pub struct ContinualMetaLearner { /* private fields */ }
Expand description
Continual meta-learning with memory
Implementations§
Source§impl ContinualMetaLearner
impl ContinualMetaLearner
Sourcepub fn new(
meta_learner: QuantumMetaLearner,
memory_capacity: usize,
replay_ratio: f64,
) -> Self
pub fn new( meta_learner: QuantumMetaLearner, memory_capacity: usize, replay_ratio: f64, ) -> Self
Create new continual meta-learner
Examples found in repository?
examples/quantum_meta_learning.rs (lines 314-318)
297fn continual_meta_learning_demo() -> Result<()> {
298 let layers = vec![
299 QNNLayerType::EncodingLayer { num_features: 4 },
300 QNNLayerType::VariationalLayer { num_params: 8 },
301 QNNLayerType::MeasurementLayer {
302 measurement_basis: "computational".to_string(),
303 },
304 ];
305
306 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
307
308 let algorithm = MetaLearningAlgorithm::Reptile {
309 inner_steps: 5,
310 inner_lr: 0.05,
311 };
312
313 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
314 let mut continual_learner = ContinualMetaLearner::new(
315 meta_learner,
316 10, // memory capacity
317 0.3, // replay ratio
318 );
319
320 println!(" Created Continual Meta-Learner:");
321 println!(" - Memory capacity: 10 tasks");
322 println!(" - Replay ratio: 30%");
323
324 // Generate sequence of tasks
325 let generator = TaskGenerator::new(4, 2);
326
327 println!("\n Learning sequence of tasks...");
328 for i in 0..20 {
329 let task = if i < 10 {
330 generator.generate_rotation_task(30)
331 } else {
332 generator.generate_sinusoid_task(30)
333 };
334
335 continual_learner.learn_task(task)?;
336
337 if i % 5 == 4 {
338 println!(
339 " Learned {} tasks, memory contains {} unique tasks",
340 i + 1,
341 continual_learner.memory_buffer_len()
342 );
343 }
344 }
345
346 println!("\n Continual learning prevents catastrophic forgetting");
347
348 Ok(())
349}
Sourcepub fn learn_task(&mut self, new_task: MetaTask) -> Result<()>
pub fn learn_task(&mut self, new_task: MetaTask) -> Result<()>
Learn new task while preserving old knowledge
Examples found in repository?
examples/quantum_meta_learning.rs (line 335)
297fn continual_meta_learning_demo() -> Result<()> {
298 let layers = vec![
299 QNNLayerType::EncodingLayer { num_features: 4 },
300 QNNLayerType::VariationalLayer { num_params: 8 },
301 QNNLayerType::MeasurementLayer {
302 measurement_basis: "computational".to_string(),
303 },
304 ];
305
306 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
307
308 let algorithm = MetaLearningAlgorithm::Reptile {
309 inner_steps: 5,
310 inner_lr: 0.05,
311 };
312
313 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
314 let mut continual_learner = ContinualMetaLearner::new(
315 meta_learner,
316 10, // memory capacity
317 0.3, // replay ratio
318 );
319
320 println!(" Created Continual Meta-Learner:");
321 println!(" - Memory capacity: 10 tasks");
322 println!(" - Replay ratio: 30%");
323
324 // Generate sequence of tasks
325 let generator = TaskGenerator::new(4, 2);
326
327 println!("\n Learning sequence of tasks...");
328 for i in 0..20 {
329 let task = if i < 10 {
330 generator.generate_rotation_task(30)
331 } else {
332 generator.generate_sinusoid_task(30)
333 };
334
335 continual_learner.learn_task(task)?;
336
337 if i % 5 == 4 {
338 println!(
339 " Learned {} tasks, memory contains {} unique tasks",
340 i + 1,
341 continual_learner.memory_buffer_len()
342 );
343 }
344 }
345
346 println!("\n Continual learning prevents catastrophic forgetting");
347
348 Ok(())
349}
Sourcepub fn memory_buffer_len(&self) -> usize
pub fn memory_buffer_len(&self) -> usize
Get memory buffer length
Examples found in repository?
examples/quantum_meta_learning.rs (line 341)
297fn continual_meta_learning_demo() -> Result<()> {
298 let layers = vec![
299 QNNLayerType::EncodingLayer { num_features: 4 },
300 QNNLayerType::VariationalLayer { num_params: 8 },
301 QNNLayerType::MeasurementLayer {
302 measurement_basis: "computational".to_string(),
303 },
304 ];
305
306 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
307
308 let algorithm = MetaLearningAlgorithm::Reptile {
309 inner_steps: 5,
310 inner_lr: 0.05,
311 };
312
313 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
314 let mut continual_learner = ContinualMetaLearner::new(
315 meta_learner,
316 10, // memory capacity
317 0.3, // replay ratio
318 );
319
320 println!(" Created Continual Meta-Learner:");
321 println!(" - Memory capacity: 10 tasks");
322 println!(" - Replay ratio: 30%");
323
324 // Generate sequence of tasks
325 let generator = TaskGenerator::new(4, 2);
326
327 println!("\n Learning sequence of tasks...");
328 for i in 0..20 {
329 let task = if i < 10 {
330 generator.generate_rotation_task(30)
331 } else {
332 generator.generate_sinusoid_task(30)
333 };
334
335 continual_learner.learn_task(task)?;
336
337 if i % 5 == 4 {
338 println!(
339 " Learned {} tasks, memory contains {} unique tasks",
340 i + 1,
341 continual_learner.memory_buffer_len()
342 );
343 }
344 }
345
346 println!("\n Continual learning prevents catastrophic forgetting");
347
348 Ok(())
349}
Auto Trait Implementations§
impl Freeze for ContinualMetaLearner
impl RefUnwindSafe for ContinualMetaLearner
impl Send for ContinualMetaLearner
impl Sync for ContinualMetaLearner
impl Unpin for ContinualMetaLearner
impl UnwindSafe for ContinualMetaLearner
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.