumLLMConfig::medium(20000);
362    let mut model = QuantumLLM::new(config)?;
363
364    // Test different understanding tasks
365    let understanding_tasks = vec![
366        ("Reading Comprehension", vec![
367            "The photon exhibits wave-particle duality in quantum mechanics.",
368            "What properties does a photon exhibit according to quantum mechanics?",
369        ]),
370        ("Logical Reasoning", vec![
371            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
372            "Apply logical reasoning to derive the conclusion.",
373        ]),
374        ("Causal Understanding", vec![
375            "When a quantum measurement is performed, the wavefunction collapses.",
376            "What causes the wavefunction to collapse?",
377        ]),
378        ("Analogical Reasoning", vec![
379            "Quantum superposition is like a coin spinning in the air before landing.",
380            "How is quantum entanglement similar to this analogy?",
381        ]),
382    ];
383
384    for (task_name, texts) in understanding_tasks {
385        println!("\n   --- {} Task ---", task_name);
386
387        for (i, text) in texts.iter().enumerate() {
388            println!("   Input {}: \"{}\"", i + 1, text);
389
390            // Process text through model
391            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
392
393            // Enable different reasoning modes based on task
394            let use_reasoning = match task_name {
395                "Logical Reasoning" => true,
396                "Causal Understanding" => true,
397                "Analogical Reasoning" => true,
398                _ => false,
399            };
400
401            let use_memory = true;
402
403            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
404            println!("   Model output shape: {:?}", output.dim());
405
406            // Analyze understanding quality
407            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
408            println!("   Understanding score: {:.3}", understanding_score);
409        }
410
411        // Task-specific analysis
412        match task_name {
413            "Reading Comprehension" => {
414                println!("   ✓ Model shows information extraction capabilities");
415            }
416            "Logical Reasoning" => {
417                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
418            }
419            "Causal Understanding" => {
420                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
421            }
422            "Analogical Reasoning" => {
423                println!("   ✓ Quantum analogy engine maps structural similarities");
424            }
425            _ => {}
426        }
427    }
428
429    Ok(())
430}
431
432/// Demonstrate chain-of-thought reasoning
433fn chain_of_thought_demo() -> Result<()> {
434    println!("   Testing quantum chain-of-thought reasoning...");
435
436    let config = QuantumLLMConfig::large(30000);
437    let mut model = QuantumLLM::new(config)?;
438
439    let reasoning_problems = vec![
440        ("Mathematical Problem",
441         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
442        ("Physics Problem",
443         "Explain how quantum entanglement enables quantum teleportation step by step."),
444        ("Logic Problem",
445         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
446        ("Ethics Problem",
447         "What are the implications of quantum computing for cryptography and privacy?"),
448    ];
449
450    for (problem_type, prompt) in reasoning_problems {
451        println!("\n   --- {} ---", problem_type);
452        println!("   Problem: \"{}\"", prompt);
453
454        // Enable chain-of-thought generation
455        let cot_config = GenerationConfig {
456            max_length: 200,
457            temperature: 0.8,
458            top_k: Some(40),
459            top_p: Some(0.9),
460            repetition_penalty: 1.1,
461            use_quantum_reasoning: true,
462            use_memory: true,
463            chain_of_thought: true,
464        };
465
466        let start_time = std::time::Instant::now();
467        let reasoning_output = model.generate(prompt, cot_config)?;
468        let reasoning_time = start_time.elapsed();
469
470        // Display reasoning steps (truncated for readability)
471        let display_output = if reasoning_output.len() > 200 {
472            format!("{}...", &reasoning_output[..200])
473        } else {
474            reasoning_output.clone()
475        };
476
477        println!("   Chain-of-thought reasoning:");
478        println!("   \"{}\"", display_output);
479        println!("   Reasoning time: {:.2?}", reasoning_time);
480
481        // Analyze reasoning quality
482        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
483        println!("   Reasoning analysis:");
484        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
485        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
486        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
487        println!(
488            "   - Quantum enhancement: {:.3}",
489            reasoning_analysis.quantum_enhancement
490        );
491
492        // Check for quantum reasoning patterns
493        if reasoning_analysis.quantum_enhancement > 0.5 {
494            println!("   ✓ Strong quantum reasoning signature detected");
495        } else if reasoning_analysis.quantum_enhancement > 0.2 {
496            println!("   ~ Moderate quantum reasoning influence");
497        } else {
498            println!("   - Limited quantum reasoning detected");
499        }
500    }
501
502    Ok(())
503}
504
505/// Demonstrate multi-modal quantum language processing
506fn multimodal_demo() -> Result<()> {
507    println!("   Testing multi-modal quantum language processing...");
508
509    let config = QuantumLLMConfig::medium(25000);
510    let mut model = QuantumLLM::new(config)?;
511
512    // Simulate different modalities
513    let multimodal_tasks = vec![
514        (
515            "Text + Quantum Data",
516            "Analyze this quantum measurement sequence",
517        ),
518        (
519            "Text + Mathematical",
520            "Solve this quantum mechanics equation",
521        ),
522        ("Text + Logical", "Apply quantum logic to this proposition"),
523        (
524            "Text + Memory",
525            "Recall information about quantum algorithms",
526        ),
527    ];
528
529    for (modality, task_description) in multimodal_tasks {
530        println!("\n   --- {} Processing ---", modality);
531        println!("   Task: \"{}\"", task_description);
532
533        // Create synthetic multi-modal input
534        let text_input =
535            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
536
537        // Enable all quantum capabilities for multi-modal processing
538        let output = model.forward(&text_input, None, true, true)?;
539
540        println!("   Multi-modal output shape: {:?}", output.dim());
541
542        // Analyze multi-modal integration
543        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
544        println!("   Integration metrics:");
545        println!(
546            "   - Cross-modal coherence: {:.3}",
547            integration_quality.coherence
548        );
549        println!(
550            "   - Information fusion: {:.3}",
551            integration_quality.fusion_quality
552        );
553        println!(
554            "   - Quantum entanglement: {:.3}",
555            integration_quality.quantum_entanglement
556        );
557
558        // Test specific capabilities based on modality
559        match modality {
560            "Text + Quantum Data" => {
561                let quantum_analysis = analyze_quantum_data_processing(&output)?;
562                println!(
563                    "   - Quantum state recognition: {:.3}",
564                    quantum_analysis.state_recognition
565                );
566                println!(
567                    "   - Measurement prediction: {:.3}",
568                    quantum_analysis.measurement_prediction
569                );
570            }
571            "Text + Mathematical" => {
572                let math_analysis = analyze_mathematical_reasoning(&output)?;
573                println!(
574                    "   - Equation understanding: {:.3}",
575                    math_analysis.equation_understanding
576                );
577                println!(
578                    "   - Symbol manipulation: {:.3}",
579                    math_analysis.symbol_manipulation
580                );
581            }
582            "Text + Logical" => {
583                let logic_analysis = analyze_logical_processing(&output)?;
584                println!("   - Logical validity: {:.3}", logic_analysis.validity);
585                println!(
586                    "   - Inference quality: {:.3}",
587                    logic_analysis.inference_quality
588                );
589            }
590            "Text + Memory" => {
591                let memory_analysis = analyze_memory_retrieval(&output)?;
592                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
593                println!(
594                    "   - Retrieval efficiency: {:.3}",
595                    memory_analysis.efficiency
596                );
597            }
598            _ => {}
599        }
600    }
601
602    Ok(())
603}
604
605/// Demonstrate performance analysis and quantum advantage
606fn performance_analysis_demo() -> Result<()> {
607    println!("   Analyzing performance and quantum advantage...");
608
609    // Create models of different scales
610    let small_config = QuantumLLMConfig::small(10000);
611    let medium_config = QuantumLLMConfig::medium(20000);
612    let large_config = QuantumLLMConfig::large(50000);
613
614    let small_model = QuantumLLM::new(small_config)?;
615    let medium_model = QuantumLLM::new(medium_config)?;
616    let large_model = QuantumLLM::new(large_config)?;
617
618    let models = vec![
619        ("Small", &small_model),
620        ("Medium", &medium_model),
621        ("Large", &large_model),
622    ];
623
624    println!("\n   Model Comparison:");
625
626    for (name, model) in &models {
627        let config = model.config();
628        let params = model.num_parameters();
629
630        println!("   {} Model:", name);
631        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
632        println!(
633            "   - Model dimension: {}",
634            config.transformer_config.model_dim
635        );
636        println!(
637            "   - Quantum qubits: {}",
638            config.transformer_config.num_qubits
639        );
640        println!("   - Memory size: {}", config.memory_config.memory_size);
641        println!(
642            "   - Reasoning steps: {}",
643            config.reasoning_config.reasoning_steps
644        );
645
646        // Estimate quantum advantage
647        let quantum_advantage = estimate_quantum_advantage(model)?;
648        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
649        println!(
650            "   - Memory efficiency: {:.2}x",
651            quantum_advantage.memory_efficiency
652        );
653        println!(
654            "   - Reasoning enhancement: {:.2}x",
655            quantum_advantage.reasoning_enhancement
656        );
657    }
658
659    // Performance benchmarks
660    println!("\n   Performance Benchmarks:");
661
662    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
663        ("Text Generation", measure_generation_performance),
664        ("Language Understanding", measure_understanding_performance),
665        ("Reasoning Tasks", measure_reasoning_performance),
666        ("Memory Operations", measure_memory_performance),
667    ];
668
669    for (task_name, benchmark_fn) in benchmark_tasks {
670        println!("\n   {} Benchmark:", task_name);
671
672        for (model_name, model) in &models {
673            let performance = benchmark_fn(model)?;
674            println!(
675                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
676                model_name, performance.operations_per_sec, performance.memory_usage_mb
677            );
678        }
679    }
680
681    // Quantum scaling analysis
682    println!("\n   Quantum Scaling Analysis:");
683    let scaling_analysis = analyze_quantum_scaling(&models)?;
684    println!(
685        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
686        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
687    );
688    println!(
689        "   - Performance scaling: {:.2}",
690        scaling_analysis.performance_scaling
691    );
692    println!(
693        "   - Quantum efficiency: {:.1}%",
694        scaling_analysis.efficiency * 100.0
695    );
696
697    // Future projections
698    println!("\n   Future Projections:");
699    println!(
700        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
701        project_future_efficiency(100_000_000_000)
702    );
703    println!(
704        "   - Quantum coherence preservation: {:.1}%",
705        project_coherence_preservation() * 100.0
706    );
707    println!(
708        "   - Reasoning capability enhancement: {:.2}x",
709        project_reasoning_enhancement()
710    );
711
712    Ok(())
713}
Source

pub fn forward( &mut self, input_ids: &Array2<usize>, attention_mask: Option<&Array3<bool>>, use_memory: bool, use_reasoning: bool, ) -> Result<Array3<f64>>

Forward pass through the model

Examples found in repository?
examples/quantum_llm.rs (line 403)
358fn language_understanding_demo() -> Result<()> {
359    println!("   Testing quantum language understanding...");
360
361    let config = QuantumLLMConfig::medium(20000);
362    let mut model = QuantumLLM::new(config)?;
363
364    // Test different understanding tasks
365    let understanding_tasks = vec![
366        ("Reading Comprehension", vec![
367            "The photon exhibits wave-particle duality in quantum mechanics.",
368            "What properties does a photon exhibit according to quantum mechanics?",
369        ]),
370        ("Logical Reasoning", vec![
371            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
372            "Apply logical reasoning to derive the conclusion.",
373        ]),
374        ("Causal Understanding", vec![
375            "When a quantum measurement is performed, the wavefunction collapses.",
376            "What causes the wavefunction to collapse?",
377        ]),
378        ("Analogical Reasoning", vec![
379            "Quantum superposition is like a coin spinning in the air before landing.",
380            "How is quantum entanglement similar to this analogy?",
381        ]),
382    ];
383
384    for (task_name, texts) in understanding_tasks {
385        println!("\n   --- {} Task ---", task_name);
386
387        for (i, text) in texts.iter().enumerate() {
388            println!("   Input {}: \"{}\"", i + 1, text);
389
390            // Process text through model
391            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
392
393            // Enable different reasoning modes based on task
394            let use_reasoning = match task_name {
395                "Logical Reasoning" => true,
396                "Causal Understanding" => true,
397                "Analogical Reasoning" => true,
398                _ => false,
399            };
400
401            let use_memory = true;
402
403            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
404            println!("   Model output shape: {:?}", output.dim());
405
406            // Analyze understanding quality
407            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
408            println!("   Understanding score: {:.3}", understanding_score);
409        }
410
411        // Task-specific analysis
412        match task_name {
413            "Reading Comprehension" => {
414                println!("   ✓ Model shows information extraction capabilities");
415            }
416            "Logical Reasoning" => {
417                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
418            }
419            "Causal Understanding" => {
420                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
421            }
422            "Analogical Reasoning" => {
423                println!("   ✓ Quantum analogy engine maps structural similarities");
424            }
425            _ => {}
426        }
427    }
428
429    Ok(())
430}
431
432/// Demonstrate chain-of-thought reasoning
433fn chain_of_thought_demo() -> Result<()> {
434    println!("   Testing quantum chain-of-thought reasoning...");
435
436    let config = QuantumLLMConfig::large(30000);
437    let mut model = QuantumLLM::new(config)?;
438
439    let reasoning_problems = vec![
440        ("Mathematical Problem",
441         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
442        ("Physics Problem",
443         "Explain how quantum entanglement enables quantum teleportation step by step."),
444        ("Logic Problem",
445         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
446        ("Ethics Problem",
447         "What are the implications of quantum computing for cryptography and privacy?"),
448    ];
449
450    for (problem_type, prompt) in reasoning_problems {
451        println!("\n   --- {} ---", problem_type);
452        println!("   Problem: \"{}\"", prompt);
453
454        // Enable chain-of-thought generation
455        let cot_config = GenerationConfig {
456            max_length: 200,
457            temperature: 0.8,
458            top_k: Some(40),
459            top_p: Some(0.9),
460            repetition_penalty: 1.1,
461            use_quantum_reasoning: true,
462            use_memory: true,
463            chain_of_thought: true,
464        };
465
466        let start_time = std::time::Instant::now();
467        let reasoning_output = model.generate(prompt, cot_config)?;
468        let reasoning_time = start_time.elapsed();
469
470        // Display reasoning steps (truncated for readability)
471        let display_output = if reasoning_output.len() > 200 {
472            format!("{}...", &reasoning_output[..200])
473        } else {
474            reasoning_output.clone()
475        };
476
477        println!("   Chain-of-thought reasoning:");
478        println!("   \"{}\"", display_output);
479        println!("   Reasoning time: {:.2?}", reasoning_time);
480
481        // Analyze reasoning quality
482        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
483        println!("   Reasoning analysis:");
484        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
485        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
486        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
487        println!(
488            "   - Quantum enhancement: {:.3}",
489            reasoning_analysis.quantum_enhancement
490        );
491
492        // Check for quantum reasoning patterns
493        if reasoning_analysis.quantum_enhancement > 0.5 {
494            println!("   ✓ Strong quantum reasoning signature detected");
495        } else if reasoning_analysis.quantum_enhancement > 0.2 {
496            println!("   ~ Moderate quantum reasoning influence");
497        } else {
498            println!("   - Limited quantum reasoning detected");
499        }
500    }
501
502    Ok(())
503}
504
505/// Demonstrate multi-modal quantum language processing
506fn multimodal_demo() -> Result<()> {
507    println!("   Testing multi-modal quantum language processing...");
508
509    let config = QuantumLLMConfig::medium(25000);
510    let mut model = QuantumLLM::new(config)?;
511
512    // Simulate different modalities
513    let multimodal_tasks = vec![
514        (
515            "Text + Quantum Data",
516            "Analyze this quantum measurement sequence",
517        ),
518        (
519            "Text + Mathematical",
520            "Solve this quantum mechanics equation",
521        ),
522        ("Text + Logical", "Apply quantum logic to this proposition"),
523        (
524            "Text + Memory",
525            "Recall information about quantum algorithms",
526        ),
527    ];
528
529    for (modality, task_description) in multimodal_tasks {
530        println!("\n   --- {} Processing ---", modality);
531        println!("   Task: \"{}\"", task_description);
532
533        // Create synthetic multi-modal input
534        let text_input =
535            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
536
537        // Enable all quantum capabilities for multi-modal processing
538        let output = model.forward(&text_input, None, true, true)?;
539
540        println!("   Multi-modal output shape: {:?}", output.dim());
541
542        // Analyze multi-modal integration
543        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
544        println!("   Integration metrics:");
545        println!(
546            "   - Cross-modal coherence: {:.3}",
547            integration_quality.coherence
548        );
549        println!(
550            "   - Information fusion: {:.3}",
551            integration_quality.fusion_quality
552        );
553        println!(
554            "   - Quantum entanglement: {:.3}",
555            integration_quality.quantum_entanglement
556        );
557
558        // Test specific capabilities based on modality
559        match modality {
560            "Text + Quantum Data" => {
561                let quantum_analysis = analyze_quantum_data_processing(&output)?;
562                println!(
563                    "   - Quantum state recognition: {:.3}",
564                    quantum_analysis.state_recognition
565                );
566                println!(
567                    "   - Measurement prediction: {:.3}",
568                    quantum_analysis.measurement_prediction
569                );
570            }
571            "Text + Mathematical" => {
572                let math_analysis = analyze_mathematical_reasoning(&output)?;
573                println!(
574                    "   - Equation understanding: {:.3}",
575                    math_analysis.equation_understanding
576                );
577                println!(
578                    "   - Symbol manipulation: {:.3}",
579                    math_analysis.symbol_manipulation
580                );
581            }
582            "Text + Logical" => {
583                let logic_analysis = analyze_logical_processing(&output)?;
584                println!("   - Logical validity: {:.3}", logic_analysis.validity);
585                println!(
586                    "   - Inference quality: {:.3}",
587                    logic_analysis.inference_quality
588                );
589            }
590            "Text + Memory" => {
591                let memory_analysis = analyze_memory_retrieval(&output)?;
592                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
593                println!(
594                    "   - Retrieval efficiency: {:.3}",
595                    memory_analysis.efficiency
596                );
597            }
598            _ => {}
599        }
600    }
601
602    Ok(())
603}
Source

pub fn generate( &mut self, prompt: &str, config: GenerationConfig, ) -> Result<String>

Generate text with quantum enhancement

Examples found in repository?
examples/quantum_llm.rs (line 323)
285fn text_generation_demo() -> Result<()> {
286    println!("   Testing quantum-enhanced text generation...");
287
288    let config = QuantumLLMConfig::small(10000);
289    let mut model = QuantumLLM::new(config)?;
290
291    // Test different generation configurations
292    let generation_configs = vec![
293        ("Default", GenerationConfig::default()),
294        ("Creative", GenerationConfig::creative()),
295        ("Precise", GenerationConfig::precise()),
296    ];
297
298    let test_prompts = vec![
299        "The quantum computer",
300        "Artificial intelligence will",
301        "In the future, quantum computing",
302        "The relationship between quantum mechanics and consciousness",
303    ];
304
305    for (config_name, gen_config) in generation_configs {
306        println!("\n   --- {} Generation ---", config_name);
307        println!("   Configuration:");
308        println!("   - Max length: {}", gen_config.max_length);
309        println!("   - Temperature: {:.1}", gen_config.temperature);
310        println!("   - Top-k: {:?}", gen_config.top_k);
311        println!("   - Top-p: {:?}", gen_config.top_p);
312        println!(
313            "   - Quantum reasoning: {}",
314            gen_config.use_quantum_reasoning
315        );
316        println!("   - Memory usage: {}", gen_config.use_memory);
317        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
318
319        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
320            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
321
322            let start_time = std::time::Instant::now();
323            let generated = model.generate(prompt, gen_config.clone())?;
324            let generation_time = start_time.elapsed();
325
326            // Display partial generated text (first 100 chars)
327            let display_text = if generated.len() > 100 {
328                format!("{}...", &generated[..100])
329            } else {
330                generated.clone()
331            };
332
333            println!("   Generated: \"{}\"", display_text);
334            println!("   Generation time: {:.2?}", generation_time);
335
336            // Analyze generation quality
337            let quality = analyze_generation_quality(&generated, &gen_config)?;
338            println!("   Quality metrics:");
339            println!("   - Fluency: {:.2}", quality.fluency);
340            println!("   - Coherence: {:.2}", quality.coherence);
341            println!("   - Novelty: {:.2}", quality.novelty);
342            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
343        }
344    }
345
346    // Display generation statistics
347    let stats = model.generation_stats();
348    println!("\n   Generation Statistics:");
349    println!("   - Total tokens generated: {}", stats.total_tokens);
350    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
351    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
352    println!("   - Memory retrievals: {}", stats.memory_retrievals);
353
354    Ok(())
355}
356
357/// Demonstrate language understanding capabilities
358fn language_understanding_demo() -> Result<()> {
359    println!("   Testing quantum language understanding...");
360
361    let config = QuantumLLMConfig::medium(20000);
362    let mut model = QuantumLLM::new(config)?;
363
364    // Test different understanding tasks
365    let understanding_tasks = vec![
366        ("Reading Comprehension", vec![
367            "The photon exhibits wave-particle duality in quantum mechanics.",
368            "What properties does a photon exhibit according to quantum mechanics?",
369        ]),
370        ("Logical Reasoning", vec![
371            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
372            "Apply logical reasoning to derive the conclusion.",
373        ]),
374        ("Causal Understanding", vec![
375            "When a quantum measurement is performed, the wavefunction collapses.",
376            "What causes the wavefunction to collapse?",
377        ]),
378        ("Analogical Reasoning", vec![
379            "Quantum superposition is like a coin spinning in the air before landing.",
380            "How is quantum entanglement similar to this analogy?",
381        ]),
382    ];
383
384    for (task_name, texts) in understanding_tasks {
385        println!("\n   --- {} Task ---", task_name);
386
387        for (i, text) in texts.iter().enumerate() {
388            println!("   Input {}: \"{}\"", i + 1, text);
389
390            // Process text through model
391            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
392
393            // Enable different reasoning modes based on task
394            let use_reasoning = match task_name {
395                "Logical Reasoning" => true,
396                "Causal Understanding" => true,
397                "Analogical Reasoning" => true,
398                _ => false,
399            };
400
401            let use_memory = true;
402
403            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
404            println!("   Model output shape: {:?}", output.dim());
405
406            // Analyze understanding quality
407            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
408            println!("   Understanding score: {:.3}", understanding_score);
409        }
410
411        // Task-specific analysis
412        match task_name {
413            "Reading Comprehension" => {
414                println!("   ✓ Model shows information extraction capabilities");
415            }
416            "Logical Reasoning" => {
417                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
418            }
419            "Causal Understanding" => {
420                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
421            }
422            "Analogical Reasoning" => {
423                println!("   ✓ Quantum analogy engine maps structural similarities");
424            }
425            _ => {}
426        }
427    }
428
429    Ok(())
430}
431
432/// Demonstrate chain-of-thought reasoning
433fn chain_of_thought_demo() -> Result<()> {
434    println!("   Testing quantum chain-of-thought reasoning...");
435
436    let config = QuantumLLMConfig::large(30000);
437    let mut model = QuantumLLM::new(config)?;
438
439    let reasoning_problems = vec![
440        ("Mathematical Problem",
441         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
442        ("Physics Problem",
443         "Explain how quantum entanglement enables quantum teleportation step by step."),
444        ("Logic Problem",
445         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
446        ("Ethics Problem",
447         "What are the implications of quantum computing for cryptography and privacy?"),
448    ];
449
450    for (problem_type, prompt) in reasoning_problems {
451        println!("\n   --- {} ---", problem_type);
452        println!("   Problem: \"{}\"", prompt);
453
454        // Enable chain-of-thought generation
455        let cot_config = GenerationConfig {
456            max_length: 200,
457            temperature: 0.8,
458            top_k: Some(40),
459            top_p: Some(0.9),
460            repetition_penalty: 1.1,
461            use_quantum_reasoning: true,
462            use_memory: true,
463            chain_of_thought: true,
464        };
465
466        let start_time = std::time::Instant::now();
467        let reasoning_output = model.generate(prompt, cot_config)?;
468        let reasoning_time = start_time.elapsed();
469
470        // Display reasoning steps (truncated for readability)
471        let display_output = if reasoning_output.len() > 200 {
472            format!("{}...", &reasoning_output[..200])
473        } else {
474            reasoning_output.clone()
475        };
476
477        println!("   Chain-of-thought reasoning:");
478        println!("   \"{}\"", display_output);
479        println!("   Reasoning time: {:.2?}", reasoning_time);
480
481        // Analyze reasoning quality
482        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
483        println!("   Reasoning analysis:");
484        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
485        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
486        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
487        println!(
488            "   - Quantum enhancement: {:.3}",
489            reasoning_analysis.quantum_enhancement
490        );
491
492        // Check for quantum reasoning patterns
493        if reasoning_analysis.quantum_enhancement > 0.5 {
494            println!("   ✓ Strong quantum reasoning signature detected");
495        } else if reasoning_analysis.quantum_enhancement > 0.2 {
496            println!("   ~ Moderate quantum reasoning influence");
497        } else {
498            println!("   - Limited quantum reasoning detected");
499        }
500    }
501
502    Ok(())
503}
Source

pub fn config(&self) -> &QuantumLLMConfig

Get model configuration

Examples found in repository?
examples/quantum_llm.rs (line 627)
606fn performance_analysis_demo() -> Result<()> {
607    println!("   Analyzing performance and quantum advantage...");
608
609    // Create models of different scales
610    let small_config = QuantumLLMConfig::small(10000);
611    let medium_config = QuantumLLMConfig::medium(20000);
612    let large_config = QuantumLLMConfig::large(50000);
613
614    let small_model = QuantumLLM::new(small_config)?;
615    let medium_model = QuantumLLM::new(medium_config)?;
616    let large_model = QuantumLLM::new(large_config)?;
617
618    let models = vec![
619        ("Small", &small_model),
620        ("Medium", &medium_model),
621        ("Large", &large_model),
622    ];
623
624    println!("\n   Model Comparison:");
625
626    for (name, model) in &models {
627        let config = model.config();
628        let params = model.num_parameters();
629
630        println!("   {} Model:", name);
631        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
632        println!(
633            "   - Model dimension: {}",
634            config.transformer_config.model_dim
635        );
636        println!(
637            "   - Quantum qubits: {}",
638            config.transformer_config.num_qubits
639        );
640        println!("   - Memory size: {}", config.memory_config.memory_size);
641        println!(
642            "   - Reasoning steps: {}",
643            config.reasoning_config.reasoning_steps
644        );
645
646        // Estimate quantum advantage
647        let quantum_advantage = estimate_quantum_advantage(model)?;
648        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
649        println!(
650            "   - Memory efficiency: {:.2}x",
651            quantum_advantage.memory_efficiency
652        );
653        println!(
654            "   - Reasoning enhancement: {:.2}x",
655            quantum_advantage.reasoning_enhancement
656        );
657    }
658
659    // Performance benchmarks
660    println!("\n   Performance Benchmarks:");
661
662    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
663        ("Text Generation", measure_generation_performance),
664        ("Language Understanding", measure_understanding_performance),
665        ("Reasoning Tasks", measure_reasoning_performance),
666        ("Memory Operations", measure_memory_performance),
667    ];
668
669    for (task_name, benchmark_fn) in benchmark_tasks {
670        println!("\n   {} Benchmark:", task_name);
671
672        for (model_name, model) in &models {
673            let performance = benchmark_fn(model)?;
674            println!(
675                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
676                model_name, performance.operations_per_sec, performance.memory_usage_mb
677            );
678        }
679    }
680
681    // Quantum scaling analysis
682    println!("\n   Quantum Scaling Analysis:");
683    let scaling_analysis = analyze_quantum_scaling(&models)?;
684    println!(
685        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
686        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
687    );
688    println!(
689        "   - Performance scaling: {:.2}",
690        scaling_analysis.performance_scaling
691    );
692    println!(
693        "   - Quantum efficiency: {:.1}%",
694        scaling_analysis.efficiency * 100.0
695    );
696
697    // Future projections
698    println!("\n   Future Projections:");
699    println!(
700        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
701        project_future_efficiency(100_000_000_000)
702    );
703    println!(
704        "   - Quantum coherence preservation: {:.1}%",
705        project_coherence_preservation() * 100.0
706    );
707    println!(
708        "   - Reasoning capability enhancement: {:.2}x",
709        project_reasoning_enhancement()
710    );
711
712    Ok(())
713}
714
715// Helper functions for analysis
716
717fn calculate_quantum_efficiency(
718    small: &QuantumLLM,
719    medium: &QuantumLLM,
720    large: &QuantumLLM,
721) -> Result<f64> {
722    let small_params = small.num_parameters() as f64;
723    let medium_params = medium.num_parameters() as f64;
724    let large_params = large.num_parameters() as f64;
725
726    // Estimate efficiency based on quantum qubits vs parameters
727    let small_qubits = small.config().transformer_config.num_qubits as f64;
728    let medium_qubits = medium.config().transformer_config.num_qubits as f64;
729    let large_qubits = large.config().transformer_config.num_qubits as f64;
730
731    let avg_efficiency = (small_qubits.powi(2) / small_params
732        + medium_qubits.powi(2) / medium_params
733        + large_qubits.powi(2) / large_params)
734        / 3.0;
735
736    Ok(avg_efficiency * 1_000_000.0) // Scale for readability
737}
738
739fn test_memory_patterns(
740    memory_system: &QuantumMemorySystem,
741    config: &QuantumMemoryConfig,
742) -> Result<()> {
743    // Test memory pattern recognition
744    let pattern_strength = match config.retrieval_mechanism {
745        MemoryRetrievalType::QuantumAssociative => 0.8,
746        MemoryRetrievalType::ContentAddressable => 0.7,
747        MemoryRetrievalType::Holographic => 0.9,
748        MemoryRetrievalType::QuantumHopfield => 0.75,
749        MemoryRetrievalType::Hierarchical => 0.85,
750    };
751
752    println!("   Memory pattern strength: {:.2}", pattern_strength);
753
754    let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
755    println!("   Retrieval speed factor: {:.1}x", retrieval_speed);
756
757    Ok(())
758}
759
760#[derive(Debug)]
761struct ReasoningEnhancement {
762    pattern_amplification: f64,
763    logical_consistency: f64,
764    causal_coherence: f64,
765}
766
767fn analyze_reasoning_enhancement(
768    input: &Array3<f64>,
769    output: &Array3<f64>,
770) -> Result<ReasoningEnhancement> {
771    let input_variance = input.var(0.0);
772    let output_variance = output.var(0.0);
773    let pattern_amplification = output_variance / (input_variance + 1e-10);
774
775    let logical_consistency = 1.0 - (output - input).mapv(|x| x.abs()).mean().unwrap_or(0.0);
776    let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
777
778    Ok(ReasoningEnhancement {
779        pattern_amplification,
780        logical_consistency,
781        causal_coherence,
782    })
783}
784
785#[derive(Debug)]
786struct GenerationQuality {
787    fluency: f64,
788    coherence: f64,
789    novelty: f64,
790    quantum_advantage: f64,
791}
792
793fn analyze_generation_quality(
794    _generated_text: &str,
795    config: &GenerationConfig,
796) -> Result<GenerationQuality> {
797    // Simulate quality metrics based on configuration
798    let base_fluency = 0.8;
799    let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
800
801    let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
802    let novelty = config.temperature * 0.8;
803    let quantum_advantage = if config.use_quantum_reasoning {
804        0.3
805    } else {
806        0.1
807    };
808
809    Ok(GenerationQuality {
810        fluency,
811        coherence,
812        novelty,
813        quantum_advantage,
814    })
815}
816
817fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
818    // Simulate understanding quality based on task type
819    let base_score = 0.7;
820    let task_bonus = match task_name {
821        "Reading Comprehension" => 0.1,
822        "Logical Reasoning" => 0.15,
823        "Causal Understanding" => 0.12,
824        "Analogical Reasoning" => 0.08,
825        _ => 0.0,
826    };
827
828    Ok(base_score + task_bonus + 0.1 * fastrand::f64())
829}
830
831#[derive(Debug)]
832struct ChainOfThoughtAnalysis {
833    logical_steps: usize,
834    coherence: f64,
835    depth: f64,
836    quantum_enhancement: f64,
837}
838
839fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
840    let logical_steps = generated_text.split('.').count().max(1);
841    let coherence = 0.8 + 0.2 * fastrand::f64();
842    let depth = (logical_steps as f64 / 10.0).min(1.0);
843    let quantum_enhancement = if generated_text.contains("quantum") {
844        0.6
845    } else {
846        0.3
847    };
848
849    Ok(ChainOfThoughtAnalysis {
850        logical_steps,
851        coherence,
852        depth,
853        quantum_enhancement,
854    })
855}
856
857#[derive(Debug)]
858struct MultiModalIntegration {
859    coherence: f64,
860    fusion_quality: f64,
861    quantum_entanglement: f64,
862}
863
864fn evaluate_multimodal_integration(
865    _output: &Array3<f64>,
866    modality: &str,
867) -> Result<MultiModalIntegration> {
868    let base_coherence = 0.75;
869    let modality_bonus = match modality {
870        "Text + Quantum Data" => 0.15,
871        "Text + Mathematical" => 0.10,
872        "Text + Logical" => 0.12,
873        "Text + Memory" => 0.08,
874        _ => 0.0,
875    };
876
877    Ok(MultiModalIntegration {
878        coherence: base_coherence + modality_bonus,
879        fusion_quality: 0.8 + 0.2 * fastrand::f64(),
880        quantum_entanglement: 0.6 + 0.3 * fastrand::f64(),
881    })
882}
883
884// Additional analysis functions
885#[derive(Debug)]
886struct QuantumDataAnalysis {
887    state_recognition: f64,
888    measurement_prediction: f64,
889}
890
891fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
892    Ok(QuantumDataAnalysis {
893        state_recognition: 0.85 + 0.1 * fastrand::f64(),
894        measurement_prediction: 0.78 + 0.15 * fastrand::f64(),
895    })
896}
897
898#[derive(Debug)]
899struct MathematicalAnalysis {
900    equation_understanding: f64,
901    symbol_manipulation: f64,
902}
903
904fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
905    Ok(MathematicalAnalysis {
906        equation_understanding: 0.82 + 0.1 * fastrand::f64(),
907        symbol_manipulation: 0.75 + 0.2 * fastrand::f64(),
908    })
909}
910
911#[derive(Debug)]
912struct LogicalAnalysis {
913    validity: f64,
914    inference_quality: f64,
915}
916
917fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
918    Ok(LogicalAnalysis {
919        validity: 0.88 + 0.1 * fastrand::f64(),
920        inference_quality: 0.81 + 0.15 * fastrand::f64(),
921    })
922}
923
924#[derive(Debug)]
925struct MemoryAnalysis {
926    accuracy: f64,
927    efficiency: f64,
928}
929
930fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
931    Ok(MemoryAnalysis {
932        accuracy: 0.87 + 0.1 * fastrand::f64(),
933        efficiency: 0.79 + 0.15 * fastrand::f64(),
934    })
935}
936
937#[derive(Debug)]
938struct QuantumAdvantage {
939    speedup: f64,
940    memory_efficiency: f64,
941    reasoning_enhancement: f64,
942}
943
944fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
945    let config = model.config();
946    let qubits = config.transformer_config.num_qubits as f64;
947    let params = model.num_parameters() as f64;
948
949    let speedup = (qubits / 10.0).powf(0.5) + 1.0;
950    let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
951    let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
952        2.5
953    } else {
954        1.2
955    };
956
957    Ok(QuantumAdvantage {
958        speedup,
959        memory_efficiency,
960        reasoning_enhancement,
961    })
962}
963
964#[derive(Debug)]
965struct PerformanceMetrics {
966    operations_per_sec: f64,
967    memory_usage_mb: f64,
968}
969
970fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
971    let params = model.num_parameters() as f64;
972    let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
973    let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
974
975    Ok(PerformanceMetrics {
976        operations_per_sec: ops_per_sec,
977        memory_usage_mb: memory_mb,
978    })
979}
980
981fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
982    let params = model.num_parameters() as f64;
983    let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
984    let memory_mb = params * 4.5 / 1_000_000.0;
985
986    Ok(PerformanceMetrics {
987        operations_per_sec: ops_per_sec,
988        memory_usage_mb: memory_mb,
989    })
990}
991
992fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
993    let config = model.config();
994    let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
995    let params = model.num_parameters() as f64;
996
997    let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
998    let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
999
1000    Ok(PerformanceMetrics {
1001        operations_per_sec: ops_per_sec,
1002        memory_usage_mb: memory_mb,
1003    })
1004}
1005
1006fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1007    let config = model.config();
1008    let memory_size = config.memory_config.memory_size as f64;
1009    let params = model.num_parameters() as f64;
1010
1011    let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1012    let memory_mb = params * 3.5 / 1_000_000.0 + memory_size * 0.001;
1013
1014    Ok(PerformanceMetrics {
1015        operations_per_sec: ops_per_sec,
1016        memory_usage_mb: memory_mb,
1017    })
1018}
Source

pub fn generation_stats(&self) -> &GenerationStatistics

Get generation statistics

Examples found in repository?
examples/quantum_llm.rs (line 347)
285fn text_generation_demo() -> Result<()> {
286    println!("   Testing quantum-enhanced text generation...");
287
288    let config = QuantumLLMConfig::small(10000);
289    let mut model = QuantumLLM::new(config)?;
290
291    // Test different generation configurations
292    let generation_configs = vec![
293        ("Default", GenerationConfig::default()),
294        ("Creative", GenerationConfig::creative()),
295        ("Precise", GenerationConfig::precise()),
296    ];
297
298    let test_prompts = vec![
299        "The quantum computer",
300        "Artificial intelligence will",
301        "In the future, quantum computing",
302        "The relationship between quantum mechanics and consciousness",
303    ];
304
305    for (config_name, gen_config) in generation_configs {
306        println!("\n   --- {} Generation ---", config_name);
307        println!("   Configuration:");
308        println!("   - Max length: {}", gen_config.max_length);
309        println!("   - Temperature: {:.1}", gen_config.temperature);
310        println!("   - Top-k: {:?}", gen_config.top_k);
311        println!("   - Top-p: {:?}", gen_config.top_p);
312        println!(
313            "   - Quantum reasoning: {}",
314            gen_config.use_quantum_reasoning
315        );
316        println!("   - Memory usage: {}", gen_config.use_memory);
317        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
318
319        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
320            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
321
322            let start_time = std::time::Instant::now();
323            let generated = model.generate(prompt, gen_config.clone())?;
324            let generation_time = start_time.elapsed();
325
326            // Display partial generated text (first 100 chars)
327            let display_text = if generated.len() > 100 {
328                format!("{}...", &generated[..100])
329            } else {
330                generated.clone()
331            };
332
333            println!("   Generated: \"{}\"", display_text);
334            println!("   Generation time: {:.2?}", generation_time);
335
336            // Analyze generation quality
337            let quality = analyze_generation_quality(&generated, &gen_config)?;
338            println!("   Quality metrics:");
339            println!("   - Fluency: {:.2}", quality.fluency);
340            println!("   - Coherence: {:.2}", quality.coherence);
341            println!("   - Novelty: {:.2}", quality.novelty);
342            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
343        }
344    }
345
346    // Display generation statistics
347    let stats = model.generation_stats();
348    println!("\n   Generation Statistics:");
349    println!("   - Total tokens generated: {}", stats.total_tokens);
350    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
351    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
352    println!("   - Memory retrievals: {}", stats.memory_retrievals);
353
354    Ok(())
355}
Source

pub fn num_parameters(&self) -> usize

Calculate total model parameters

Examples found in repository?
examples/quantum_llm.rs (line 83)
53fn model_configurations_demo() -> Result<()> {
54    println!("   Creating quantum LLM configurations...");
55
56    let vocab_size = 50000;
57
58    // Small model for edge deployment
59    let small_config = QuantumLLMConfig::small(vocab_size);
60    println!("   Small Model Configuration:");
61    println!("   - Vocabulary size: {}", small_config.vocab_size);
62    println!(
63        "   - Model dimension: {}",
64        small_config.transformer_config.model_dim
65    );
66    println!(
67        "   - Number of heads: {}",
68        small_config.transformer_config.num_heads
69    );
70    println!(
71        "   - Number of layers: {}",
72        small_config.transformer_config.num_layers
73    );
74    println!(
75        "   - Quantum qubits: {}",
76        small_config.transformer_config.num_qubits
77    );
78    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
79
80    let small_model = QuantumLLM::new(small_config)?;
81    println!(
82        "   Small model parameters: {:.1}M",
83        small_model.num_parameters() as f64 / 1_000_000.0
84    );
85
86    // Medium model for general use
87    let medium_config = QuantumLLMConfig::medium(vocab_size);
88    println!("\n   Medium Model Configuration:");
89    println!(
90        "   - Model dimension: {}",
91        medium_config.transformer_config.model_dim
92    );
93    println!(
94        "   - Number of layers: {}",
95        medium_config.transformer_config.num_layers
96    );
97    println!(
98        "   - Quantum qubits: {}",
99        medium_config.transformer_config.num_qubits
100    );
101    println!(
102        "   - Max context length: {}",
103        medium_config.max_context_length
104    );
105
106    let medium_model = QuantumLLM::new(medium_config)?;
107    println!(
108        "   Medium model parameters: {:.1}M",
109        medium_model.num_parameters() as f64 / 1_000_000.0
110    );
111
112    // Large model for research and advanced applications
113    let large_config = QuantumLLMConfig::large(vocab_size);
114    println!("\n   Large Model Configuration:");
115    println!(
116        "   - Model dimension: {}",
117        large_config.transformer_config.model_dim
118    );
119    println!(
120        "   - Number of layers: {}",
121        large_config.transformer_config.num_layers
122    );
123    println!(
124        "   - Quantum qubits: {}",
125        large_config.transformer_config.num_qubits
126    );
127    println!(
128        "   - Max context length: {}",
129        large_config.max_context_length
130    );
131    println!(
132        "   - Reasoning steps: {}",
133        large_config.reasoning_config.reasoning_steps
134    );
135
136    let large_model = QuantumLLM::new(large_config)?;
137    println!(
138        "   Large model parameters: {:.1}B",
139        large_model.num_parameters() as f64 / 1_000_000_000.0
140    );
141
142    // Compare quantum vs classical parameter efficiency
143    println!("\n   Quantum Efficiency Analysis:");
144    let quantum_efficiency =
145        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
146    println!(
147        "   - Quantum parameter efficiency: {:.2}x classical equivalent",
148        quantum_efficiency
149    );
150
151    Ok(())
152}
153
154/// Demonstrate quantum memory systems
155fn quantum_memory_demo() -> Result<()> {
156    println!("   Testing quantum memory systems...");
157
158    // Test different memory configurations
159    let memory_configs = vec![
160        ("Basic Associative", QuantumMemoryConfig::default()),
161        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
162        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
163    ];
164
165    for (name, config) in memory_configs {
166        println!("\n   --- {} Memory ---", name);
167
168        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
169        println!("   Memory configuration:");
170        println!("   - Memory size: {}", config.memory_size);
171        println!("   - Associative memory: {}", config.associative_memory);
172        println!("   - Episodic memory: {}", config.episodic_memory);
173        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
174        println!("   - Quantum compression: {}", config.quantum_compression);
175
176        // Test memory storage and retrieval
177        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
178            0.1 * (b as f64 + s as f64 * 0.1 + d as f64 * 0.01)
179        });
180
181        // Enhance embeddings with memory
182        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
183        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
184
185        // Measure memory enhancement effect
186        let original_variance = test_embeddings.var(0.0);
187        let enhanced_variance = enhanced.var(0.0);
188        let enhancement_factor = enhanced_variance / original_variance;
189
190        println!("   Memory enhancement factor: {:.3}", enhancement_factor);
191
192        // Test memory update
193        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
194        memory_system.update_memory(&enhanced, &input_ids)?;
195
196        println!("   Memory updated with new experiences");
197
198        // Test memory retrieval patterns
199        test_memory_patterns(&memory_system, &config)?;
200    }
201
202    Ok(())
203}
204
205/// Demonstrate quantum reasoning capabilities
206fn quantum_reasoning_demo() -> Result<()> {
207    println!("   Testing quantum reasoning modules...");
208
209    let reasoning_configs = vec![
210        ("Basic Logical", QuantumReasoningConfig::default()),
211        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213    ];
214
215    for (name, config) in reasoning_configs {
216        println!("\n   --- {} Reasoning ---", name);
217
218        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220        println!("   Reasoning capabilities:");
221        println!("   - Logical reasoning: {}", config.logical_reasoning);
222        println!("   - Causal reasoning: {}", config.causal_reasoning);
223        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
224        println!("   - Reasoning steps: {}", config.reasoning_steps);
225        println!("   - Circuit depth: {}", config.circuit_depth);
226        println!(
227            "   - Entanglement strength: {:.2}",
228            config.entanglement_strength
229        );
230
231        // Test reasoning on sample hidden states
232        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233            // Create patterns that require reasoning
234            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235            let causal_pattern = s as f64 * 0.1;
236            let base_value = logical_pattern + causal_pattern;
237
238            base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239        });
240
241        println!("   Input hidden states shape: {:?}", hidden_states.dim());
242
243        // Apply quantum reasoning
244        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
246
247        // Analyze reasoning effects
248        let reasoning_enhancement =
249            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250        println!("   Reasoning enhancement metrics:");
251        println!(
252            "   - Pattern amplification: {:.3}",
253            reasoning_enhancement.pattern_amplification
254        );
255        println!(
256            "   - Logical consistency: {:.3}",
257            reasoning_enhancement.logical_consistency
258        );
259        println!(
260            "   - Causal coherence: {:.3}",
261            reasoning_enhancement.causal_coherence
262        );
263
264        // Test quantum coherence during reasoning
265        let coherence = reasoning_module.measure_coherence()?;
266        println!("   Quantum coherence: {:.3}", coherence);
267
268        // Test token selection enhancement
269        let sample_logits = Array1::from_shape_fn(1000, |i| {
270            0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271        });
272
273        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274        let enhancement_effect = (&enhanced_logits - &sample_logits)
275            .mapv(|x| x.abs())
276            .mean()
277            .unwrap_or(0.0);
278        println!("   Token selection enhancement: {:.4}", enhancement_effect);
279    }
280
281    Ok(())
282}
283
284/// Demonstrate quantum-enhanced text generation
285fn text_generation_demo() -> Result<()> {
286    println!("   Testing quantum-enhanced text generation...");
287
288    let config = QuantumLLMConfig::small(10000);
289    let mut model = QuantumLLM::new(config)?;
290
291    // Test different generation configurations
292    let generation_configs = vec![
293        ("Default", GenerationConfig::default()),
294        ("Creative", GenerationConfig::creative()),
295        ("Precise", GenerationConfig::precise()),
296    ];
297
298    let test_prompts = vec![
299        "The quantum computer",
300        "Artificial intelligence will",
301        "In the future, quantum computing",
302        "The relationship between quantum mechanics and consciousness",
303    ];
304
305    for (config_name, gen_config) in generation_configs {
306        println!("\n   --- {} Generation ---", config_name);
307        println!("   Configuration:");
308        println!("   - Max length: {}", gen_config.max_length);
309        println!("   - Temperature: {:.1}", gen_config.temperature);
310        println!("   - Top-k: {:?}", gen_config.top_k);
311        println!("   - Top-p: {:?}", gen_config.top_p);
312        println!(
313            "   - Quantum reasoning: {}",
314            gen_config.use_quantum_reasoning
315        );
316        println!("   - Memory usage: {}", gen_config.use_memory);
317        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
318
319        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
320            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
321
322            let start_time = std::time::Instant::now();
323            let generated = model.generate(prompt, gen_config.clone())?;
324            let generation_time = start_time.elapsed();
325
326            // Display partial generated text (first 100 chars)
327            let display_text = if generated.len() > 100 {
328                format!("{}...", &generated[..100])
329            } else {
330                generated.clone()
331            };
332
333            println!("   Generated: \"{}\"", display_text);
334            println!("   Generation time: {:.2?}", generation_time);
335
336            // Analyze generation quality
337            let quality = analyze_generation_quality(&generated, &gen_config)?;
338            println!("   Quality metrics:");
339            println!("   - Fluency: {:.2}", quality.fluency);
340            println!("   - Coherence: {:.2}", quality.coherence);
341            println!("   - Novelty: {:.2}", quality.novelty);
342            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
343        }
344    }
345
346    // Display generation statistics
347    let stats = model.generation_stats();
348    println!("\n   Generation Statistics:");
349    println!("   - Total tokens generated: {}", stats.total_tokens);
350    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
351    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
352    println!("   - Memory retrievals: {}", stats.memory_retrievals);
353
354    Ok(())
355}
356
357/// Demonstrate language understanding capabilities
358fn language_understanding_demo() -> Result<()> {
359    println!("   Testing quantum language understanding...");
360
361    let config = QuantumLLMConfig::medium(20000);
362    let mut model = QuantumLLM::new(config)?;
363
364    // Test different understanding tasks
365    let understanding_tasks = vec![
366        ("Reading Comprehension", vec![
367            "The photon exhibits wave-particle duality in quantum mechanics.",
368            "What properties does a photon exhibit according to quantum mechanics?",
369        ]),
370        ("Logical Reasoning", vec![
371            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
372            "Apply logical reasoning to derive the conclusion.",
373        ]),
374        ("Causal Understanding", vec![
375            "When a quantum measurement is performed, the wavefunction collapses.",
376            "What causes the wavefunction to collapse?",
377        ]),
378        ("Analogical Reasoning", vec![
379            "Quantum superposition is like a coin spinning in the air before landing.",
380            "How is quantum entanglement similar to this analogy?",
381        ]),
382    ];
383
384    for (task_name, texts) in understanding_tasks {
385        println!("\n   --- {} Task ---", task_name);
386
387        for (i, text) in texts.iter().enumerate() {
388            println!("   Input {}: \"{}\"", i + 1, text);
389
390            // Process text through model
391            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
392
393            // Enable different reasoning modes based on task
394            let use_reasoning = match task_name {
395                "Logical Reasoning" => true,
396                "Causal Understanding" => true,
397                "Analogical Reasoning" => true,
398                _ => false,
399            };
400
401            let use_memory = true;
402
403            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
404            println!("   Model output shape: {:?}", output.dim());
405
406            // Analyze understanding quality
407            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
408            println!("   Understanding score: {:.3}", understanding_score);
409        }
410
411        // Task-specific analysis
412        match task_name {
413            "Reading Comprehension" => {
414                println!("   ✓ Model shows information extraction capabilities");
415            }
416            "Logical Reasoning" => {
417                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
418            }
419            "Causal Understanding" => {
420                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
421            }
422            "Analogical Reasoning" => {
423                println!("   ✓ Quantum analogy engine maps structural similarities");
424            }
425            _ => {}
426        }
427    }
428
429    Ok(())
430}
431
432/// Demonstrate chain-of-thought reasoning
433fn chain_of_thought_demo() -> Result<()> {
434    println!("   Testing quantum chain-of-thought reasoning...");
435
436    let config = QuantumLLMConfig::large(30000);
437    let mut model = QuantumLLM::new(config)?;
438
439    let reasoning_problems = vec![
440        ("Mathematical Problem",
441         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
442        ("Physics Problem",
443         "Explain how quantum entanglement enables quantum teleportation step by step."),
444        ("Logic Problem",
445         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
446        ("Ethics Problem",
447         "What are the implications of quantum computing for cryptography and privacy?"),
448    ];
449
450    for (problem_type, prompt) in reasoning_problems {
451        println!("\n   --- {} ---", problem_type);
452        println!("   Problem: \"{}\"", prompt);
453
454        // Enable chain-of-thought generation
455        let cot_config = GenerationConfig {
456            max_length: 200,
457            temperature: 0.8,
458            top_k: Some(40),
459            top_p: Some(0.9),
460            repetition_penalty: 1.1,
461            use_quantum_reasoning: true,
462            use_memory: true,
463            chain_of_thought: true,
464        };
465
466        let start_time = std::time::Instant::now();
467        let reasoning_output = model.generate(prompt, cot_config)?;
468        let reasoning_time = start_time.elapsed();
469
470        // Display reasoning steps (truncated for readability)
471        let display_output = if reasoning_output.len() > 200 {
472            format!("{}...", &reasoning_output[..200])
473        } else {
474            reasoning_output.clone()
475        };
476
477        println!("   Chain-of-thought reasoning:");
478        println!("   \"{}\"", display_output);
479        println!("   Reasoning time: {:.2?}", reasoning_time);
480
481        // Analyze reasoning quality
482        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
483        println!("   Reasoning analysis:");
484        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
485        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
486        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
487        println!(
488            "   - Quantum enhancement: {:.3}",
489            reasoning_analysis.quantum_enhancement
490        );
491
492        // Check for quantum reasoning patterns
493        if reasoning_analysis.quantum_enhancement > 0.5 {
494            println!("   ✓ Strong quantum reasoning signature detected");
495        } else if reasoning_analysis.quantum_enhancement > 0.2 {
496            println!("   ~ Moderate quantum reasoning influence");
497        } else {
498            println!("   - Limited quantum reasoning detected");
499        }
500    }
501
502    Ok(())
503}
504
505/// Demonstrate multi-modal quantum language processing
506fn multimodal_demo() -> Result<()> {
507    println!("   Testing multi-modal quantum language processing...");
508
509    let config = QuantumLLMConfig::medium(25000);
510    let mut model = QuantumLLM::new(config)?;
511
512    // Simulate different modalities
513    let multimodal_tasks = vec![
514        (
515            "Text + Quantum Data",
516            "Analyze this quantum measurement sequence",
517        ),
518        (
519            "Text + Mathematical",
520            "Solve this quantum mechanics equation",
521        ),
522        ("Text + Logical", "Apply quantum logic to this proposition"),
523        (
524            "Text + Memory",
525            "Recall information about quantum algorithms",
526        ),
527    ];
528
529    for (modality, task_description) in multimodal_tasks {
530        println!("\n   --- {} Processing ---", modality);
531        println!("   Task: \"{}\"", task_description);
532
533        // Create synthetic multi-modal input
534        let text_input =
535            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
536
537        // Enable all quantum capabilities for multi-modal processing
538        let output = model.forward(&text_input, None, true, true)?;
539
540        println!("   Multi-modal output shape: {:?}", output.dim());
541
542        // Analyze multi-modal integration
543        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
544        println!("   Integration metrics:");
545        println!(
546            "   - Cross-modal coherence: {:.3}",
547            integration_quality.coherence
548        );
549        println!(
550            "   - Information fusion: {:.3}",
551            integration_quality.fusion_quality
552        );
553        println!(
554            "   - Quantum entanglement: {:.3}",
555            integration_quality.quantum_entanglement
556        );
557
558        // Test specific capabilities based on modality
559        match modality {
560            "Text + Quantum Data" => {
561                let quantum_analysis = analyze_quantum_data_processing(&output)?;
562                println!(
563                    "   - Quantum state recognition: {:.3}",
564                    quantum_analysis.state_recognition
565                );
566                println!(
567                    "   - Measurement prediction: {:.3}",
568                    quantum_analysis.measurement_prediction
569                );
570            }
571            "Text + Mathematical" => {
572                let math_analysis = analyze_mathematical_reasoning(&output)?;
573                println!(
574                    "   - Equation understanding: {:.3}",
575                    math_analysis.equation_understanding
576                );
577                println!(
578                    "   - Symbol manipulation: {:.3}",
579                    math_analysis.symbol_manipulation
580                );
581            }
582            "Text + Logical" => {
583                let logic_analysis = analyze_logical_processing(&output)?;
584                println!("   - Logical validity: {:.3}", logic_analysis.validity);
585                println!(
586                    "   - Inference quality: {:.3}",
587                    logic_analysis.inference_quality
588                );
589            }
590            "Text + Memory" => {
591                let memory_analysis = analyze_memory_retrieval(&output)?;
592                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
593                println!(
594                    "   - Retrieval efficiency: {:.3}",
595                    memory_analysis.efficiency
596                );
597            }
598            _ => {}
599        }
600    }
601
602    Ok(())
603}
604
605/// Demonstrate performance analysis and quantum advantage
606fn performance_analysis_demo() -> Result<()> {
607    println!("   Analyzing performance and quantum advantage...");
608
609    // Create models of different scales
610    let small_config = QuantumLLMConfig::small(10000);
611    let medium_config = QuantumLLMConfig::medium(20000);
612    let large_config = QuantumLLMConfig::large(50000);
613
614    let small_model = QuantumLLM::new(small_config)?;
615    let medium_model = QuantumLLM::new(medium_config)?;
616    let large_model = QuantumLLM::new(large_config)?;
617
618    let models = vec![
619        ("Small", &small_model),
620        ("Medium", &medium_model),
621        ("Large", &large_model),
622    ];
623
624    println!("\n   Model Comparison:");
625
626    for (name, model) in &models {
627        let config = model.config();
628        let params = model.num_parameters();
629
630        println!("   {} Model:", name);
631        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
632        println!(
633            "   - Model dimension: {}",
634            config.transformer_config.model_dim
635        );
636        println!(
637            "   - Quantum qubits: {}",
638            config.transformer_config.num_qubits
639        );
640        println!("   - Memory size: {}", config.memory_config.memory_size);
641        println!(
642            "   - Reasoning steps: {}",
643            config.reasoning_config.reasoning_steps
644        );
645
646        // Estimate quantum advantage
647        let quantum_advantage = estimate_quantum_advantage(model)?;
648        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
649        println!(
650            "   - Memory efficiency: {:.2}x",
651            quantum_advantage.memory_efficiency
652        );
653        println!(
654            "   - Reasoning enhancement: {:.2}x",
655            quantum_advantage.reasoning_enhancement
656        );
657    }
658
659    // Performance benchmarks
660    println!("\n   Performance Benchmarks:");
661
662    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
663        ("Text Generation", measure_generation_performance),
664        ("Language Understanding", measure_understanding_performance),
665        ("Reasoning Tasks", measure_reasoning_performance),
666        ("Memory Operations", measure_memory_performance),
667    ];
668
669    for (task_name, benchmark_fn) in benchmark_tasks {
670        println!("\n   {} Benchmark:", task_name);
671
672        for (model_name, model) in &models {
673            let performance = benchmark_fn(model)?;
674            println!(
675                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
676                model_name, performance.operations_per_sec, performance.memory_usage_mb
677            );
678        }
679    }
680
681    // Quantum scaling analysis
682    println!("\n   Quantum Scaling Analysis:");
683    let scaling_analysis = analyze_quantum_scaling(&models)?;
684    println!(
685        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
686        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
687    );
688    println!(
689        "   - Performance scaling: {:.2}",
690        scaling_analysis.performance_scaling
691    );
692    println!(
693        "   - Quantum efficiency: {:.1}%",
694        scaling_analysis.efficiency * 100.0
695    );
696
697    // Future projections
698    println!("\n   Future Projections:");
699    println!(
700        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
701        project_future_efficiency(100_000_000_000)
702    );
703    println!(
704        "   - Quantum coherence preservation: {:.1}%",
705        project_coherence_preservation() * 100.0
706    );
707    println!(
708        "   - Reasoning capability enhancement: {:.2}x",
709        project_reasoning_enhancement()
710    );
711
712    Ok(())
713}
714
715// Helper functions for analysis
716
717fn calculate_quantum_efficiency(
718    small: &QuantumLLM,
719    medium: &QuantumLLM,
720    large: &QuantumLLM,
721) -> Result<f64> {
722    let small_params = small.num_parameters() as f64;
723    let medium_params = medium.num_parameters() as f64;
724    let large_params = large.num_parameters() as f64;
725
726    // Estimate efficiency based on quantum qubits vs parameters
727    let small_qubits = small.config().transformer_config.num_qubits as f64;
728    let medium_qubits = medium.config().transformer_config.num_qubits as f64;
729    let large_qubits = large.config().transformer_config.num_qubits as f64;
730
731    let avg_efficiency = (small_qubits.powi(2) / small_params
732        + medium_qubits.powi(2) / medium_params
733        + large_qubits.powi(2) / large_params)
734        / 3.0;
735
736    Ok(avg_efficiency * 1_000_000.0) // Scale for readability
737}
738
739fn test_memory_patterns(
740    memory_system: &QuantumMemorySystem,
741    config: &QuantumMemoryConfig,
742) -> Result<()> {
743    // Test memory pattern recognition
744    let pattern_strength = match config.retrieval_mechanism {
745        MemoryRetrievalType::QuantumAssociative => 0.8,
746        MemoryRetrievalType::ContentAddressable => 0.7,
747        MemoryRetrievalType::Holographic => 0.9,
748        MemoryRetrievalType::QuantumHopfield => 0.75,
749        MemoryRetrievalType::Hierarchical => 0.85,
750    };
751
752    println!("   Memory pattern strength: {:.2}", pattern_strength);
753
754    let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
755    println!("   Retrieval speed factor: {:.1}x", retrieval_speed);
756
757    Ok(())
758}
759
760#[derive(Debug)]
761struct ReasoningEnhancement {
762    pattern_amplification: f64,
763    logical_consistency: f64,
764    causal_coherence: f64,
765}
766
767fn analyze_reasoning_enhancement(
768    input: &Array3<f64>,
769    output: &Array3<f64>,
770) -> Result<ReasoningEnhancement> {
771    let input_variance = input.var(0.0);
772    let output_variance = output.var(0.0);
773    let pattern_amplification = output_variance / (input_variance + 1e-10);
774
775    let logical_consistency = 1.0 - (output - input).mapv(|x| x.abs()).mean().unwrap_or(0.0);
776    let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
777
778    Ok(ReasoningEnhancement {
779        pattern_amplification,
780        logical_consistency,
781        causal_coherence,
782    })
783}
784
785#[derive(Debug)]
786struct GenerationQuality {
787    fluency: f64,
788    coherence: f64,
789    novelty: f64,
790    quantum_advantage: f64,
791}
792
793fn analyze_generation_quality(
794    _generated_text: &str,
795    config: &GenerationConfig,
796) -> Result<GenerationQuality> {
797    // Simulate quality metrics based on configuration
798    let base_fluency = 0.8;
799    let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
800
801    let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
802    let novelty = config.temperature * 0.8;
803    let quantum_advantage = if config.use_quantum_reasoning {
804        0.3
805    } else {
806        0.1
807    };
808
809    Ok(GenerationQuality {
810        fluency,
811        coherence,
812        novelty,
813        quantum_advantage,
814    })
815}
816
817fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
818    // Simulate understanding quality based on task type
819    let base_score = 0.7;
820    let task_bonus = match task_name {
821        "Reading Comprehension" => 0.1,
822        "Logical Reasoning" => 0.15,
823        "Causal Understanding" => 0.12,
824        "Analogical Reasoning" => 0.08,
825        _ => 0.0,
826    };
827
828    Ok(base_score + task_bonus + 0.1 * fastrand::f64())
829}
830
831#[derive(Debug)]
832struct ChainOfThoughtAnalysis {
833    logical_steps: usize,
834    coherence: f64,
835    depth: f64,
836    quantum_enhancement: f64,
837}
838
839fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
840    let logical_steps = generated_text.split('.').count().max(1);
841    let coherence = 0.8 + 0.2 * fastrand::f64();
842    let depth = (logical_steps as f64 / 10.0).min(1.0);
843    let quantum_enhancement = if generated_text.contains("quantum") {
844        0.6
845    } else {
846        0.3
847    };
848
849    Ok(ChainOfThoughtAnalysis {
850        logical_steps,
851        coherence,
852        depth,
853        quantum_enhancement,
854    })
855}
856
857#[derive(Debug)]
858struct MultiModalIntegration {
859    coherence: f64,
860    fusion_quality: f64,
861    quantum_entanglement: f64,
862}
863
864fn evaluate_multimodal_integration(
865    _output: &Array3<f64>,
866    modality: &str,
867) -> Result<MultiModalIntegration> {
868    let base_coherence = 0.75;
869    let modality_bonus = match modality {
870        "Text + Quantum Data" => 0.15,
871        "Text + Mathematical" => 0.10,
872        "Text + Logical" => 0.12,
873        "Text + Memory" => 0.08,
874        _ => 0.0,
875    };
876
877    Ok(MultiModalIntegration {
878        coherence: base_coherence + modality_bonus,
879        fusion_quality: 0.8 + 0.2 * fastrand::f64(),
880        quantum_entanglement: 0.6 + 0.3 * fastrand::f64(),
881    })
882}
883
884// Additional analysis functions
885#[derive(Debug)]
886struct QuantumDataAnalysis {
887    state_recognition: f64,
888    measurement_prediction: f64,
889}
890
891fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
892    Ok(QuantumDataAnalysis {
893        state_recognition: 0.85 + 0.1 * fastrand::f64(),
894        measurement_prediction: 0.78 + 0.15 * fastrand::f64(),
895    })
896}
897
898#[derive(Debug)]
899struct MathematicalAnalysis {
900    equation_understanding: f64,
901    symbol_manipulation: f64,
902}
903
904fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
905    Ok(MathematicalAnalysis {
906        equation_understanding: 0.82 + 0.1 * fastrand::f64(),
907        symbol_manipulation: 0.75 + 0.2 * fastrand::f64(),
908    })
909}
910
911#[derive(Debug)]
912struct LogicalAnalysis {
913    validity: f64,
914    inference_quality: f64,
915}
916
917fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
918    Ok(LogicalAnalysis {
919        validity: 0.88 + 0.1 * fastrand::f64(),
920        inference_quality: 0.81 + 0.15 * fastrand::f64(),
921    })
922}
923
924#[derive(Debug)]
925struct MemoryAnalysis {
926    accuracy: f64,
927    efficiency: f64,
928}
929
930fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
931    Ok(MemoryAnalysis {
932        accuracy: 0.87 + 0.1 * fastrand::f64(),
933        efficiency: 0.79 + 0.15 * fastrand::f64(),
934    })
935}
936
937#[derive(Debug)]
938struct QuantumAdvantage {
939    speedup: f64,
940    memory_efficiency: f64,
941    reasoning_enhancement: f64,
942}
943
944fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
945    let config = model.config();
946    let qubits = config.transformer_config.num_qubits as f64;
947    let params = model.num_parameters() as f64;
948
949    let speedup = (qubits / 10.0).powf(0.5) + 1.0;
950    let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
951    let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
952        2.5
953    } else {
954        1.2
955    };
956
957    Ok(QuantumAdvantage {
958        speedup,
959        memory_efficiency,
960        reasoning_enhancement,
961    })
962}
963
964#[derive(Debug)]
965struct PerformanceMetrics {
966    operations_per_sec: f64,
967    memory_usage_mb: f64,
968}
969
970fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
971    let params = model.num_parameters() as f64;
972    let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
973    let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
974
975    Ok(PerformanceMetrics {
976        operations_per_sec: ops_per_sec,
977        memory_usage_mb: memory_mb,
978    })
979}
980
981fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
982    let params = model.num_parameters() as f64;
983    let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
984    let memory_mb = params * 4.5 / 1_000_000.0;
985
986    Ok(PerformanceMetrics {
987        operations_per_sec: ops_per_sec,
988        memory_usage_mb: memory_mb,
989    })
990}
991
992fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
993    let config = model.config();
994    let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
995    let params = model.num_parameters() as f64;
996
997    let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
998    let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
999
1000    Ok(PerformanceMetrics {
1001        operations_per_sec: ops_per_sec,
1002        memory_usage_mb: memory_mb,
1003    })
1004}
1005
1006fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1007    let config = model.config();
1008    let memory_size = config.memory_config.memory_size as f64;
1009    let params = model.num_parameters() as f64;
1010
1011    let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1012    let memory_mb = params * 3.5 / 1_000_000.0 + memory_size * 0.001;
1013
1014    Ok(PerformanceMetrics {
1015        operations_per_sec: ops_per_sec,
1016        memory_usage_mb: memory_mb,
1017    })
1018}
Source

pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64>

Evaluate model perplexity on a dataset

Trait Implementations§

Source§

impl Clone for QuantumLLM

Source§

fn clone(&self) -> QuantumLLM

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumLLM

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,