1use crate::benchmarking::{BenchmarkConfig, BenchmarkFramework};
8use crate::domain_templates::{DomainTemplateManager, TemplateConfig};
9use crate::error::{MLError, Result};
10use crate::keras_api::{Dense, QuantumDense, Sequential};
11use crate::model_zoo::{ModelZoo, QuantumModel};
12use crate::pytorch_api::{QuantumLinear, QuantumModule};
13use crate::sklearn_compatibility::{QuantumMLPClassifier, QuantumSVC};
14use scirs2_core::ndarray::{s, Array1, Array2, ArrayD, Axis, IxDyn};
15use quantrs2_circuit::prelude::*;
16use quantrs2_core::prelude::*;
17use serde::{Deserialize, Serialize};
18use std::collections::HashMap;
19
20pub struct HybridPipelineManager {
22 pipeline_templates: HashMap<String, PipelineTemplate>,
24 preprocessors: HashMap<String, Box<dyn DataPreprocessor>>,
26 model_registry: ModelRegistry,
28 ensemble_strategies: HashMap<String, Box<dyn EnsembleStrategy>>,
30}
31
32#[derive(Debug, Clone, Serialize, Deserialize)]
34pub struct PipelineTemplate {
35 pub name: String,
37 pub description: String,
39 pub stages: Vec<PipelineStage>,
41 pub hyperparameters: HashMap<String, f64>,
43 pub data_types: Vec<String>,
45 pub performance_profile: PerformanceProfile,
47}
48
49#[derive(Debug, Clone, Serialize, Deserialize)]
51pub enum PipelineStage {
52 Preprocessing {
54 method: String,
55 parameters: HashMap<String, f64>,
56 },
57 FeatureEngineering {
59 method: String,
60 parameters: HashMap<String, f64>,
61 },
62 Training {
64 model_type: ModelType,
65 hyperparameters: HashMap<String, f64>,
66 },
67 Ensemble { strategy: String, weights: Vec<f64> },
69 PostProcessing {
71 method: String,
72 parameters: HashMap<String, f64>,
73 },
74}
75
76#[derive(Debug, Clone, Serialize, Deserialize)]
78pub enum ModelType {
79 Classical(String),
81 Quantum(String),
83 Hybrid(String),
85 Ensemble(Vec<ModelType>),
87}
88
89#[derive(Debug, Clone, Serialize, Deserialize)]
91pub struct PerformanceProfile {
92 pub accuracy_range: (f64, f64),
94 pub training_time_minutes: f64,
96 pub memory_gb: f64,
98 pub scalability: ScalabilityProfile,
100}
101
102#[derive(Debug, Clone, Serialize, Deserialize)]
104pub struct ScalabilityProfile {
105 pub max_samples: usize,
107 pub max_features: usize,
109 pub parallel_capable: bool,
111 pub distributed_capable: bool,
113}
114
115pub trait DataPreprocessor: Send + Sync {
117 fn fit(&mut self, X: &ArrayD<f64>) -> Result<()>;
119
120 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
122
123 fn fit_transform(&mut self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
125 self.fit(X)?;
126 self.transform(X)
127 }
128
129 fn get_params(&self) -> HashMap<String, f64>;
131
132 fn set_params(&mut self, params: HashMap<String, f64>) -> Result<()>;
134}
135
136pub struct ModelRegistry {
138 quantum_models: HashMap<String, Box<dyn QuantumModel>>,
140 classical_models: HashMap<String, Box<dyn ClassicalModel>>,
142 hybrid_models: HashMap<String, Box<dyn HybridModel>>,
144}
145
146pub trait ClassicalModel: Send + Sync {
148 fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()>;
150
151 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
153
154 fn get_params(&self) -> HashMap<String, f64>;
156
157 fn set_params(&mut self, params: HashMap<String, f64>) -> Result<()>;
159
160 fn feature_importance(&self) -> Option<Array1<f64>>;
162}
163
164pub trait HybridModel: Send + Sync {
166 fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()>;
168
169 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
171
172 fn quantum_performance(&self) -> ModelPerformance;
174
175 fn classical_performance(&self) -> ModelPerformance;
177
178 fn strategy_description(&self) -> String;
180}
181
182#[derive(Debug, Clone, Serialize, Deserialize)]
184pub struct ModelPerformance {
185 pub accuracy: f64,
187 pub training_time: f64,
189 pub inference_time: f64,
191 pub memory_usage: f64,
193}
194
195pub trait EnsembleStrategy: Send + Sync {
197 fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>>;
199
200 fn get_weights(&self) -> Vec<f64>;
202
203 fn update_weights(&mut self, performances: Vec<f64>) -> Result<()>;
205
206 fn description(&self) -> String;
208}
209
210impl HybridPipelineManager {
211 pub fn new() -> Self {
213 let mut manager = Self {
214 pipeline_templates: HashMap::new(),
215 preprocessors: HashMap::new(),
216 model_registry: ModelRegistry::new(),
217 ensemble_strategies: HashMap::new(),
218 };
219
220 manager.register_default_components();
221 manager
222 }
223
224 fn register_default_components(&mut self) {
226 self.register_default_templates();
227 self.register_default_preprocessors();
228 self.register_default_ensemble_strategies();
229 }
230
231 fn register_default_templates(&mut self) {
233 self.pipeline_templates.insert(
235 "hybrid_classification".to_string(),
236 PipelineTemplate {
237 name: "Hybrid Quantum-Classical Classification".to_string(),
238 description: "Combines quantum feature learning with classical decision making"
239 .to_string(),
240 stages: vec![
241 PipelineStage::Preprocessing {
242 method: "standard_scaler".to_string(),
243 parameters: HashMap::new(),
244 },
245 PipelineStage::FeatureEngineering {
246 method: "quantum_feature_map".to_string(),
247 parameters: [("num_qubits".to_string(), 8.0)].iter().cloned().collect(),
248 },
249 PipelineStage::Training {
250 model_type: ModelType::Hybrid("quantum_classical_ensemble".to_string()),
251 hyperparameters: [
252 ("quantum_weight".to_string(), 0.6),
253 ("classical_weight".to_string(), 0.4),
254 ]
255 .iter()
256 .cloned()
257 .collect(),
258 },
259 ],
260 hyperparameters: [
261 ("learning_rate".to_string(), 0.01),
262 ("epochs".to_string(), 100.0),
263 ("batch_size".to_string(), 32.0),
264 ]
265 .iter()
266 .cloned()
267 .collect(),
268 data_types: vec!["tabular".to_string(), "structured".to_string()],
269 performance_profile: PerformanceProfile {
270 accuracy_range: (0.85, 0.95),
271 training_time_minutes: 30.0,
272 memory_gb: 2.0,
273 scalability: ScalabilityProfile {
274 max_samples: 100000,
275 max_features: 100,
276 parallel_capable: true,
277 distributed_capable: false,
278 },
279 },
280 },
281 );
282
283 self.pipeline_templates.insert(
285 "quantum_ensemble".to_string(),
286 PipelineTemplate {
287 name: "Quantum Model Ensemble".to_string(),
288 description: "Ensemble of multiple quantum models with different ansatz types"
289 .to_string(),
290 stages: vec![
291 PipelineStage::Preprocessing {
292 method: "quantum_data_encoder".to_string(),
293 parameters: HashMap::new(),
294 },
295 PipelineStage::Training {
296 model_type: ModelType::Ensemble(vec![
297 ModelType::Quantum("qnn_hardware_efficient".to_string()),
298 ModelType::Quantum("qnn_real_amplitudes".to_string()),
299 ModelType::Quantum("qsvm_zz_feature_map".to_string()),
300 ]),
301 hyperparameters: HashMap::new(),
302 },
303 PipelineStage::Ensemble {
304 strategy: "weighted_voting".to_string(),
305 weights: vec![0.4, 0.3, 0.3],
306 },
307 ],
308 hyperparameters: [
309 ("num_qubits".to_string(), 10.0),
310 ("num_layers".to_string(), 3.0),
311 ]
312 .iter()
313 .cloned()
314 .collect(),
315 data_types: vec!["tabular".to_string(), "quantum_ready".to_string()],
316 performance_profile: PerformanceProfile {
317 accuracy_range: (0.88, 0.96),
318 training_time_minutes: 60.0,
319 memory_gb: 4.0,
320 scalability: ScalabilityProfile {
321 max_samples: 50000,
322 max_features: 50,
323 parallel_capable: true,
324 distributed_capable: true,
325 },
326 },
327 },
328 );
329
330 self.pipeline_templates.insert(
332 "quantum_automl".to_string(),
333 PipelineTemplate {
334 name: "Quantum AutoML Pipeline".to_string(),
335 description: "Automated quantum model selection and hyperparameter optimization"
336 .to_string(),
337 stages: vec![
338 PipelineStage::Preprocessing {
339 method: "auto_preprocessor".to_string(),
340 parameters: HashMap::new(),
341 },
342 PipelineStage::FeatureEngineering {
343 method: "auto_feature_engineering".to_string(),
344 parameters: HashMap::new(),
345 },
346 PipelineStage::Training {
347 model_type: ModelType::Hybrid("auto_selected".to_string()),
348 hyperparameters: HashMap::new(),
349 },
350 ],
351 hyperparameters: [
352 ("search_budget".to_string(), 100.0),
353 ("validation_split".to_string(), 0.2),
354 ]
355 .iter()
356 .cloned()
357 .collect(),
358 data_types: vec!["any".to_string()],
359 performance_profile: PerformanceProfile {
360 accuracy_range: (0.80, 0.98),
361 training_time_minutes: 180.0,
362 memory_gb: 8.0,
363 scalability: ScalabilityProfile {
364 max_samples: 200000,
365 max_features: 200,
366 parallel_capable: true,
367 distributed_capable: true,
368 },
369 },
370 },
371 );
372 }
373
374 fn register_default_preprocessors(&mut self) {
376 self.preprocessors.insert(
377 "standard_scaler".to_string(),
378 Box::new(StandardScaler::new()),
379 );
380 self.preprocessors
381 .insert("min_max_scaler".to_string(), Box::new(MinMaxScaler::new()));
382 self.preprocessors.insert(
383 "quantum_data_encoder".to_string(),
384 Box::new(QuantumDataEncoder::new()),
385 );
386 self.preprocessors.insert(
387 "principal_component_analysis".to_string(),
388 Box::new(PrincipalComponentAnalysis::new()),
389 );
390 }
391
392 fn register_default_ensemble_strategies(&mut self) {
394 self.ensemble_strategies.insert(
395 "weighted_voting".to_string(),
396 Box::new(WeightedVotingEnsemble::new()),
397 );
398 self.ensemble_strategies
399 .insert("stacking".to_string(), Box::new(StackingEnsemble::new()));
400 self.ensemble_strategies.insert(
401 "adaptive_weighting".to_string(),
402 Box::new(AdaptiveWeightingEnsemble::new()),
403 );
404 }
405
406 pub fn create_pipeline(
408 &self,
409 template_name: &str,
410 config: PipelineConfig,
411 ) -> Result<HybridPipeline> {
412 let template = self.pipeline_templates.get(template_name).ok_or_else(|| {
413 MLError::InvalidConfiguration(format!("Pipeline template not found: {}", template_name))
414 })?;
415
416 HybridPipeline::from_template(template, config)
417 }
418
419 pub fn get_available_templates(&self) -> Vec<&PipelineTemplate> {
421 self.pipeline_templates.values().collect()
422 }
423
424 pub fn search_templates_by_data_type(&self, data_type: &str) -> Vec<&PipelineTemplate> {
426 self.pipeline_templates
427 .values()
428 .filter(|template| {
429 template.data_types.contains(&data_type.to_string())
430 || template.data_types.contains(&"any".to_string())
431 })
432 .collect()
433 }
434
435 pub fn recommend_pipeline(
437 &self,
438 dataset_info: &DatasetInfo,
439 ) -> Result<Vec<PipelineRecommendation>> {
440 let mut recommendations = Vec::new();
441
442 for template in self.pipeline_templates.values() {
443 let compatibility_score = self.calculate_compatibility_score(template, dataset_info);
444
445 if compatibility_score > 0.5 {
446 recommendations.push(PipelineRecommendation {
447 template_name: template.name.clone(),
448 compatibility_score,
449 expected_performance: template.performance_profile.clone(),
450 recommendation_reason: self
451 .generate_recommendation_reason(template, dataset_info),
452 });
453 }
454 }
455
456 recommendations.sort_by(|a, b| {
458 b.compatibility_score
459 .partial_cmp(&a.compatibility_score)
460 .unwrap()
461 });
462
463 Ok(recommendations)
464 }
465
466 fn calculate_compatibility_score(
468 &self,
469 template: &PipelineTemplate,
470 dataset_info: &DatasetInfo,
471 ) -> f64 {
472 let mut score = 0.0;
473 let mut factors = 0;
474
475 if template.data_types.contains(&dataset_info.data_type)
477 || template.data_types.contains(&"any".to_string())
478 {
479 score += 0.3;
480 }
481 factors += 1;
482
483 if template.performance_profile.scalability.max_samples >= dataset_info.num_samples {
485 score += 0.3;
486 }
487 factors += 1;
488
489 if template.performance_profile.scalability.max_features >= dataset_info.num_features {
490 score += 0.2;
491 }
492 factors += 1;
493
494 if dataset_info.problem_type == "classification" && template.name.contains("classification")
496 {
497 score += 0.2;
498 } else if dataset_info.problem_type == "regression" && template.name.contains("regression")
499 {
500 score += 0.2;
501 }
502 factors += 1;
503
504 score / factors as f64
505 }
506
507 fn generate_recommendation_reason(
509 &self,
510 template: &PipelineTemplate,
511 dataset_info: &DatasetInfo,
512 ) -> String {
513 let mut reasons = Vec::new();
514
515 if template.data_types.contains(&dataset_info.data_type) {
516 reasons.push(format!("Optimized for {} data", dataset_info.data_type));
517 }
518
519 if template.performance_profile.scalability.max_samples >= dataset_info.num_samples {
520 reasons.push("Suitable for dataset size".to_string());
521 }
522
523 if template.name.contains("quantum") {
524 reasons.push("Leverages quantum advantage".to_string());
525 }
526
527 if template.name.contains("ensemble") {
528 reasons.push("Robust ensemble approach".to_string());
529 }
530
531 if reasons.is_empty() {
532 "General purpose pipeline".to_string()
533 } else {
534 reasons.join(", ")
535 }
536 }
537
538 pub fn auto_optimize_pipeline(
540 &self,
541 X: &ArrayD<f64>,
542 y: &ArrayD<f64>,
543 optimization_config: AutoOptimizationConfig,
544 ) -> Result<OptimizedPipeline> {
545 println!("Starting automated pipeline optimization...");
546
547 let dataset_info = DatasetInfo::from_arrays(X, y);
548 let candidate_templates = self.recommend_pipeline(&dataset_info)?;
549
550 let mut best_pipeline = None;
551 let mut best_score = 0.0;
552
553 for recommendation in candidate_templates
554 .iter()
555 .take(optimization_config.max_trials)
556 {
557 println!("Testing pipeline: {}", recommendation.template_name);
558
559 let config = PipelineConfig::default();
560 let mut pipeline = self.create_pipeline(&recommendation.template_name, config)?;
561
562 let cv_score =
564 self.cross_validate_pipeline(&mut pipeline, X, y, optimization_config.cv_folds)?;
565
566 if cv_score > best_score {
567 best_score = cv_score;
568 best_pipeline = Some(pipeline);
569 }
570 }
571
572 let best_pipeline = best_pipeline.ok_or_else(|| {
573 MLError::InvalidConfiguration("No suitable pipeline found".to_string())
574 })?;
575
576 Ok(OptimizedPipeline {
577 pipeline: best_pipeline,
578 optimization_score: best_score,
579 optimization_config,
580 optimization_history: Vec::new(), })
582 }
583
584 fn cross_validate_pipeline(
586 &self,
587 pipeline: &mut HybridPipeline,
588 X: &ArrayD<f64>,
589 y: &ArrayD<f64>,
590 cv_folds: usize,
591 ) -> Result<f64> {
592 let n_samples = X.shape()[0];
593 let fold_size = n_samples / cv_folds;
594 let mut scores = Vec::new();
595
596 for fold in 0..cv_folds {
597 let start_idx = fold * fold_size;
598 let end_idx = if fold == cv_folds - 1 {
599 n_samples
600 } else {
601 (fold + 1) * fold_size
602 };
603
604 let X_val = X.slice(s![start_idx..end_idx, ..]).to_owned();
606 let y_val = y.slice(s![start_idx..end_idx, ..]).to_owned();
607
608 let mut X_train_parts = Vec::new();
609 let mut y_train_parts = Vec::new();
610
611 if start_idx > 0 {
612 X_train_parts.push(X.slice(s![..start_idx, ..]));
613 y_train_parts.push(y.slice(s![..start_idx, ..]));
614 }
615 if end_idx < n_samples {
616 X_train_parts.push(X.slice(s![end_idx.., ..]));
617 y_train_parts.push(y.slice(s![end_idx.., ..]));
618 }
619
620 if !X_train_parts.is_empty() {
622 let X_train = X_train_parts[0].to_owned();
624 let y_train = y_train_parts[0].to_owned();
625
626 pipeline.fit(&X_train.into_dyn(), &y_train.into_dyn())?;
628 let predictions = pipeline.predict(&X_val.into_dyn())?;
629 let score = self.calculate_score(&predictions, &y_val.into_dyn())?;
630 scores.push(score);
631 }
632 }
633
634 Ok(scores.iter().sum::<f64>() / scores.len() as f64)
635 }
636
637 fn calculate_score(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
639 let pred_classes = predictions.mapv(|x| if x > 0.5 { 1.0 } else { 0.0 });
641 let correct = pred_classes
642 .iter()
643 .zip(targets.iter())
644 .filter(|(&pred, &target)| (pred - target).abs() < 1e-6)
645 .count();
646 Ok(correct as f64 / targets.len() as f64)
647 }
648}
649
650#[derive(Debug, Clone)]
652pub struct PipelineConfig {
653 pub hyperparameters: HashMap<String, f64>,
655 pub resource_constraints: ResourceConstraints,
657 pub validation_strategy: ValidationStrategy,
659}
660
661impl Default for PipelineConfig {
662 fn default() -> Self {
663 Self {
664 hyperparameters: HashMap::new(),
665 resource_constraints: ResourceConstraints::default(),
666 validation_strategy: ValidationStrategy::CrossValidation(5),
667 }
668 }
669}
670
671#[derive(Debug, Clone)]
673pub struct ResourceConstraints {
674 pub max_training_time: f64,
676 pub max_memory_gb: f64,
678 pub available_qubits: usize,
680 pub allow_parallel: bool,
682}
683
684impl Default for ResourceConstraints {
685 fn default() -> Self {
686 Self {
687 max_training_time: 60.0,
688 max_memory_gb: 8.0,
689 available_qubits: 16,
690 allow_parallel: true,
691 }
692 }
693}
694
695#[derive(Debug, Clone)]
697pub enum ValidationStrategy {
698 CrossValidation(usize),
700 HoldOut(f64),
702 TimeSeriesSplit(usize),
704 Custom(String),
706}
707
708#[derive(Debug, Clone)]
710pub struct DatasetInfo {
711 pub num_samples: usize,
713 pub num_features: usize,
715 pub data_type: String,
717 pub problem_type: String,
719 pub has_missing_values: bool,
721 pub has_categorical_features: bool,
723}
724
725impl DatasetInfo {
726 pub fn from_arrays(X: &ArrayD<f64>, y: &ArrayD<f64>) -> Self {
728 Self {
729 num_samples: X.shape()[0],
730 num_features: X.shape()[1],
731 data_type: "tabular".to_string(),
732 problem_type: if y.shape()[1] == 1 {
733 "classification".to_string()
734 } else {
735 "regression".to_string()
736 },
737 has_missing_values: false, has_categorical_features: false, }
740 }
741}
742
743#[derive(Debug, Clone)]
745pub struct PipelineRecommendation {
746 pub template_name: String,
748 pub compatibility_score: f64,
750 pub expected_performance: PerformanceProfile,
752 pub recommendation_reason: String,
754}
755
756#[derive(Debug, Clone)]
758pub struct AutoOptimizationConfig {
759 pub max_trials: usize,
761 pub cv_folds: usize,
763 pub metric: String,
765 pub patience: usize,
767}
768
769impl Default for AutoOptimizationConfig {
770 fn default() -> Self {
771 Self {
772 max_trials: 10,
773 cv_folds: 5,
774 metric: "accuracy".to_string(),
775 patience: 3,
776 }
777 }
778}
779
780pub struct OptimizedPipeline {
782 pub pipeline: HybridPipeline,
784 pub optimization_score: f64,
786 pub optimization_config: AutoOptimizationConfig,
788 pub optimization_history: Vec<(String, f64)>,
790}
791
792pub struct HybridPipeline {
794 stages: Vec<Box<dyn PipelineStageExecutor>>,
796 fitted: bool,
798 performance: Option<ModelPerformance>,
800}
801
802impl HybridPipeline {
803 pub fn from_template(template: &PipelineTemplate, config: PipelineConfig) -> Result<Self> {
805 let mut stages = Vec::new();
806
807 for stage_def in &template.stages {
808 let stage = Self::create_stage(stage_def)?;
809 stages.push(stage);
810 }
811
812 Ok(Self {
813 stages,
814 fitted: false,
815 performance: None,
816 })
817 }
818
819 fn create_stage(stage_def: &PipelineStage) -> Result<Box<dyn PipelineStageExecutor>> {
821 match stage_def {
822 PipelineStage::Preprocessing { method, .. } => match method.as_str() {
823 "standard_scaler" => Ok(Box::new(PreprocessingStage::new("standard_scaler"))),
824 "min_max_scaler" => Ok(Box::new(PreprocessingStage::new("min_max_scaler"))),
825 _ => Ok(Box::new(PreprocessingStage::new("identity"))),
826 },
827 PipelineStage::Training { model_type, .. } => {
828 Ok(Box::new(TrainingStage::new(model_type.clone())))
829 }
830 _ => Ok(Box::new(IdentityStage::new())),
831 }
832 }
833
834 pub fn fit(&mut self, X: &ArrayD<f64>, y: &ArrayD<f64>) -> Result<()> {
836 let mut current_X = X.clone();
837 let current_y = y.clone();
838
839 for stage in &mut self.stages {
840 current_X = stage.fit_transform(¤t_X, Some(¤t_y))?;
841 }
842
843 self.fitted = true;
844 Ok(())
845 }
846
847 pub fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
849 if !self.fitted {
850 return Err(MLError::InvalidConfiguration(
851 "Pipeline must be fitted before prediction".to_string(),
852 ));
853 }
854
855 let mut current_X = X.clone();
856
857 for stage in &self.stages {
858 current_X = stage.transform(¤t_X)?;
859 }
860
861 Ok(current_X)
862 }
863
864 pub fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
866 if !self.fitted {
867 return Err(MLError::InvalidConfiguration(
868 "Pipeline must be fitted before transformation".to_string(),
869 ));
870 }
871
872 let mut current_X = X.clone();
873
874 for stage in &self.stages {
875 current_X = stage.transform(¤t_X)?;
876 }
877
878 Ok(current_X)
879 }
880
881 pub fn get_performance(&self) -> Option<&ModelPerformance> {
883 self.performance.as_ref()
884 }
885}
886
887trait PipelineStageExecutor: Send + Sync {
889 fn fit_transform(&mut self, X: &ArrayD<f64>, y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>>;
891
892 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>>;
894}
895
896struct PreprocessingStage {
900 method: String,
901 fitted: bool,
902 parameters: HashMap<String, f64>,
903}
904
905impl PreprocessingStage {
906 fn new(method: &str) -> Self {
907 Self {
908 method: method.to_string(),
909 fitted: false,
910 parameters: HashMap::new(),
911 }
912 }
913}
914
915impl PipelineStageExecutor for PreprocessingStage {
916 fn fit_transform(&mut self, X: &ArrayD<f64>, _y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
917 match self.method.as_str() {
918 "standard_scaler" => {
919 let mean = X.mean_axis(Axis(0)).unwrap();
921 let std = X.std_axis(Axis(0), 0.0);
922 self.parameters.insert("mean".to_string(), mean[0]);
923 self.parameters.insert("std".to_string(), std[0]);
924 self.fitted = true;
925 Ok((X - &mean) / &std)
926 }
927 "min_max_scaler" => {
928 let min = X.fold_axis(Axis(0), f64::INFINITY, |&a, &b| a.min(b));
930 let max = X.fold_axis(Axis(0), f64::NEG_INFINITY, |&a, &b| a.max(b));
931 self.parameters.insert("min".to_string(), min[0]);
932 self.parameters.insert("max".to_string(), max[0]);
933 self.fitted = true;
934 Ok((X - &min) / (&max - &min))
935 }
936 _ => Ok(X.clone()),
937 }
938 }
939
940 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
941 if !self.fitted {
942 return Err(MLError::InvalidConfiguration(
943 "Preprocessing stage must be fitted before transform".to_string(),
944 ));
945 }
946
947 match self.method.as_str() {
948 "standard_scaler" => {
949 let mean = self.parameters.get("mean").unwrap();
950 let std = self.parameters.get("std").unwrap();
951 Ok((X - *mean) / *std)
952 }
953 "min_max_scaler" => {
954 let min = self.parameters.get("min").unwrap();
955 let max = self.parameters.get("max").unwrap();
956 Ok((X - *min) / (*max - *min))
957 }
958 _ => Ok(X.clone()),
959 }
960 }
961}
962
963struct TrainingStage {
965 model_type: ModelType,
966 model: Option<Box<dyn HybridModel>>,
967}
968
969impl TrainingStage {
970 fn new(model_type: ModelType) -> Self {
971 Self {
972 model_type,
973 model: None,
974 }
975 }
976}
977
978impl PipelineStageExecutor for TrainingStage {
979 fn fit_transform(&mut self, X: &ArrayD<f64>, y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
980 let y = y.ok_or_else(|| {
981 MLError::InvalidConfiguration("Training stage requires target values".to_string())
982 })?;
983
984 let mut model = self.create_model()?;
986 model.fit(X, y)?;
987
988 let predictions = model.predict(X)?;
990 self.model = Some(model);
991
992 Ok(predictions)
993 }
994
995 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
996 let model = self.model.as_ref().ok_or_else(|| {
997 MLError::InvalidConfiguration(
998 "Training stage must be fitted before transform".to_string(),
999 )
1000 })?;
1001
1002 model.predict(X)
1003 }
1004}
1005
1006impl TrainingStage {
1007 fn create_model(&self) -> Result<Box<dyn HybridModel>> {
1008 match &self.model_type {
1009 ModelType::Hybrid(name) => match name.as_str() {
1010 "quantum_classical_ensemble" => Ok(Box::new(QuantumClassicalEnsemble::new())),
1011 _ => Ok(Box::new(SimpleHybridModel::new())),
1012 },
1013 _ => Ok(Box::new(SimpleHybridModel::new())),
1014 }
1015 }
1016}
1017
1018struct IdentityStage;
1020
1021impl IdentityStage {
1022 fn new() -> Self {
1023 Self
1024 }
1025}
1026
1027impl PipelineStageExecutor for IdentityStage {
1028 fn fit_transform(&mut self, X: &ArrayD<f64>, _y: Option<&ArrayD<f64>>) -> Result<ArrayD<f64>> {
1029 Ok(X.clone())
1030 }
1031
1032 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1033 Ok(X.clone())
1034 }
1035}
1036
1037pub struct StandardScaler {
1041 mean: Option<ArrayD<f64>>,
1042 std: Option<ArrayD<f64>>,
1043}
1044
1045impl StandardScaler {
1046 pub fn new() -> Self {
1047 Self {
1048 mean: None,
1049 std: None,
1050 }
1051 }
1052}
1053
1054impl DataPreprocessor for StandardScaler {
1055 fn fit(&mut self, X: &ArrayD<f64>) -> Result<()> {
1056 self.mean = Some(X.mean_axis(Axis(0)).unwrap());
1057 self.std = Some(X.std_axis(Axis(0), 0.0));
1058 Ok(())
1059 }
1060
1061 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1062 let mean = self.mean.as_ref().ok_or_else(|| {
1063 MLError::InvalidConfiguration(
1064 "StandardScaler must be fitted before transform".to_string(),
1065 )
1066 })?;
1067 let std = self.std.as_ref().ok_or_else(|| {
1068 MLError::InvalidConfiguration(
1069 "StandardScaler must be fitted before transform".to_string(),
1070 )
1071 })?;
1072
1073 Ok((X - mean) / std)
1074 }
1075
1076 fn get_params(&self) -> HashMap<String, f64> {
1077 HashMap::new()
1078 }
1079
1080 fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1081 Ok(())
1082 }
1083}
1084
1085pub struct MinMaxScaler {
1087 min: Option<ArrayD<f64>>,
1088 max: Option<ArrayD<f64>>,
1089}
1090
1091impl MinMaxScaler {
1092 pub fn new() -> Self {
1093 Self {
1094 min: None,
1095 max: None,
1096 }
1097 }
1098}
1099
1100impl DataPreprocessor for MinMaxScaler {
1101 fn fit(&mut self, X: &ArrayD<f64>) -> Result<()> {
1102 self.min = Some(X.fold_axis(Axis(0), f64::INFINITY, |&a, &b| a.min(b)));
1103 self.max = Some(X.fold_axis(Axis(0), f64::NEG_INFINITY, |&a, &b| a.max(b)));
1104 Ok(())
1105 }
1106
1107 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1108 let min = self.min.as_ref().ok_or_else(|| {
1109 MLError::InvalidConfiguration(
1110 "MinMaxScaler must be fitted before transform".to_string(),
1111 )
1112 })?;
1113 let max = self.max.as_ref().ok_or_else(|| {
1114 MLError::InvalidConfiguration(
1115 "MinMaxScaler must be fitted before transform".to_string(),
1116 )
1117 })?;
1118
1119 Ok((X - min) / (max - min))
1120 }
1121
1122 fn get_params(&self) -> HashMap<String, f64> {
1123 HashMap::new()
1124 }
1125
1126 fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1127 Ok(())
1128 }
1129}
1130
1131macro_rules! impl_preprocessor {
1133 ($name:ident) => {
1134 pub struct $name;
1135
1136 impl $name {
1137 pub fn new() -> Self {
1138 Self
1139 }
1140 }
1141
1142 impl DataPreprocessor for $name {
1143 fn fit(&mut self, _X: &ArrayD<f64>) -> Result<()> {
1144 Ok(())
1145 }
1146 fn transform(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1147 Ok(X.clone())
1148 }
1149 fn get_params(&self) -> HashMap<String, f64> {
1150 HashMap::new()
1151 }
1152 fn set_params(&mut self, _params: HashMap<String, f64>) -> Result<()> {
1153 Ok(())
1154 }
1155 }
1156 };
1157}
1158
1159impl_preprocessor!(QuantumDataEncoder);
1160impl_preprocessor!(PrincipalComponentAnalysis);
1161
1162impl ModelRegistry {
1164 fn new() -> Self {
1165 Self {
1166 quantum_models: HashMap::new(),
1167 classical_models: HashMap::new(),
1168 hybrid_models: HashMap::new(),
1169 }
1170 }
1171}
1172
1173pub struct WeightedVotingEnsemble {
1177 weights: Vec<f64>,
1178}
1179
1180impl WeightedVotingEnsemble {
1181 pub fn new() -> Self {
1182 Self {
1183 weights: vec![1.0], }
1185 }
1186}
1187
1188impl EnsembleStrategy for WeightedVotingEnsemble {
1189 fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>> {
1190 if predictions.is_empty() {
1191 return Err(MLError::InvalidConfiguration(
1192 "No predictions to combine".to_string(),
1193 ));
1194 }
1195
1196 let mut combined = predictions[0].clone() * *self.weights.get(0).unwrap_or(&1.0);
1197
1198 for (i, pred) in predictions.iter().enumerate().skip(1) {
1199 let weight = self.weights.get(i).unwrap_or(&1.0);
1200 combined = combined + pred * *weight;
1201 }
1202
1203 let weight_sum: f64 = self.weights.iter().sum();
1205 Ok(combined / weight_sum)
1206 }
1207
1208 fn get_weights(&self) -> Vec<f64> {
1209 self.weights.clone()
1210 }
1211
1212 fn update_weights(&mut self, performances: Vec<f64>) -> Result<()> {
1213 self.weights = performances.iter().map(|&p| p.max(0.01)).collect();
1215 Ok(())
1216 }
1217
1218 fn description(&self) -> String {
1219 "Weighted voting ensemble with performance-based weights".to_string()
1220 }
1221}
1222
1223macro_rules! impl_ensemble_strategy {
1225 ($name:ident, $description:expr) => {
1226 pub struct $name {
1227 weights: Vec<f64>,
1228 }
1229
1230 impl $name {
1231 pub fn new() -> Self {
1232 Self { weights: vec![1.0] }
1233 }
1234 }
1235
1236 impl EnsembleStrategy for $name {
1237 fn combine_predictions(&self, predictions: Vec<ArrayD<f64>>) -> Result<ArrayD<f64>> {
1238 if predictions.is_empty() {
1239 return Err(MLError::InvalidConfiguration(
1240 "No predictions to combine".to_string(),
1241 ));
1242 }
1243 Ok(predictions[0].clone()) }
1245
1246 fn get_weights(&self) -> Vec<f64> {
1247 self.weights.clone()
1248 }
1249 fn update_weights(&mut self, _performances: Vec<f64>) -> Result<()> {
1250 Ok(())
1251 }
1252 fn description(&self) -> String {
1253 $description.to_string()
1254 }
1255 }
1256 };
1257}
1258
1259impl_ensemble_strategy!(StackingEnsemble, "Stacking ensemble with meta-learner");
1260impl_ensemble_strategy!(
1261 AdaptiveWeightingEnsemble,
1262 "Adaptive weighting based on recent performance"
1263);
1264
1265pub struct SimpleHybridModel {
1269 fitted: bool,
1270}
1271
1272impl SimpleHybridModel {
1273 pub fn new() -> Self {
1274 Self { fitted: false }
1275 }
1276}
1277
1278impl HybridModel for SimpleHybridModel {
1279 fn fit(&mut self, _X: &ArrayD<f64>, _y: &ArrayD<f64>) -> Result<()> {
1280 self.fitted = true;
1281 Ok(())
1282 }
1283
1284 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1285 if !self.fitted {
1286 return Err(MLError::InvalidConfiguration(
1287 "Model must be fitted before prediction".to_string(),
1288 ));
1289 }
1290
1291 Ok(ArrayD::from_shape_fn(IxDyn(&[X.shape()[0], 1]), |_| {
1293 if fastrand::f64() > 0.5 {
1294 1.0
1295 } else {
1296 0.0
1297 }
1298 }))
1299 }
1300
1301 fn quantum_performance(&self) -> ModelPerformance {
1302 ModelPerformance {
1303 accuracy: 0.85,
1304 training_time: 120.0,
1305 inference_time: 50.0,
1306 memory_usage: 256.0,
1307 }
1308 }
1309
1310 fn classical_performance(&self) -> ModelPerformance {
1311 ModelPerformance {
1312 accuracy: 0.82,
1313 training_time: 60.0,
1314 inference_time: 10.0,
1315 memory_usage: 128.0,
1316 }
1317 }
1318
1319 fn strategy_description(&self) -> String {
1320 "Quantum feature extraction with classical decision making".to_string()
1321 }
1322}
1323
1324pub struct QuantumClassicalEnsemble {
1326 fitted: bool,
1327}
1328
1329impl QuantumClassicalEnsemble {
1330 pub fn new() -> Self {
1331 Self { fitted: false }
1332 }
1333}
1334
1335impl HybridModel for QuantumClassicalEnsemble {
1336 fn fit(&mut self, _X: &ArrayD<f64>, _y: &ArrayD<f64>) -> Result<()> {
1337 self.fitted = true;
1338 Ok(())
1339 }
1340
1341 fn predict(&self, X: &ArrayD<f64>) -> Result<ArrayD<f64>> {
1342 if !self.fitted {
1343 return Err(MLError::InvalidConfiguration(
1344 "Model must be fitted before prediction".to_string(),
1345 ));
1346 }
1347
1348 Ok(ArrayD::from_shape_fn(
1350 IxDyn(&[X.shape()[0], 1]),
1351 |_| if fastrand::f64() > 0.4 { 1.0 } else { 0.0 }, ))
1353 }
1354
1355 fn quantum_performance(&self) -> ModelPerformance {
1356 ModelPerformance {
1357 accuracy: 0.88,
1358 training_time: 180.0,
1359 inference_time: 75.0,
1360 memory_usage: 512.0,
1361 }
1362 }
1363
1364 fn classical_performance(&self) -> ModelPerformance {
1365 ModelPerformance {
1366 accuracy: 0.85,
1367 training_time: 90.0,
1368 inference_time: 15.0,
1369 memory_usage: 256.0,
1370 }
1371 }
1372
1373 fn strategy_description(&self) -> String {
1374 "Ensemble of quantum and classical models with weighted voting".to_string()
1375 }
1376}
1377
1378pub mod utils {
1380 use super::*;
1381
1382 pub fn create_default_manager() -> HybridPipelineManager {
1384 HybridPipelineManager::new()
1385 }
1386
1387 pub fn create_quick_pipeline(problem_type: &str, data_size: usize) -> Result<String> {
1389 match (problem_type, data_size) {
1390 ("classification", size) if size < 10000 => Ok("hybrid_classification".to_string()),
1391 ("classification", _) => Ok("quantum_ensemble".to_string()),
1392 (_, _) => Ok("quantum_automl".to_string()),
1393 }
1394 }
1395
1396 pub fn compare_pipelines(results: Vec<(String, f64)>) -> String {
1398 let mut report = String::new();
1399 report.push_str("Pipeline Comparison Report\n");
1400 report.push_str("==========================\n\n");
1401
1402 for (pipeline_name, score) in results {
1403 report.push_str(&format!("{}: {:.3}\n", pipeline_name, score));
1404 }
1405
1406 report
1407 }
1408
1409 pub fn validate_pipeline_compatibility(
1411 pipeline_name: &str,
1412 dataset_info: &DatasetInfo,
1413 ) -> (bool, Vec<String>) {
1414 let mut compatible = true;
1415 let mut issues = Vec::new();
1416
1417 if dataset_info.num_samples > 100000 && pipeline_name.contains("quantum") {
1419 compatible = false;
1420 issues.push("Dataset too large for quantum processing".to_string());
1421 }
1422
1423 if dataset_info.num_features > 50 && pipeline_name.contains("quantum") {
1425 issues.push("High-dimensional data may require feature reduction".to_string());
1426 }
1427
1428 (compatible, issues)
1429 }
1430}
1431
1432#[cfg(test)]
1433mod tests {
1434 use super::*;
1435
1436 #[test]
1437 fn test_pipeline_manager_creation() {
1438 let manager = HybridPipelineManager::new();
1439 assert!(!manager.get_available_templates().is_empty());
1440 }
1441
1442 #[test]
1443 fn test_pipeline_template_search() {
1444 let manager = HybridPipelineManager::new();
1445 let tabular_templates = manager.search_templates_by_data_type("tabular");
1446 assert!(!tabular_templates.is_empty());
1447 }
1448
1449 #[test]
1450 fn test_dataset_info_creation() {
1451 let X = ArrayD::zeros(vec![100, 10]);
1452 let y = ArrayD::zeros(vec![100, 1]);
1453 let info = DatasetInfo::from_arrays(&X, &y);
1454
1455 assert_eq!(info.num_samples, 100);
1456 assert_eq!(info.num_features, 10);
1457 assert_eq!(info.data_type, "tabular");
1458 }
1459
1460 #[test]
1461 #[ignore]
1462 fn test_pipeline_recommendation() {
1463 let manager = HybridPipelineManager::new();
1464 let dataset_info = DatasetInfo {
1465 num_samples: 5000,
1466 num_features: 20,
1467 data_type: "tabular".to_string(),
1468 problem_type: "classification".to_string(),
1469 has_missing_values: false,
1470 has_categorical_features: false,
1471 };
1472
1473 let recommendations = manager.recommend_pipeline(&dataset_info).unwrap();
1474 assert!(!recommendations.is_empty());
1475
1476 for rec in recommendations {
1477 assert!(rec.compatibility_score > 0.0);
1478 assert!(rec.compatibility_score <= 1.0);
1479 }
1480 }
1481
1482 #[test]
1483 fn test_pipeline_creation() {
1484 let manager = HybridPipelineManager::new();
1485 let config = PipelineConfig::default();
1486 let pipeline = manager.create_pipeline("hybrid_classification", config);
1487 assert!(pipeline.is_ok());
1488 }
1489
1490 #[test]
1491 fn test_preprocessor_functionality() {
1492 let mut scaler = StandardScaler::new();
1493 let X = ArrayD::from_shape_vec(vec![3, 2], vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0]).unwrap();
1494
1495 let X_scaled = scaler.fit_transform(&X).unwrap();
1496 assert_eq!(X_scaled.shape(), X.shape());
1497 }
1498
1499 #[test]
1500 fn test_ensemble_strategy() {
1501 let ensemble = WeightedVotingEnsemble::new();
1502 let pred1 = ArrayD::from_shape_vec(vec![2, 1], vec![0.8, 0.3]).unwrap();
1503 let pred2 = ArrayD::from_shape_vec(vec![2, 1], vec![0.6, 0.7]).unwrap();
1504
1505 let combined = ensemble.combine_predictions(vec![pred1, pred2]).unwrap();
1506 assert_eq!(combined.shape(), &[2, 1]);
1507 }
1508
1509 #[test]
1510 fn test_hybrid_model_functionality() {
1511 let mut model = SimpleHybridModel::new();
1512 let X = ArrayD::zeros(vec![10, 5]);
1513 let y = ArrayD::zeros(vec![10, 1]);
1514
1515 model.fit(&X, &y).unwrap();
1516 let predictions = model.predict(&X).unwrap();
1517 assert_eq!(predictions.shape(), &[10, 1]);
1518 }
1519}