pub struct QuantumGAN {
pub generator: QuantumGenerator,
pub discriminator: QuantumDiscriminator,
pub training_history: GANTrainingHistory,
}Expand description
Quantum Generative Adversarial Network
Fields§
§generator: QuantumGeneratorGenerator model
discriminator: QuantumDiscriminatorDiscriminator model
training_history: GANTrainingHistoryTraining history
Implementations§
Source§impl QuantumGAN
impl QuantumGAN
Sourcepub fn new(
num_qubits_gen: usize,
num_qubits_disc: usize,
latent_dim: usize,
data_dim: usize,
generator_type: GeneratorType,
discriminator_type: DiscriminatorType,
) -> Result<Self>
pub fn new( num_qubits_gen: usize, num_qubits_disc: usize, latent_dim: usize, data_dim: usize, generator_type: GeneratorType, discriminator_type: DiscriminatorType, ) -> Result<Self>
Creates a new quantum GAN
Examples found in repository?
examples/quantum_gan.rs (lines 24-31)
7fn main() -> Result<()> {
8 println!("Quantum Generative Adversarial Network Example");
9 println!("=============================================");
10
11 // GAN parameters
12 let num_qubits_gen = 6;
13 let num_qubits_disc = 6;
14 let latent_dim = 4;
15 let data_dim = 8;
16
17 println!("Creating Quantum GAN...");
18 println!(" Generator: {num_qubits_gen} qubits");
19 println!(" Discriminator: {num_qubits_disc} qubits");
20 println!(" Latent dimension: {latent_dim}");
21 println!(" Data dimension: {data_dim}");
22
23 // Create quantum GAN
24 let mut qgan = QuantumGAN::new(
25 num_qubits_gen,
26 num_qubits_disc,
27 latent_dim,
28 data_dim,
29 GeneratorType::HybridClassicalQuantum,
30 DiscriminatorType::HybridQuantumFeatures,
31 )?;
32
33 // Generate synthetic data for training
34 println!("Generating synthetic data for training...");
35 let real_data = generate_sine_wave_data(500, data_dim);
36
37 // Train GAN
38 println!("Training quantum GAN...");
39 let training_params = [
40 (50, 32, 0.01, 0.01, 1), // (epochs, batch_size, lr_gen, lr_disc, disc_steps)
41 ];
42
43 for (epochs, batch_size, lr_gen, lr_disc, disc_steps) in training_params {
44 println!("Training with parameters:");
45 println!(" Epochs: {epochs}");
46 println!(" Batch size: {batch_size}");
47 println!(" Generator learning rate: {lr_gen}");
48 println!(" Discriminator learning rate: {lr_disc}");
49 println!(" Discriminator steps per iteration: {disc_steps}");
50
51 let start = Instant::now();
52 let history = qgan.train(&real_data, epochs, batch_size, lr_gen, lr_disc, disc_steps)?;
53
54 println!("Training completed in {:.2?}", start.elapsed());
55 println!("Final losses:");
56 println!(
57 " Generator: {:.4}",
58 history.gen_losses.last().unwrap_or(&0.0)
59 );
60 println!(
61 " Discriminator: {:.4}",
62 history.disc_losses.last().unwrap_or(&0.0)
63 );
64 }
65
66 // Generate samples
67 println!("\nGenerating samples from trained GAN...");
68 let num_samples = 10;
69 let generated_samples = qgan.generate(num_samples)?;
70
71 println!("Generated {num_samples} samples");
72 println!("First sample:");
73 print_sample(
74 &generated_samples
75 .slice(scirs2_core::ndarray::s![0, ..])
76 .to_owned(),
77 );
78
79 // Evaluate GAN
80 println!("\nEvaluating GAN quality...");
81 let eval_metrics = qgan.evaluate(&real_data, num_samples)?;
82
83 println!("Evaluation metrics:");
84 println!(
85 " Real data accuracy: {:.2}%",
86 eval_metrics.real_accuracy * 100.0
87 );
88 println!(
89 " Fake data accuracy: {:.2}%",
90 eval_metrics.fake_accuracy * 100.0
91 );
92 println!(
93 " Overall discriminator accuracy: {:.2}%",
94 eval_metrics.overall_accuracy * 100.0
95 );
96 println!(" JS Divergence: {:.4}", eval_metrics.js_divergence);
97
98 // Use physics-specific GAN
99 println!("\nCreating specialized particle physics GAN...");
100 let particle_gan = quantrs2_ml::gan::physics_gan::ParticleGAN::new(
101 num_qubits_gen,
102 num_qubits_disc,
103 latent_dim,
104 data_dim,
105 )?;
106
107 println!("Particle GAN created successfully");
108
109 Ok(())
110}Sourcepub fn train(
&mut self,
real_data: &Array2<f64>,
epochs: usize,
batch_size: usize,
gen_learning_rate: f64,
disc_learning_rate: f64,
disc_steps: usize,
) -> Result<&GANTrainingHistory>
pub fn train( &mut self, real_data: &Array2<f64>, epochs: usize, batch_size: usize, gen_learning_rate: f64, disc_learning_rate: f64, disc_steps: usize, ) -> Result<&GANTrainingHistory>
Trains the GAN on a dataset
Examples found in repository?
examples/quantum_gan.rs (line 52)
7fn main() -> Result<()> {
8 println!("Quantum Generative Adversarial Network Example");
9 println!("=============================================");
10
11 // GAN parameters
12 let num_qubits_gen = 6;
13 let num_qubits_disc = 6;
14 let latent_dim = 4;
15 let data_dim = 8;
16
17 println!("Creating Quantum GAN...");
18 println!(" Generator: {num_qubits_gen} qubits");
19 println!(" Discriminator: {num_qubits_disc} qubits");
20 println!(" Latent dimension: {latent_dim}");
21 println!(" Data dimension: {data_dim}");
22
23 // Create quantum GAN
24 let mut qgan = QuantumGAN::new(
25 num_qubits_gen,
26 num_qubits_disc,
27 latent_dim,
28 data_dim,
29 GeneratorType::HybridClassicalQuantum,
30 DiscriminatorType::HybridQuantumFeatures,
31 )?;
32
33 // Generate synthetic data for training
34 println!("Generating synthetic data for training...");
35 let real_data = generate_sine_wave_data(500, data_dim);
36
37 // Train GAN
38 println!("Training quantum GAN...");
39 let training_params = [
40 (50, 32, 0.01, 0.01, 1), // (epochs, batch_size, lr_gen, lr_disc, disc_steps)
41 ];
42
43 for (epochs, batch_size, lr_gen, lr_disc, disc_steps) in training_params {
44 println!("Training with parameters:");
45 println!(" Epochs: {epochs}");
46 println!(" Batch size: {batch_size}");
47 println!(" Generator learning rate: {lr_gen}");
48 println!(" Discriminator learning rate: {lr_disc}");
49 println!(" Discriminator steps per iteration: {disc_steps}");
50
51 let start = Instant::now();
52 let history = qgan.train(&real_data, epochs, batch_size, lr_gen, lr_disc, disc_steps)?;
53
54 println!("Training completed in {:.2?}", start.elapsed());
55 println!("Final losses:");
56 println!(
57 " Generator: {:.4}",
58 history.gen_losses.last().unwrap_or(&0.0)
59 );
60 println!(
61 " Discriminator: {:.4}",
62 history.disc_losses.last().unwrap_or(&0.0)
63 );
64 }
65
66 // Generate samples
67 println!("\nGenerating samples from trained GAN...");
68 let num_samples = 10;
69 let generated_samples = qgan.generate(num_samples)?;
70
71 println!("Generated {num_samples} samples");
72 println!("First sample:");
73 print_sample(
74 &generated_samples
75 .slice(scirs2_core::ndarray::s![0, ..])
76 .to_owned(),
77 );
78
79 // Evaluate GAN
80 println!("\nEvaluating GAN quality...");
81 let eval_metrics = qgan.evaluate(&real_data, num_samples)?;
82
83 println!("Evaluation metrics:");
84 println!(
85 " Real data accuracy: {:.2}%",
86 eval_metrics.real_accuracy * 100.0
87 );
88 println!(
89 " Fake data accuracy: {:.2}%",
90 eval_metrics.fake_accuracy * 100.0
91 );
92 println!(
93 " Overall discriminator accuracy: {:.2}%",
94 eval_metrics.overall_accuracy * 100.0
95 );
96 println!(" JS Divergence: {:.4}", eval_metrics.js_divergence);
97
98 // Use physics-specific GAN
99 println!("\nCreating specialized particle physics GAN...");
100 let particle_gan = quantrs2_ml::gan::physics_gan::ParticleGAN::new(
101 num_qubits_gen,
102 num_qubits_disc,
103 latent_dim,
104 data_dim,
105 )?;
106
107 println!("Particle GAN created successfully");
108
109 Ok(())
110}Sourcepub fn generate(&self, num_samples: usize) -> Result<Array2<f64>>
pub fn generate(&self, num_samples: usize) -> Result<Array2<f64>>
Generates samples from the trained generator
Examples found in repository?
examples/quantum_gan.rs (line 69)
7fn main() -> Result<()> {
8 println!("Quantum Generative Adversarial Network Example");
9 println!("=============================================");
10
11 // GAN parameters
12 let num_qubits_gen = 6;
13 let num_qubits_disc = 6;
14 let latent_dim = 4;
15 let data_dim = 8;
16
17 println!("Creating Quantum GAN...");
18 println!(" Generator: {num_qubits_gen} qubits");
19 println!(" Discriminator: {num_qubits_disc} qubits");
20 println!(" Latent dimension: {latent_dim}");
21 println!(" Data dimension: {data_dim}");
22
23 // Create quantum GAN
24 let mut qgan = QuantumGAN::new(
25 num_qubits_gen,
26 num_qubits_disc,
27 latent_dim,
28 data_dim,
29 GeneratorType::HybridClassicalQuantum,
30 DiscriminatorType::HybridQuantumFeatures,
31 )?;
32
33 // Generate synthetic data for training
34 println!("Generating synthetic data for training...");
35 let real_data = generate_sine_wave_data(500, data_dim);
36
37 // Train GAN
38 println!("Training quantum GAN...");
39 let training_params = [
40 (50, 32, 0.01, 0.01, 1), // (epochs, batch_size, lr_gen, lr_disc, disc_steps)
41 ];
42
43 for (epochs, batch_size, lr_gen, lr_disc, disc_steps) in training_params {
44 println!("Training with parameters:");
45 println!(" Epochs: {epochs}");
46 println!(" Batch size: {batch_size}");
47 println!(" Generator learning rate: {lr_gen}");
48 println!(" Discriminator learning rate: {lr_disc}");
49 println!(" Discriminator steps per iteration: {disc_steps}");
50
51 let start = Instant::now();
52 let history = qgan.train(&real_data, epochs, batch_size, lr_gen, lr_disc, disc_steps)?;
53
54 println!("Training completed in {:.2?}", start.elapsed());
55 println!("Final losses:");
56 println!(
57 " Generator: {:.4}",
58 history.gen_losses.last().unwrap_or(&0.0)
59 );
60 println!(
61 " Discriminator: {:.4}",
62 history.disc_losses.last().unwrap_or(&0.0)
63 );
64 }
65
66 // Generate samples
67 println!("\nGenerating samples from trained GAN...");
68 let num_samples = 10;
69 let generated_samples = qgan.generate(num_samples)?;
70
71 println!("Generated {num_samples} samples");
72 println!("First sample:");
73 print_sample(
74 &generated_samples
75 .slice(scirs2_core::ndarray::s![0, ..])
76 .to_owned(),
77 );
78
79 // Evaluate GAN
80 println!("\nEvaluating GAN quality...");
81 let eval_metrics = qgan.evaluate(&real_data, num_samples)?;
82
83 println!("Evaluation metrics:");
84 println!(
85 " Real data accuracy: {:.2}%",
86 eval_metrics.real_accuracy * 100.0
87 );
88 println!(
89 " Fake data accuracy: {:.2}%",
90 eval_metrics.fake_accuracy * 100.0
91 );
92 println!(
93 " Overall discriminator accuracy: {:.2}%",
94 eval_metrics.overall_accuracy * 100.0
95 );
96 println!(" JS Divergence: {:.4}", eval_metrics.js_divergence);
97
98 // Use physics-specific GAN
99 println!("\nCreating specialized particle physics GAN...");
100 let particle_gan = quantrs2_ml::gan::physics_gan::ParticleGAN::new(
101 num_qubits_gen,
102 num_qubits_disc,
103 latent_dim,
104 data_dim,
105 )?;
106
107 println!("Particle GAN created successfully");
108
109 Ok(())
110}Sourcepub fn generate_conditional(
&self,
num_samples: usize,
conditions: &[(usize, f64)],
) -> Result<Array2<f64>>
pub fn generate_conditional( &self, num_samples: usize, conditions: &[(usize, f64)], ) -> Result<Array2<f64>>
Generates samples with specific conditions
Sourcepub fn evaluate(
&self,
real_data: &Array2<f64>,
num_samples: usize,
) -> Result<GANEvaluationMetrics>
pub fn evaluate( &self, real_data: &Array2<f64>, num_samples: usize, ) -> Result<GANEvaluationMetrics>
Evaluates the GAN model
Examples found in repository?
examples/quantum_gan.rs (line 81)
7fn main() -> Result<()> {
8 println!("Quantum Generative Adversarial Network Example");
9 println!("=============================================");
10
11 // GAN parameters
12 let num_qubits_gen = 6;
13 let num_qubits_disc = 6;
14 let latent_dim = 4;
15 let data_dim = 8;
16
17 println!("Creating Quantum GAN...");
18 println!(" Generator: {num_qubits_gen} qubits");
19 println!(" Discriminator: {num_qubits_disc} qubits");
20 println!(" Latent dimension: {latent_dim}");
21 println!(" Data dimension: {data_dim}");
22
23 // Create quantum GAN
24 let mut qgan = QuantumGAN::new(
25 num_qubits_gen,
26 num_qubits_disc,
27 latent_dim,
28 data_dim,
29 GeneratorType::HybridClassicalQuantum,
30 DiscriminatorType::HybridQuantumFeatures,
31 )?;
32
33 // Generate synthetic data for training
34 println!("Generating synthetic data for training...");
35 let real_data = generate_sine_wave_data(500, data_dim);
36
37 // Train GAN
38 println!("Training quantum GAN...");
39 let training_params = [
40 (50, 32, 0.01, 0.01, 1), // (epochs, batch_size, lr_gen, lr_disc, disc_steps)
41 ];
42
43 for (epochs, batch_size, lr_gen, lr_disc, disc_steps) in training_params {
44 println!("Training with parameters:");
45 println!(" Epochs: {epochs}");
46 println!(" Batch size: {batch_size}");
47 println!(" Generator learning rate: {lr_gen}");
48 println!(" Discriminator learning rate: {lr_disc}");
49 println!(" Discriminator steps per iteration: {disc_steps}");
50
51 let start = Instant::now();
52 let history = qgan.train(&real_data, epochs, batch_size, lr_gen, lr_disc, disc_steps)?;
53
54 println!("Training completed in {:.2?}", start.elapsed());
55 println!("Final losses:");
56 println!(
57 " Generator: {:.4}",
58 history.gen_losses.last().unwrap_or(&0.0)
59 );
60 println!(
61 " Discriminator: {:.4}",
62 history.disc_losses.last().unwrap_or(&0.0)
63 );
64 }
65
66 // Generate samples
67 println!("\nGenerating samples from trained GAN...");
68 let num_samples = 10;
69 let generated_samples = qgan.generate(num_samples)?;
70
71 println!("Generated {num_samples} samples");
72 println!("First sample:");
73 print_sample(
74 &generated_samples
75 .slice(scirs2_core::ndarray::s![0, ..])
76 .to_owned(),
77 );
78
79 // Evaluate GAN
80 println!("\nEvaluating GAN quality...");
81 let eval_metrics = qgan.evaluate(&real_data, num_samples)?;
82
83 println!("Evaluation metrics:");
84 println!(
85 " Real data accuracy: {:.2}%",
86 eval_metrics.real_accuracy * 100.0
87 );
88 println!(
89 " Fake data accuracy: {:.2}%",
90 eval_metrics.fake_accuracy * 100.0
91 );
92 println!(
93 " Overall discriminator accuracy: {:.2}%",
94 eval_metrics.overall_accuracy * 100.0
95 );
96 println!(" JS Divergence: {:.4}", eval_metrics.js_divergence);
97
98 // Use physics-specific GAN
99 println!("\nCreating specialized particle physics GAN...");
100 let particle_gan = quantrs2_ml::gan::physics_gan::ParticleGAN::new(
101 num_qubits_gen,
102 num_qubits_disc,
103 latent_dim,
104 data_dim,
105 )?;
106
107 println!("Particle GAN created successfully");
108
109 Ok(())
110}Trait Implementations§
Source§impl Clone for QuantumGAN
impl Clone for QuantumGAN
Source§fn clone(&self) -> QuantumGAN
fn clone(&self) -> QuantumGAN
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumGAN
impl RefUnwindSafe for QuantumGAN
impl Send for QuantumGAN
impl Sync for QuantumGAN
impl Unpin for QuantumGAN
impl UnwindSafe for QuantumGAN
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.