Module classical_ml_integration

Module classical_ml_integration 

Source
Expand description

Classical ML pipeline integration for QuantRS2-ML

This module provides seamless integration between quantum ML models and existing classical ML workflows, enabling hybrid approaches and easy adoption of quantum ML in production environments.

Modules§

utils
Utility functions for classical ML integration

Structs§

AdaptiveWeightingEnsemble
AutoOptimizationConfig
Auto-optimization configuration
DatasetInfo
Dataset information for pipeline recommendation
HybridPipeline
Hybrid quantum-classical pipeline
HybridPipelineManager
Hybrid quantum-classical ML pipeline manager
MinMaxScaler
Min-max scaler preprocessor
ModelPerformance
Model performance metrics
ModelRegistry
Model registry for managing quantum and classical models
OptimizedPipeline
Optimized pipeline result
PerformanceProfile
Performance profile for pipelines
PipelineConfig
Pipeline configuration
PipelineRecommendation
Pipeline recommendation
PipelineTemplate
Pipeline template definition
PrincipalComponentAnalysis
QuantumClassicalEnsemble
Quantum-classical ensemble model
QuantumDataEncoder
ResourceConstraints
Resource constraints for pipeline execution
ScalabilityProfile
Scalability characteristics
SimpleHybridModel
Simple hybrid model combining quantum and classical approaches
StackingEnsemble
StandardScaler
Standard scaler preprocessor
WeightedVotingEnsemble
Weighted voting ensemble

Enums§

ModelType
Model types in pipelines
PipelineStage
Pipeline stage definition
ValidationStrategy
Validation strategy options

Traits§

ClassicalModel
Classical model trait for integration
DataPreprocessor
Data preprocessing trait
EnsembleStrategy
Ensemble strategy trait
HybridModel
Hybrid quantum-classical model trait