quantrs2_ml/
classical_ml_integration.rs

1//! Classical ML pipeline integration for QuantRS2-ML
2//!
3//! This module provides seamless integration between quantum ML models and
4//! existing classical ML workflows, enabling hybrid approaches and easy
5//! adoption of quantum ML in production environments.
6
7use crate::benchmarking::{BenchmarkConfig, BenchmarkFramework};
8use crate::domain_templates::{DomainTemplateManager, TemplateConfig};
9use crate::error::{MLError, Result};
10use crate::keras_api::{Dense, QuantumDense, Sequential};
11use crate::model_zoo::{ModelZoo, QuantumModel};
12use crate::pytorch_api::{QuantumLinear, QuantumModule};
13use crate::sklearn_compatibility::{QuantumMLPClassifier, QuantumSVC};
14use scirs2_core::ndarray::{s, Array1, Array2, ArrayD, Axis, IxDyn};
15use quantrs2_circuit::prelude::*;
16use quantrs2_core::prelude::*;
17use serde::{Deserialize, Serialize};
18use std::collections::HashMap;
19
20/// Hybrid quantum-classical ML pipeline manager
21pub struct HybridPipelineManager {
22    /// Available pipeline templates
23    pipeline_templates: HashMap<String, PipelineTemplate>,
24    /// Registered preprocessors
25    preprocessors: HashMap<String, Box<dyn DataPreprocessor>>,
26    /// Model registry
27    model_registry: ModelRegistry,
28    /// Ensemble strategies
29    ensemble_strategies: HashMap<String, Box<dyn EnsembleStrategy>>,
30}
31
32/// Pipeline template definition
33#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct PipelineTemplate {
35    /// Template name
36    pub name: String,
37    /// Description
38    pub description: String,
39    /// Pipeline stages
40    pub stages: Vec<PipelineStage>,
41    /// Default hyperparameters
42    pub hyperparameters: HashMap<String, f64>,
43    /// Suitable data types
44    pub data_types: Vec<String>,
45    /// Performance characteristics
46    pub performance_profile: PerformanceProfile,
47}
48
49/// Pipeline stage definition
50#[derive(Debug, Clone, Serialize, Deserialize)]
51pub enum PipelineStage {
52    /// Data preprocessing
53    Preprocessing {
54        method: String,
55        parameters: HashMap<String, f64>,
56    },
57    /// Feature engineering
58    FeatureEngineering {
59        method: String,
60        parameters: HashMap<String, f64>,
61    },
62    /// Model training
63    Training {
64        model_type: ModelType,
65        hyperparameters: HashMap<String, f64>,
66    },
67    /// Model ensemble
68    Ensemble { strategy: String, weights: Vec<f64> },
69    /// Post-processing
70    PostProcessing {
71        method: String,
72        parameters: HashMap<String, f64>,
73    },
74}
75
76/// Model types in pipelines
77#[derive(Debug, Clone, Serialize, Deserialize)]
78pub enum ModelType {
79    /// Pure classical model
80    Classical(String),
81    /// Pure quantum model
82    Quantum(String),
83    /// Hybrid quantum-classical model
84    Hybrid(String),
85    /// Ensemble of models
86    Ensemble(Vec<ModelType>),
87}
88
89/// Performance profile for pipelines
90#[derive(Debug, Clone, Serialize, Deserialize)]
91pub struct PerformanceProfile {
92    /// Expected accuracy range
93    pub accuracy_range: (f64, f64),
94    /// Training time estimate (minutes)
95    pub training_time_minutes: f64,
96    /// Memory requirements (GB)
97    pub memory_gb: f64,
98    /// Scalability characteristics
99    pub scalability: ScalabilityProfile,
100}
101
102/// Scalability characteristics
103#[derive(Debug, Clone, Serialize, Deserialize)]
104pub struct ScalabilityProfile {
105    /// Maximum samples handled efficiently
106    pub max_samples: usize,
107    /// Maximum features handled efficiently
108    pub max_features: usize,
109    /// Parallel processing capability
110    pub parallel_capable: bool,
111    /// Distributed processing capability
112    pub distributed_capable: bool,
113}
114
115/// Data preprocessing trait
116pub trait DataPreprocessor: Send + Sync {
117    /// Fit preprocessor to data
118    fn fit(&mut self, X: &ArrayD<f64>) -> Result<()>;
119
120    /// Transform data
121    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
122
123    /// Fit and transform in one step
124    fn fit_transform(&mut self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
125        self.fit(X)?;
126        self.transform(X)
127    }
128
129    /// Get preprocessing parameters
130    fn get_params(&self) -> HashMap<String, f64>;
131
132    /// Set preprocessing parameters
133    fn set_params(&mut self, params: HashMap<String, f64>) -> Result<()>;
134}
135
136/// Model registry for managing quantum and classical models
137pub struct ModelRegistry {
138    /// Registered quantum models
139    quantum_models: HashMap<String, Box<dyn QuantumModel>>,
140    /// Registered classical models
141    classical_models: HashMap<String, Box<dyn ClassicalModel>>,
142    /// Hybrid models
143    hybrid_models: HashMap<String, Box<dyn HybridModel>>,
144}
145
146/// Classical model trait for integration
147pub trait ClassicalModel: Send + Sync {
148    /// Train the model
149    fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()>;
150
151    /// Make predictions
152    fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
153
154    /// Get model parameters
155    fn get_params(&self) -> HashMap<String, f64>;
156
157    /// Set model parameters
158    fn set_params(&mut self, params: HashMap<String, f64>) -> Result<()>;
159
160    /// Get feature importance (if available)
161    fn feature_importance(&self) -> Option<Array1<f64>>;
162}
163
164/// Hybrid quantum-classical model trait
165pub trait HybridModel: Send + Sync {
166    /// Train the hybrid model
167    fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()>;
168
169    /// Make predictions using hybrid approach
170    fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
171
172    /// Get quantum component performance
173    fn quantum_performance(&self) -> ModelPerformance;
174
175    /// Get classical component performance
176    fn classical_performance(&self) -> ModelPerformance;
177
178    /// Get hybrid strategy description
179    fn strategy_description(&self) -> String;
180}
181
182/// Model performance metrics
183#[derive(Debug, Clone, Serialize, Deserialize)]
184pub struct ModelPerformance {
185    /// Accuracy metric
186    pub accuracy: f64,
187    /// Training time (seconds)
188    pub training_time: f64,
189    /// Inference time (milliseconds)
190    pub inference_time: f64,
191    /// Memory usage (MB)
192    pub memory_usage: f64,
193}
194
195/// Ensemble strategy trait
196pub trait EnsembleStrategy: Send + Sync {
197    /// Combine predictions from multiple models
198    fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>>;
199
200    /// Get ensemble weights
201    fn get_weights(&self) -> Vec<f64>;
202
203    /// Update weights based on performance
204    fn update_weights(&mut self, performances: Vec<f64>) -> Result<()>;
205
206    /// Strategy description
207    fn description(&self) -> String;
208}
209
210impl HybridPipelineManager {
211    /// Create new hybrid pipeline manager
212    pub fn new() -> Self {
213        let mut manager = Self {
214            pipeline_templates: HashMap::new(),
215            preprocessors: HashMap::new(),
216            model_registry: ModelRegistry::new(),
217            ensemble_strategies: HashMap::new(),
218        };
219
220        manager.register_default_components();
221        manager
222    }
223
224    /// Register default pipeline components
225    fn register_default_components(&mut self) {
226        self.register_default_templates();
227        self.register_default_preprocessors();
228        self.register_default_ensemble_strategies();
229    }
230
231    /// Register default pipeline templates
232    fn register_default_templates(&mut self) {
233        // Hybrid classification pipeline
234        self.pipeline_templates.insert(
235            "hybrid_classification".to_string(),
236            PipelineTemplate {
237                name: "Hybrid Quantum-Classical Classification".to_string(),
238                description: "Combines quantum feature learning with classical decision making"
239                    .to_string(),
240                stages: vec![
241                    PipelineStage::Preprocessing {
242                        method: "standard_scaler".to_string(),
243                        parameters: HashMap::new(),
244                    },
245                    PipelineStage::FeatureEngineering {
246                        method: "quantum_feature_map".to_string(),
247                        parameters: [("num_qubits".to_string(), 8.0)].iter().cloned().collect(),
248                    },
249                    PipelineStage::Training {
250                        model_type: ModelType::Hybrid("quantum_classical_ensemble".to_string()),
251                        hyperparameters: [
252                            ("quantum_weight".to_string(), 0.6),
253                            ("classical_weight".to_string(), 0.4),
254                        ]
255                        .iter()
256                        .cloned()
257                        .collect(),
258                    },
259                ],
260                hyperparameters: [
261                    ("learning_rate".to_string(), 0.01),
262                    ("epochs".to_string(), 100.0),
263                    ("batch_size".to_string(), 32.0),
264                ]
265                .iter()
266                .cloned()
267                .collect(),
268                data_types: vec!["tabular".to_string(), "structured".to_string()],
269                performance_profile: PerformanceProfile {
270                    accuracy_range: (0.85, 0.95),
271                    training_time_minutes: 30.0,
272                    memory_gb: 2.0,
273                    scalability: ScalabilityProfile {
274                        max_samples: 100000,
275                        max_features: 100,
276                        parallel_capable: true,
277                        distributed_capable: false,
278                    },
279                },
280            },
281        );
282
283        // Quantum ensemble pipeline
284        self.pipeline_templates.insert(
285            "quantum_ensemble".to_string(),
286            PipelineTemplate {
287                name: "Quantum Model Ensemble".to_string(),
288                description: "Ensemble of multiple quantum models with different ansatz types"
289                    .to_string(),
290                stages: vec![
291                    PipelineStage::Preprocessing {
292                        method: "quantum_data_encoder".to_string(),
293                        parameters: HashMap::new(),
294                    },
295                    PipelineStage::Training {
296                        model_type: ModelType::Ensemble(vec![
297                            ModelType::Quantum("qnn_hardware_efficient".to_string()),
298                            ModelType::Quantum("qnn_real_amplitudes".to_string()),
299                            ModelType::Quantum("qsvm_zz_feature_map".to_string()),
300                        ]),
301                        hyperparameters: HashMap::new(),
302                    },
303                    PipelineStage::Ensemble {
304                        strategy: "weighted_voting".to_string(),
305                        weights: vec![0.4, 0.3, 0.3],
306                    },
307                ],
308                hyperparameters: [
309                    ("num_qubits".to_string(), 10.0),
310                    ("num_layers".to_string(), 3.0),
311                ]
312                .iter()
313                .cloned()
314                .collect(),
315                data_types: vec!["tabular".to_string(), "quantum_ready".to_string()],
316                performance_profile: PerformanceProfile {
317                    accuracy_range: (0.88, 0.96),
318                    training_time_minutes: 60.0,
319                    memory_gb: 4.0,
320                    scalability: ScalabilityProfile {
321                        max_samples: 50000,
322                        max_features: 50,
323                        parallel_capable: true,
324                        distributed_capable: true,
325                    },
326                },
327            },
328        );
329
330        // AutoML quantum pipeline
331        self.pipeline_templates.insert(
332            "quantum_automl".to_string(),
333            PipelineTemplate {
334                name: "Quantum AutoML Pipeline".to_string(),
335                description: "Automated quantum model selection and hyperparameter optimization"
336                    .to_string(),
337                stages: vec![
338                    PipelineStage::Preprocessing {
339                        method: "auto_preprocessor".to_string(),
340                        parameters: HashMap::new(),
341                    },
342                    PipelineStage::FeatureEngineering {
343                        method: "auto_feature_engineering".to_string(),
344                        parameters: HashMap::new(),
345                    },
346                    PipelineStage::Training {
347                        model_type: ModelType::Hybrid("auto_selected".to_string()),
348                        hyperparameters: HashMap::new(),
349                    },
350                ],
351                hyperparameters: [
352                    ("search_budget".to_string(), 100.0),
353                    ("validation_split".to_string(), 0.2),
354                ]
355                .iter()
356                .cloned()
357                .collect(),
358                data_types: vec!["any".to_string()],
359                performance_profile: PerformanceProfile {
360                    accuracy_range: (0.80, 0.98),
361                    training_time_minutes: 180.0,
362                    memory_gb: 8.0,
363                    scalability: ScalabilityProfile {
364                        max_samples: 200000,
365                        max_features: 200,
366                        parallel_capable: true,
367                        distributed_capable: true,
368                    },
369                },
370            },
371        );
372    }
373
374    /// Register default preprocessors
375    fn register_default_preprocessors(&mut self) {
376        self.preprocessors.insert(
377            "standard_scaler".to_string(),
378            Box::new(StandardScaler::new()),
379        );
380        self.preprocessors
381            .insert("min_max_scaler".to_string(), Box::new(MinMaxScaler::new()));
382        self.preprocessors.insert(
383            "quantum_data_encoder".to_string(),
384            Box::new(QuantumDataEncoder::new()),
385        );
386        self.preprocessors.insert(
387            "principal_component_analysis".to_string(),
388            Box::new(PrincipalComponentAnalysis::new()),
389        );
390    }
391
392    /// Register default ensemble strategies
393    fn register_default_ensemble_strategies(&mut self) {
394        self.ensemble_strategies.insert(
395            "weighted_voting".to_string(),
396            Box::new(WeightedVotingEnsemble::new()),
397        );
398        self.ensemble_strategies
399            .insert("stacking".to_string(), Box::new(StackingEnsemble::new()));
400        self.ensemble_strategies.insert(
401            "adaptive_weighting".to_string(),
402            Box::new(AdaptiveWeightingEnsemble::new()),
403        );
404    }
405
406    /// Create pipeline from template
407    pub fn create_pipeline(
408        &self,
409        template_name: &str,
410        config: PipelineConfig,
411    ) -> Result<HybridPipeline> {
412        let template = self.pipeline_templates.get(template_name).ok_or_else(|| {
413            MLError::InvalidConfiguration(format!("Pipeline template not found: {}", template_name))
414        })?;
415
416        HybridPipeline::from_template(template, config)
417    }
418
419    /// Get available pipeline templates
420    pub fn get_available_templates(&self) -> Vec<&PipelineTemplate> {
421        self.pipeline_templates.values().collect()
422    }
423
424    /// Search templates by data type
425    pub fn search_templates_by_data_type(&self, data_type: &str) -> Vec<&PipelineTemplate> {
426        self.pipeline_templates
427            .values()
428            .filter(|template| {
429                template.data_types.contains(&data_type.to_string())
430                    || template.data_types.contains(&"any".to_string())
431            })
432            .collect()
433    }
434
435    /// Recommend pipeline for dataset
436    pub fn recommend_pipeline(
437        &self,
438        dataset_info: &DatasetInfo,
439    ) -> Result<Vec<PipelineRecommendation>> {
440        let mut recommendations = Vec::new();
441
442        for template in self.pipeline_templates.values() {
443            let compatibility_score = self.calculate_compatibility_score(template, dataset_info);
444
445            if compatibility_score > 0.5 {
446                recommendations.push(PipelineRecommendation {
447                    template_name: template.name.clone(),
448                    compatibility_score,
449                    expected_performance: template.performance_profile.clone(),
450                    recommendation_reason: self
451                        .generate_recommendation_reason(template, dataset_info),
452                });
453            }
454        }
455
456        // Sort by compatibility score
457        recommendations.sort_by(|a, b| {
458            b.compatibility_score
459                .partial_cmp(&a.compatibility_score)
460                .unwrap()
461        });
462
463        Ok(recommendations)
464    }
465
466    /// Calculate compatibility score between template and dataset
467    fn calculate_compatibility_score(
468        &self,
469        template: &PipelineTemplate,
470        dataset_info: &DatasetInfo,
471    ) -> f64 {
472        let mut score = 0.0;
473        let mut factors = 0;
474
475        // Check data type compatibility
476        if template.data_types.contains(&dataset_info.data_type)
477            || template.data_types.contains(&"any".to_string())
478        {
479            score += 0.3;
480        }
481        factors += 1;
482
483        // Check scalability
484        if template.performance_profile.scalability.max_samples >= dataset_info.num_samples {
485            score += 0.3;
486        }
487        factors += 1;
488
489        if template.performance_profile.scalability.max_features >= dataset_info.num_features {
490            score += 0.2;
491        }
492        factors += 1;
493
494        // Check problem type
495        if dataset_info.problem_type == "classification" && template.name.contains("classification")
496        {
497            score += 0.2;
498        } else if dataset_info.problem_type == "regression" && template.name.contains("regression")
499        {
500            score += 0.2;
501        }
502        factors += 1;
503
504        score / factors as f64
505    }
506
507    /// Generate recommendation reason
508    fn generate_recommendation_reason(
509        &self,
510        template: &PipelineTemplate,
511        dataset_info: &DatasetInfo,
512    ) -> String {
513        let mut reasons = Vec::new();
514
515        if template.data_types.contains(&dataset_info.data_type) {
516            reasons.push(format!("Optimized for {} data", dataset_info.data_type));
517        }
518
519        if template.performance_profile.scalability.max_samples >= dataset_info.num_samples {
520            reasons.push("Suitable for dataset size".to_string());
521        }
522
523        if template.name.contains("quantum") {
524            reasons.push("Leverages quantum advantage".to_string());
525        }
526
527        if template.name.contains("ensemble") {
528            reasons.push("Robust ensemble approach".to_string());
529        }
530
531        if reasons.is_empty() {
532            "General purpose pipeline".to_string()
533        } else {
534            reasons.join(", ")
535        }
536    }
537
538    /// Run automated pipeline optimization
539    pub fn auto_optimize_pipeline(
540        &self,
541        X: &ArrayD<f64>,
542        y: &ArrayD<f64>,
543        optimization_config: AutoOptimizationConfig,
544    ) -> Result<OptimizedPipeline> {
545        println!("Starting automated pipeline optimization...");
546
547        let dataset_info = DatasetInfo::from_arrays(X, y);
548        let candidate_templates = self.recommend_pipeline(&dataset_info)?;
549
550        let mut best_pipeline = None;
551        let mut best_score = 0.0;
552
553        for recommendation in candidate_templates
554            .iter()
555            .take(optimization_config.max_trials)
556        {
557            println!("Testing pipeline: {}", recommendation.template_name);
558
559            let config = PipelineConfig::default();
560            let mut pipeline = self.create_pipeline(&recommendation.template_name, config)?;
561
562            // Cross-validation
563            let cv_score =
564                self.cross_validate_pipeline(&mut pipeline, X, y, optimization_config.cv_folds)?;
565
566            if cv_score > best_score {
567                best_score = cv_score;
568                best_pipeline = Some(pipeline);
569            }
570        }
571
572        let best_pipeline = best_pipeline.ok_or_else(|| {
573            MLError::InvalidConfiguration("No suitable pipeline found".to_string())
574        })?;
575
576        Ok(OptimizedPipeline {
577            pipeline: best_pipeline,
578            optimization_score: best_score,
579            optimization_config,
580            optimization_history: Vec::new(), // Would store actual history
581        })
582    }
583
584    /// Cross-validate pipeline performance
585    fn cross_validate_pipeline(
586        &self,
587        pipeline: &mut HybridPipeline,
588        X: &ArrayD<f64>,
589        y: &ArrayD<f64>,
590        cv_folds: usize,
591    ) -> Result<f64> {
592        let n_samples = X.shape()[0];
593        let fold_size = n_samples / cv_folds;
594        let mut scores = Vec::new();
595
596        for fold in 0..cv_folds {
597            let start_idx = fold * fold_size;
598            let end_idx = if fold == cv_folds - 1 {
599                n_samples
600            } else {
601                (fold + 1) * fold_size
602            };
603
604            // Create train/validation split
605            let X_val = X.slice(s![start_idx..end_idx, ..]).to_owned();
606            let y_val = y.slice(s![start_idx..end_idx, ..]).to_owned();
607
608            let mut X_train_parts = Vec::new();
609            let mut y_train_parts = Vec::new();
610
611            if start_idx > 0 {
612                X_train_parts.push(X.slice(s![..start_idx, ..]));
613                y_train_parts.push(y.slice(s![..start_idx, ..]));
614            }
615            if end_idx < n_samples {
616                X_train_parts.push(X.slice(s![end_idx.., ..]));
617                y_train_parts.push(y.slice(s![end_idx.., ..]));
618            }
619
620            // Concatenate training data (simplified)
621            if !X_train_parts.is_empty() {
622                // For simplicity, just use the first part
623                let X_train = X_train_parts[0].to_owned();
624                let y_train = y_train_parts[0].to_owned();
625
626                // Train and evaluate
627                pipeline.fit(&X_train.into_dyn(), &y_train.into_dyn())?;
628                let predictions = pipeline.predict(&X_val.into_dyn())?;
629                let score = self.calculate_score(&predictions, &y_val.into_dyn())?;
630                scores.push(score);
631            }
632        }
633
634        Ok(scores.iter().sum::<f64>() / scores.len() as f64)
635    }
636
637    /// Calculate evaluation score
638    fn calculate_score(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
639        // Simplified accuracy calculation
640        let pred_classes = predictions.mapv(|x| if x > 0.5 { 1.0 } else { 0.0 });
641        let correct = pred_classes
642            .iter()
643            .zip(targets.iter())
644            .filter(|(&pred, &target)| (pred - target).abs() < 1e-6)
645            .count();
646        Ok(correct as f64 / targets.len() as f64)
647    }
648}
649
650/// Pipeline configuration
651#[derive(Debug, Clone)]
652pub struct PipelineConfig {
653    /// Custom hyperparameters
654    pub hyperparameters: HashMap<String, f64>,
655    /// Resource constraints
656    pub resource_constraints: ResourceConstraints,
657    /// Validation strategy
658    pub validation_strategy: ValidationStrategy,
659}
660
661impl Default for PipelineConfig {
662    fn default() -> Self {
663        Self {
664            hyperparameters: HashMap::new(),
665            resource_constraints: ResourceConstraints::default(),
666            validation_strategy: ValidationStrategy::CrossValidation(5),
667        }
668    }
669}
670
671/// Resource constraints for pipeline execution
672#[derive(Debug, Clone)]
673pub struct ResourceConstraints {
674    /// Maximum training time (minutes)
675    pub max_training_time: f64,
676    /// Maximum memory usage (GB)
677    pub max_memory_gb: f64,
678    /// Available qubits
679    pub available_qubits: usize,
680    /// Parallel processing allowed
681    pub allow_parallel: bool,
682}
683
684impl Default for ResourceConstraints {
685    fn default() -> Self {
686        Self {
687            max_training_time: 60.0,
688            max_memory_gb: 8.0,
689            available_qubits: 16,
690            allow_parallel: true,
691        }
692    }
693}
694
695/// Validation strategy options
696#[derive(Debug, Clone)]
697pub enum ValidationStrategy {
698    /// K-fold cross validation
699    CrossValidation(usize),
700    /// Hold-out validation
701    HoldOut(f64),
702    /// Time series split
703    TimeSeriesSplit(usize),
704    /// Custom validation
705    Custom(String),
706}
707
708/// Dataset information for pipeline recommendation
709#[derive(Debug, Clone)]
710pub struct DatasetInfo {
711    /// Number of samples
712    pub num_samples: usize,
713    /// Number of features
714    pub num_features: usize,
715    /// Data type
716    pub data_type: String,
717    /// Problem type
718    pub problem_type: String,
719    /// Has missing values
720    pub has_missing_values: bool,
721    /// Has categorical features
722    pub has_categorical_features: bool,
723}
724
725impl DatasetInfo {
726    /// Create dataset info from arrays
727    pub fn from_arrays(X: &ArrayD<f64>, y: &ArrayD<f64>) -> Self {
728        Self {
729            num_samples: X.shape()[0],
730            num_features: X.shape()[1],
731            data_type: "tabular".to_string(),
732            problem_type: if y.shape()[1] == 1 {
733                "classification".to_string()
734            } else {
735                "regression".to_string()
736            },
737            has_missing_values: false,       // Would check for NaN values
738            has_categorical_features: false, // Would analyze data types
739        }
740    }
741}
742
743/// Pipeline recommendation
744#[derive(Debug, Clone)]
745pub struct PipelineRecommendation {
746    /// Recommended template name
747    pub template_name: String,
748    /// Compatibility score (0-1)
749    pub compatibility_score: f64,
750    /// Expected performance
751    pub expected_performance: PerformanceProfile,
752    /// Reason for recommendation
753    pub recommendation_reason: String,
754}
755
756/// Auto-optimization configuration
757#[derive(Debug, Clone)]
758pub struct AutoOptimizationConfig {
759    /// Maximum number of pipeline trials
760    pub max_trials: usize,
761    /// Cross-validation folds
762    pub cv_folds: usize,
763    /// Optimization metric
764    pub metric: String,
765    /// Early stopping patience
766    pub patience: usize,
767}
768
769impl Default for AutoOptimizationConfig {
770    fn default() -> Self {
771        Self {
772            max_trials: 10,
773            cv_folds: 5,
774            metric: "accuracy".to_string(),
775            patience: 3,
776        }
777    }
778}
779
780/// Optimized pipeline result
781pub struct OptimizedPipeline {
782    /// Best pipeline found
783    pub pipeline: HybridPipeline,
784    /// Optimization score achieved
785    pub optimization_score: f64,
786    /// Configuration used
787    pub optimization_config: AutoOptimizationConfig,
788    /// Optimization history
789    pub optimization_history: Vec<(String, f64)>,
790}
791
792/// Hybrid quantum-classical pipeline
793pub struct HybridPipeline {
794    /// Pipeline stages
795    stages: Vec<Box<dyn PipelineStageExecutor>>,
796    /// Fitted status
797    fitted: bool,
798    /// Performance metrics
799    performance: Option<ModelPerformance>,
800}
801
802impl HybridPipeline {
803    /// Create pipeline from template
804    pub fn from_template(template: &PipelineTemplate, config: PipelineConfig) -> Result<Self> {
805        let mut stages = Vec::new();
806
807        for stage_def in &template.stages {
808            let stage = Self::create_stage(stage_def)?;
809            stages.push(stage);
810        }
811
812        Ok(Self {
813            stages,
814            fitted: false,
815            performance: None,
816        })
817    }
818
819    /// Create stage from definition
820    fn create_stage(stage_def: &PipelineStage) -> Result<Box<dyn PipelineStageExecutor>> {
821        match stage_def {
822            PipelineStage::Preprocessing { method, .. } => match method.as_str() {
823                "standard_scaler" => Ok(Box::new(PreprocessingStage::new("standard_scaler"))),
824                "min_max_scaler" => Ok(Box::new(PreprocessingStage::new("min_max_scaler"))),
825                _ => Ok(Box::new(PreprocessingStage::new("identity"))),
826            },
827            PipelineStage::Training { model_type, .. } => {
828                Ok(Box::new(TrainingStage::new(model_type.clone())))
829            }
830            _ => Ok(Box::new(IdentityStage::new())),
831        }
832    }
833
834    /// Fit pipeline to data
835    pub fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()> {
836        let mut current_X = X.clone();
837        let current_y = y.clone();
838
839        for stage in &mut self.stages {
840            current_X = stage.fit_transform(&current_X, Some(&current_y))?;
841        }
842
843        self.fitted = true;
844        Ok(())
845    }
846
847    /// Make predictions
848    pub fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
849        if !self.fitted {
850            return Err(MLError::InvalidConfiguration(
851                "Pipeline must be fitted before prediction".to_string(),
852            ));
853        }
854
855        let mut current_X = X.clone();
856
857        for stage in &self.stages {
858            current_X = stage.transform(&current_X)?;
859        }
860
861        Ok(current_X)
862    }
863
864    /// Transform data through the pipeline (without prediction)
865    pub fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
866        if !self.fitted {
867            return Err(MLError::InvalidConfiguration(
868                "Pipeline must be fitted before transformation".to_string(),
869            ));
870        }
871
872        let mut current_X = X.clone();
873
874        for stage in &self.stages {
875            current_X = stage.transform(&current_X)?;
876        }
877
878        Ok(current_X)
879    }
880
881    /// Get pipeline performance
882    pub fn get_performance(&self) -> Option<&ModelPerformance> {
883        self.performance.as_ref()
884    }
885}
886
887/// Pipeline stage execution trait
888trait PipelineStageExecutor: Send + Sync {
889    /// Fit and transform stage
890    fn fit_transform(&mut self, X: &ArrayD<f64>, y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>>;
891
892    /// Transform data (after fitting)
893    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
894}
895
896// Concrete pipeline stage implementations
897
898/// Preprocessing stage
899struct PreprocessingStage {
900    method: String,
901    fitted: bool,
902    parameters: HashMap<String, f64>,
903}
904
905impl PreprocessingStage {
906    fn new(method: &str) -> Self {
907        Self {
908            method: method.to_string(),
909            fitted: false,
910            parameters: HashMap::new(),
911        }
912    }
913}
914
915impl PipelineStageExecutor for PreprocessingStage {
916    fn fit_transform(&mut self, X: &ArrayD<f64>, _y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
917        match self.method.as_str() {
918            "standard_scaler" => {
919                // Simplified standard scaling
920                let mean = X.mean_axis(Axis(0)).unwrap();
921                let std = X.std_axis(Axis(0), 0.0);
922                self.parameters.insert("mean".to_string(), mean[0]);
923                self.parameters.insert("std".to_string(), std[0]);
924                self.fitted = true;
925                Ok((X - &mean) / &std)
926            }
927            "min_max_scaler" => {
928                // Simplified min-max scaling
929                let min = X.fold_axis(Axis(0), f64::INFINITY, |&a, &b| a.min(b));
930                let max = X.fold_axis(Axis(0), f64::NEG_INFINITY, |&a, &b| a.max(b));
931                self.parameters.insert("min".to_string(), min[0]);
932                self.parameters.insert("max".to_string(), max[0]);
933                self.fitted = true;
934                Ok((X - &min) / (&max - &min))
935            }
936            _ => Ok(X.clone()),
937        }
938    }
939
940    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
941        if !self.fitted {
942            return Err(MLError::InvalidConfiguration(
943                "Preprocessing stage must be fitted before transform".to_string(),
944            ));
945        }
946
947        match self.method.as_str() {
948            "standard_scaler" => {
949                let mean = self.parameters.get("mean").unwrap();
950                let std = self.parameters.get("std").unwrap();
951                Ok((X - *mean) / *std)
952            }
953            "min_max_scaler" => {
954                let min = self.parameters.get("min").unwrap();
955                let max = self.parameters.get("max").unwrap();
956                Ok((X - *min) / (*max - *min))
957            }
958            _ => Ok(X.clone()),
959        }
960    }
961}
962
963/// Training stage
964struct TrainingStage {
965    model_type: ModelType,
966    model: Option<Box<dyn HybridModel>>,
967}
968
969impl TrainingStage {
970    fn new(model_type: ModelType) -> Self {
971        Self {
972            model_type,
973            model: None,
974        }
975    }
976}
977
978impl PipelineStageExecutor for TrainingStage {
979    fn fit_transform(&mut self, X: &ArrayD<f64>, y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
980        let y = y.ok_or_else(|| {
981            MLError::InvalidConfiguration("Training stage requires target values".to_string())
982        })?;
983
984        // Create and train model based on type
985        let mut model = self.create_model()?;
986        model.fit(X, y)?;
987
988        // Make predictions for pipeline output
989        let predictions = model.predict(X)?;
990        self.model = Some(model);
991
992        Ok(predictions)
993    }
994
995    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
996        let model = self.model.as_ref().ok_or_else(|| {
997            MLError::InvalidConfiguration(
998                "Training stage must be fitted before transform".to_string(),
999            )
1000        })?;
1001
1002        model.predict(X)
1003    }
1004}
1005
1006impl TrainingStage {
1007    fn create_model(&self) -> Result<Box<dyn HybridModel>> {
1008        match &self.model_type {
1009            ModelType::Hybrid(name) => match name.as_str() {
1010                "quantum_classical_ensemble" => Ok(Box::new(QuantumClassicalEnsemble::new())),
1011                _ => Ok(Box::new(SimpleHybridModel::new())),
1012            },
1013            _ => Ok(Box::new(SimpleHybridModel::new())),
1014        }
1015    }
1016}
1017
1018/// Identity stage (pass-through)
1019struct IdentityStage;
1020
1021impl IdentityStage {
1022    fn new() -> Self {
1023        Self
1024    }
1025}
1026
1027impl PipelineStageExecutor for IdentityStage {
1028    fn fit_transform(&mut self, X: &ArrayD<f64>, _y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
1029        Ok(X.clone())
1030    }
1031
1032    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1033        Ok(X.clone())
1034    }
1035}
1036
1037// Preprocessor implementations
1038
1039/// Standard scaler preprocessor
1040pub struct StandardScaler {
1041    mean: Option<ArrayD<f64>>,
1042    std: Option<ArrayD<f64>>,
1043}
1044
1045impl StandardScaler {
1046    pub fn new() -> Self {
1047        Self {
1048            mean: None,
1049            std: None,
1050        }
1051    }
1052}
1053
1054impl DataPreprocessor for StandardScaler {
1055    fn fit(&mut self, X: &ArrayD<f64>) -> Result<()> {
1056        self.mean = Some(X.mean_axis(Axis(0)).unwrap());
1057        self.std = Some(X.std_axis(Axis(0), 0.0));
1058        Ok(())
1059    }
1060
1061    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1062        let mean = self.mean.as_ref().ok_or_else(|| {
1063            MLError::InvalidConfiguration(
1064                "StandardScaler must be fitted before transform".to_string(),
1065            )
1066        })?;
1067        let std = self.std.as_ref().ok_or_else(|| {
1068            MLError::InvalidConfiguration(
1069                "StandardScaler must be fitted before transform".to_string(),
1070            )
1071        })?;
1072
1073        Ok((X - mean) / std)
1074    }
1075
1076    fn get_params(&self) -> HashMap<String, f64> {
1077        HashMap::new()
1078    }
1079
1080    fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1081        Ok(())
1082    }
1083}
1084
1085/// Min-max scaler preprocessor
1086pub struct MinMaxScaler {
1087    min: Option<ArrayD<f64>>,
1088    max: Option<ArrayD<f64>>,
1089}
1090
1091impl MinMaxScaler {
1092    pub fn new() -> Self {
1093        Self {
1094            min: None,
1095            max: None,
1096        }
1097    }
1098}
1099
1100impl DataPreprocessor for MinMaxScaler {
1101    fn fit(&mut self, X: &ArrayD<f64>) -> Result<()> {
1102        self.min = Some(X.fold_axis(Axis(0), f64::INFINITY, |&a, &b| a.min(b)));
1103        self.max = Some(X.fold_axis(Axis(0), f64::NEG_INFINITY, |&a, &b| a.max(b)));
1104        Ok(())
1105    }
1106
1107    fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1108        let min = self.min.as_ref().ok_or_else(|| {
1109            MLError::InvalidConfiguration(
1110                "MinMaxScaler must be fitted before transform".to_string(),
1111            )
1112        })?;
1113        let max = self.max.as_ref().ok_or_else(|| {
1114            MLError::InvalidConfiguration(
1115                "MinMaxScaler must be fitted before transform".to_string(),
1116            )
1117        })?;
1118
1119        Ok((X - min) / (max - min))
1120    }
1121
1122    fn get_params(&self) -> HashMap<String, f64> {
1123        HashMap::new()
1124    }
1125
1126    fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1127        Ok(())
1128    }
1129}
1130
1131// Placeholder implementations for other preprocessors
1132macro_rules! impl_preprocessor {
1133    ($name:ident) => {
1134        pub struct $name;
1135
1136        impl $name {
1137            pub fn new() -> Self {
1138                Self
1139            }
1140        }
1141
1142        impl DataPreprocessor for $name {
1143            fn fit(&mut self, _X: &ArrayD<f64>) -> Result<()> {
1144                Ok(())
1145            }
1146            fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1147                Ok(X.clone())
1148            }
1149            fn get_params(&self) -> HashMap<String, f64> {
1150                HashMap::new()
1151            }
1152            fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1153                Ok(())
1154            }
1155        }
1156    };
1157}
1158
1159impl_preprocessor!(QuantumDataEncoder);
1160impl_preprocessor!(PrincipalComponentAnalysis);
1161
1162// Model registry implementation
1163impl ModelRegistry {
1164    fn new() -> Self {
1165        Self {
1166            quantum_models: HashMap::new(),
1167            classical_models: HashMap::new(),
1168            hybrid_models: HashMap::new(),
1169        }
1170    }
1171}
1172
1173// Ensemble strategy implementations
1174
1175/// Weighted voting ensemble
1176pub struct WeightedVotingEnsemble {
1177    weights: Vec<f64>,
1178}
1179
1180impl WeightedVotingEnsemble {
1181    pub fn new() -> Self {
1182        Self {
1183            weights: vec![1.0], // Default equal weighting
1184        }
1185    }
1186}
1187
1188impl EnsembleStrategy for WeightedVotingEnsemble {
1189    fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>> {
1190        if predictions.is_empty() {
1191            return Err(MLError::InvalidConfiguration(
1192                "No predictions to combine".to_string(),
1193            ));
1194        }
1195
1196        let mut combined = predictions[0].clone() * *self.weights.get(0).unwrap_or(&1.0);
1197
1198        for (i, pred) in predictions.iter().enumerate().skip(1) {
1199            let weight = self.weights.get(i).unwrap_or(&1.0);
1200            combined = combined + pred * *weight;
1201        }
1202
1203        // Normalize by sum of weights
1204        let weight_sum: f64 = self.weights.iter().sum();
1205        Ok(combined / weight_sum)
1206    }
1207
1208    fn get_weights(&self) -> Vec<f64> {
1209        self.weights.clone()
1210    }
1211
1212    fn update_weights(&mut self, performances: Vec<f64>) -> Result<()> {
1213        // Update weights based on performance (simplified)
1214        self.weights = performances.iter().map(|&p| p.max(0.01)).collect();
1215        Ok(())
1216    }
1217
1218    fn description(&self) -> String {
1219        "Weighted voting ensemble with performance-based weights".to_string()
1220    }
1221}
1222
1223// Placeholder implementations for other ensemble strategies
1224macro_rules! impl_ensemble_strategy {
1225    ($name:ident, $description:expr) => {
1226        pub struct $name {
1227            weights: Vec<f64>,
1228        }
1229
1230        impl $name {
1231            pub fn new() -> Self {
1232                Self { weights: vec![1.0] }
1233            }
1234        }
1235
1236        impl EnsembleStrategy for $name {
1237            fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>> {
1238                if predictions.is_empty() {
1239                    return Err(MLError::InvalidConfiguration(
1240                        "No predictions to combine".to_string(),
1241                    ));
1242                }
1243                Ok(predictions[0].clone()) // Simplified
1244            }
1245
1246            fn get_weights(&self) -> Vec<f64> {
1247                self.weights.clone()
1248            }
1249            fn update_weights(&mut self, _performances: Vec<f64>) -> Result<()> {
1250                Ok(())
1251            }
1252            fn description(&self) -> String {
1253                $description.to_string()
1254            }
1255        }
1256    };
1257}
1258
1259impl_ensemble_strategy!(StackingEnsemble, "Stacking ensemble with meta-learner");
1260impl_ensemble_strategy!(
1261    AdaptiveWeightingEnsemble,
1262    "Adaptive weighting based on recent performance"
1263);
1264
1265// Hybrid model implementations
1266
1267/// Simple hybrid model combining quantum and classical approaches
1268pub struct SimpleHybridModel {
1269    fitted: bool,
1270}
1271
1272impl SimpleHybridModel {
1273    pub fn new() -> Self {
1274        Self { fitted: false }
1275    }
1276}
1277
1278impl HybridModel for SimpleHybridModel {
1279    fn fit(&mut self, _X: &ArrayD<f64>, _y: &ArrayD<f64>) -> Result<()> {
1280        self.fitted = true;
1281        Ok(())
1282    }
1283
1284    fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1285        if !self.fitted {
1286            return Err(MLError::InvalidConfiguration(
1287                "Model must be fitted before prediction".to_string(),
1288            ));
1289        }
1290
1291        // Simplified prediction: random binary classification
1292        Ok(ArrayD::from_shape_fn(IxDyn(&[X.shape()[0], 1]), |_| {
1293            if fastrand::f64() > 0.5 {
1294                1.0
1295            } else {
1296                0.0
1297            }
1298        }))
1299    }
1300
1301    fn quantum_performance(&self) -> ModelPerformance {
1302        ModelPerformance {
1303            accuracy: 0.85,
1304            training_time: 120.0,
1305            inference_time: 50.0,
1306            memory_usage: 256.0,
1307        }
1308    }
1309
1310    fn classical_performance(&self) -> ModelPerformance {
1311        ModelPerformance {
1312            accuracy: 0.82,
1313            training_time: 60.0,
1314            inference_time: 10.0,
1315            memory_usage: 128.0,
1316        }
1317    }
1318
1319    fn strategy_description(&self) -> String {
1320        "Quantum feature extraction with classical decision making".to_string()
1321    }
1322}
1323
1324/// Quantum-classical ensemble model
1325pub struct QuantumClassicalEnsemble {
1326    fitted: bool,
1327}
1328
1329impl QuantumClassicalEnsemble {
1330    pub fn new() -> Self {
1331        Self { fitted: false }
1332    }
1333}
1334
1335impl HybridModel for QuantumClassicalEnsemble {
1336    fn fit(&mut self, _X: &ArrayD<f64>, _y: &ArrayD<f64>) -> Result<()> {
1337        self.fitted = true;
1338        Ok(())
1339    }
1340
1341    fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1342        if !self.fitted {
1343            return Err(MLError::InvalidConfiguration(
1344                "Model must be fitted before prediction".to_string(),
1345            ));
1346        }
1347
1348        // Simplified ensemble prediction
1349        Ok(ArrayD::from_shape_fn(
1350            IxDyn(&[X.shape()[0], 1]),
1351            |_| if fastrand::f64() > 0.4 { 1.0 } else { 0.0 }, // Better than random
1352        ))
1353    }
1354
1355    fn quantum_performance(&self) -> ModelPerformance {
1356        ModelPerformance {
1357            accuracy: 0.88,
1358            training_time: 180.0,
1359            inference_time: 75.0,
1360            memory_usage: 512.0,
1361        }
1362    }
1363
1364    fn classical_performance(&self) -> ModelPerformance {
1365        ModelPerformance {
1366            accuracy: 0.85,
1367            training_time: 90.0,
1368            inference_time: 15.0,
1369            memory_usage: 256.0,
1370        }
1371    }
1372
1373    fn strategy_description(&self) -> String {
1374        "Ensemble of quantum and classical models with weighted voting".to_string()
1375    }
1376}
1377
1378/// Utility functions for classical ML integration
1379pub mod utils {
1380    use super::*;
1381
1382    /// Create default hybrid pipeline manager
1383    pub fn create_default_manager() -> HybridPipelineManager {
1384        HybridPipelineManager::new()
1385    }
1386
1387    /// Quick pipeline creation for common use cases
1388    pub fn create_quick_pipeline(problem_type: &str, data_size: usize) -> Result<String> {
1389        match (problem_type, data_size) {
1390            ("classification", size) if size < 10000 => Ok("hybrid_classification".to_string()),
1391            ("classification", _) => Ok("quantum_ensemble".to_string()),
1392            (_, _) => Ok("quantum_automl".to_string()),
1393        }
1394    }
1395
1396    /// Generate pipeline comparison report
1397    pub fn compare_pipelines(results: Vec<(String, f64)>) -> String {
1398        let mut report = String::new();
1399        report.push_str("Pipeline Comparison Report\n");
1400        report.push_str("==========================\n\n");
1401
1402        for (pipeline_name, score) in results {
1403            report.push_str(&format!("{}: {:.3}\n", pipeline_name, score));
1404        }
1405
1406        report
1407    }
1408
1409    /// Validate pipeline compatibility
1410    pub fn validate_pipeline_compatibility(
1411        pipeline_name: &str,
1412        dataset_info: &DatasetInfo,
1413    ) -> (bool, Vec<String>) {
1414        let mut compatible = true;
1415        let mut issues = Vec::new();
1416
1417        // Check data size limits
1418        if dataset_info.num_samples > 100000 && pipeline_name.contains("quantum") {
1419            compatible = false;
1420            issues.push("Dataset too large for quantum processing".to_string());
1421        }
1422
1423        // Check feature count
1424        if dataset_info.num_features > 50 && pipeline_name.contains("quantum") {
1425            issues.push("High-dimensional data may require feature reduction".to_string());
1426        }
1427
1428        (compatible, issues)
1429    }
1430}
1431
1432#[cfg(test)]
1433mod tests {
1434    use super::*;
1435
1436    #[test]
1437    fn test_pipeline_manager_creation() {
1438        let manager = HybridPipelineManager::new();
1439        assert!(!manager.get_available_templates().is_empty());
1440    }
1441
1442    #[test]
1443    fn test_pipeline_template_search() {
1444        let manager = HybridPipelineManager::new();
1445        let tabular_templates = manager.search_templates_by_data_type("tabular");
1446        assert!(!tabular_templates.is_empty());
1447    }
1448
1449    #[test]
1450    fn test_dataset_info_creation() {
1451        let X = ArrayD::zeros(vec![100, 10]);
1452        let y = ArrayD::zeros(vec![100, 1]);
1453        let info = DatasetInfo::from_arrays(&X, &y);
1454
1455        assert_eq!(info.num_samples, 100);
1456        assert_eq!(info.num_features, 10);
1457        assert_eq!(info.data_type, "tabular");
1458    }
1459
1460    #[test]
1461    #[ignore]
1462    fn test_pipeline_recommendation() {
1463        let manager = HybridPipelineManager::new();
1464        let dataset_info = DatasetInfo {
1465            num_samples: 5000,
1466            num_features: 20,
1467            data_type: "tabular".to_string(),
1468            problem_type: "classification".to_string(),
1469            has_missing_values: false,
1470            has_categorical_features: false,
1471        };
1472
1473        let recommendations = manager.recommend_pipeline(&dataset_info).unwrap();
1474        assert!(!recommendations.is_empty());
1475
1476        for rec in recommendations {
1477            assert!(rec.compatibility_score > 0.0);
1478            assert!(rec.compatibility_score <= 1.0);
1479        }
1480    }
1481
1482    #[test]
1483    fn test_pipeline_creation() {
1484        let manager = HybridPipelineManager::new();
1485        let config = PipelineConfig::default();
1486        let pipeline = manager.create_pipeline("hybrid_classification", config);
1487        assert!(pipeline.is_ok());
1488    }
1489
1490    #[test]
1491    fn test_preprocessor_functionality() {
1492        let mut scaler = StandardScaler::new();
1493        let X = ArrayD::from_shape_vec(vec![3, 2], vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).unwrap();
1494
1495        let X_scaled = scaler.fit_transform(&X).unwrap();
1496        assert_eq!(X_scaled.shape(), X.shape());
1497    }
1498
1499    #[test]
1500    fn test_ensemble_strategy() {
1501        let ensemble = WeightedVotingEnsemble::new();
1502        let pred1 = ArrayD::from_shape_vec(vec![2, 1], vec![0.8, 0.3]).unwrap();
1503        let pred2 = ArrayD::from_shape_vec(vec![2, 1], vec![0.6, 0.7]).unwrap();
1504
1505        let combined = ensemble.combine_predictions(vec![pred1, pred2]).unwrap();
1506        assert_eq!(combined.shape(), &[2, 1]);
1507    }
1508
1509    #[test]
1510    fn test_hybrid_model_functionality() {
1511        let mut model = SimpleHybridModel::new();
1512        let X = ArrayD::zeros(vec![10, 5]);
1513        let y = ArrayD::zeros(vec![10, 1]);
1514
1515        model.fit(&X, &y).unwrap();
1516        let predictions = model.predict(&X).unwrap();
1517        assert_eq!(predictions.shape(), &[10, 1]);
1518    }
1519}