pub struct QuantumRBM { /* private fields */ }Expand description
Quantum Restricted Boltzmann Machine
Implementations§
Source§impl QuantumRBM
impl QuantumRBM
Sourcepub fn new(
num_visible: usize,
num_hidden: usize,
temperature: f64,
learning_rate: f64,
) -> Result<Self>
pub fn new( num_visible: usize, num_hidden: usize, temperature: f64, learning_rate: f64, ) -> Result<Self>
Create a new Quantum RBM
Examples found in repository?
examples/quantum_boltzmann.rs (lines 80-85)
76fn rbm_demo() -> Result<()> {
77 // Create RBM with annealing
78 let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
79
80 let mut rbm = QuantumRBM::new(
81 6, // visible units
82 3, // hidden units
83 2.0, // initial temperature
84 0.01, // learning rate
85 )?
86 .with_annealing(annealing);
87
88 println!(" Created Quantum RBM with annealing schedule");
89
90 // Generate correlated binary data
91 let data = generate_correlated_data(200, 6);
92
93 // Train with PCD
94 println!(" Training with Persistent Contrastive Divergence...");
95 let losses = rbm.train_pcd(
96 &data, 100, // epochs
97 20, // batch size
98 50, // persistent chains
99 )?;
100
101 // Analyze training
102 let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
103 println!(" Training statistics:");
104 println!(" - Loss reduction: {improvement:.1}%");
105 println!(" - Final temperature: 0.5");
106
107 // Test reconstruction
108 let test_data = data.slice(s![0..5, ..]).to_owned();
109 let reconstructed = rbm.qbm().reconstruct(&test_data)?;
110
111 println!("\n Reconstruction quality:");
112 for i in 0..3 {
113 print!(" Original: [");
114 for val in test_data.row(i) {
115 print!("{val:.0} ");
116 }
117 print!("] → Reconstructed: [");
118 for val in reconstructed.row(i) {
119 print!("{val:.0} ");
120 }
121 println!("]");
122 }
123
124 Ok(())
125}
126
127/// Deep Boltzmann Machine demonstration
128fn deep_boltzmann_demo() -> Result<()> {
129 // Create a 3-layer DBM
130 let layer_sizes = vec![8, 4, 2];
131 let mut dbm = DeepBoltzmannMachine::new(
132 layer_sizes.clone(),
133 1.0, // temperature
134 0.01, // learning rate
135 )?;
136
137 println!(" Created Deep Boltzmann Machine:");
138 println!(" - Architecture: {layer_sizes:?}");
139 println!(" - Total layers: {}", dbm.rbms().len());
140
141 // Generate hierarchical data
142 let data = generate_hierarchical_data(300, 8);
143
144 // Layer-wise pretraining
145 println!("\n Performing layer-wise pretraining...");
146 dbm.pretrain(
147 &data, 50, // epochs per layer
148 30, // batch size
149 )?;
150
151 println!("\n Pretraining complete!");
152 println!(" Each layer learned increasingly abstract features");
153
154 Ok(())
155}
156
157/// Energy landscape visualization
158fn energy_landscape_demo() -> Result<()> {
159 // Create small QBM for visualization
160 let qbm = QuantumBoltzmannMachine::new(
161 2, // visible units (for 2D visualization)
162 1, // hidden unit
163 0.5, // temperature
164 0.01, // learning rate
165 )?;
166
167 println!(" Analyzing energy landscape of 2-unit system");
168
169 // Compute energy for all 4 possible states
170 let states = [
171 Array1::from_vec(vec![0.0, 0.0]),
172 Array1::from_vec(vec![0.0, 1.0]),
173 Array1::from_vec(vec![1.0, 0.0]),
174 Array1::from_vec(vec![1.0, 1.0]),
175 ];
176
177 println!("\n State energies:");
178 for (i, state) in states.iter().enumerate() {
179 let energy = qbm.energy(state);
180 let prob = (-energy / qbm.temperature()).exp();
181 println!(
182 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
183 state[0], state[1], energy, prob
184 );
185 }
186
187 // Show coupling matrix
188 println!("\n Coupling matrix:");
189 for i in 0..3 {
190 print!(" [");
191 for j in 0..3 {
192 print!("{:6.3} ", qbm.couplings()[[i, j]]);
193 }
194 println!("]");
195 }
196
197 Ok(())
198}
199
200/// Pattern completion demonstration
201fn pattern_completion_demo() -> Result<()> {
202 // Create RBM
203 let mut rbm = QuantumRBM::new(
204 8, // visible units
205 4, // hidden units
206 1.0, // temperature
207 0.02, // learning rate
208 )?;
209
210 // Train on specific patterns
211 let patterns = create_letter_patterns();
212 println!(" Training on letter-like patterns...");
213
214 rbm.train_pcd(&patterns, 100, 10, 20)?;
215
216 // Test pattern completion
217 println!("\n Pattern completion test:");
218
219 // Create corrupted patterns
220 let mut corrupted = patterns.row(0).to_owned();
221 corrupted[3] = 1.0 - corrupted[3]; // Flip one bit
222 corrupted[5] = 1.0 - corrupted[5]; // Flip another
223
224 print!(" Corrupted: [");
225 for val in &corrupted {
226 print!("{val:.0} ");
227 }
228 println!("]");
229
230 // Complete pattern
231 let completed = complete_pattern(&rbm, &corrupted)?;
232
233 print!(" Completed: [");
234 for val in &completed {
235 print!("{val:.0} ");
236 }
237 println!("]");
238
239 print!(" Original: [");
240 for val in patterns.row(0) {
241 print!("{val:.0} ");
242 }
243 println!("]");
244
245 let accuracy = patterns
246 .row(0)
247 .iter()
248 .zip(completed.iter())
249 .filter(|(&a, &b)| (a - b).abs() < 0.5)
250 .count() as f64
251 / 8.0;
252
253 println!(" Reconstruction accuracy: {:.1}%", accuracy * 100.0);
254
255 Ok(())
256}Sourcepub fn with_annealing(self, schedule: AnnealingSchedule) -> Self
pub fn with_annealing(self, schedule: AnnealingSchedule) -> Self
Enable quantum annealing
Examples found in repository?
examples/quantum_boltzmann.rs (line 86)
76fn rbm_demo() -> Result<()> {
77 // Create RBM with annealing
78 let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
79
80 let mut rbm = QuantumRBM::new(
81 6, // visible units
82 3, // hidden units
83 2.0, // initial temperature
84 0.01, // learning rate
85 )?
86 .with_annealing(annealing);
87
88 println!(" Created Quantum RBM with annealing schedule");
89
90 // Generate correlated binary data
91 let data = generate_correlated_data(200, 6);
92
93 // Train with PCD
94 println!(" Training with Persistent Contrastive Divergence...");
95 let losses = rbm.train_pcd(
96 &data, 100, // epochs
97 20, // batch size
98 50, // persistent chains
99 )?;
100
101 // Analyze training
102 let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
103 println!(" Training statistics:");
104 println!(" - Loss reduction: {improvement:.1}%");
105 println!(" - Final temperature: 0.5");
106
107 // Test reconstruction
108 let test_data = data.slice(s![0..5, ..]).to_owned();
109 let reconstructed = rbm.qbm().reconstruct(&test_data)?;
110
111 println!("\n Reconstruction quality:");
112 for i in 0..3 {
113 print!(" Original: [");
114 for val in test_data.row(i) {
115 print!("{val:.0} ");
116 }
117 print!("] → Reconstructed: [");
118 for val in reconstructed.row(i) {
119 print!("{val:.0} ");
120 }
121 println!("]");
122 }
123
124 Ok(())
125}Sourcepub fn create_rbm_circuit(&self) -> Result<()>
pub fn create_rbm_circuit(&self) -> Result<()>
Create circuit for RBM sampling
Sourcepub fn train_pcd(
&mut self,
data: &Array2<f64>,
epochs: usize,
batch_size: usize,
num_persistent: usize,
) -> Result<Vec<f64>>
pub fn train_pcd( &mut self, data: &Array2<f64>, epochs: usize, batch_size: usize, num_persistent: usize, ) -> Result<Vec<f64>>
Train using persistent contrastive divergence
Examples found in repository?
examples/quantum_boltzmann.rs (lines 95-99)
76fn rbm_demo() -> Result<()> {
77 // Create RBM with annealing
78 let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
79
80 let mut rbm = QuantumRBM::new(
81 6, // visible units
82 3, // hidden units
83 2.0, // initial temperature
84 0.01, // learning rate
85 )?
86 .with_annealing(annealing);
87
88 println!(" Created Quantum RBM with annealing schedule");
89
90 // Generate correlated binary data
91 let data = generate_correlated_data(200, 6);
92
93 // Train with PCD
94 println!(" Training with Persistent Contrastive Divergence...");
95 let losses = rbm.train_pcd(
96 &data, 100, // epochs
97 20, // batch size
98 50, // persistent chains
99 )?;
100
101 // Analyze training
102 let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
103 println!(" Training statistics:");
104 println!(" - Loss reduction: {improvement:.1}%");
105 println!(" - Final temperature: 0.5");
106
107 // Test reconstruction
108 let test_data = data.slice(s![0..5, ..]).to_owned();
109 let reconstructed = rbm.qbm().reconstruct(&test_data)?;
110
111 println!("\n Reconstruction quality:");
112 for i in 0..3 {
113 print!(" Original: [");
114 for val in test_data.row(i) {
115 print!("{val:.0} ");
116 }
117 print!("] → Reconstructed: [");
118 for val in reconstructed.row(i) {
119 print!("{val:.0} ");
120 }
121 println!("]");
122 }
123
124 Ok(())
125}
126
127/// Deep Boltzmann Machine demonstration
128fn deep_boltzmann_demo() -> Result<()> {
129 // Create a 3-layer DBM
130 let layer_sizes = vec![8, 4, 2];
131 let mut dbm = DeepBoltzmannMachine::new(
132 layer_sizes.clone(),
133 1.0, // temperature
134 0.01, // learning rate
135 )?;
136
137 println!(" Created Deep Boltzmann Machine:");
138 println!(" - Architecture: {layer_sizes:?}");
139 println!(" - Total layers: {}", dbm.rbms().len());
140
141 // Generate hierarchical data
142 let data = generate_hierarchical_data(300, 8);
143
144 // Layer-wise pretraining
145 println!("\n Performing layer-wise pretraining...");
146 dbm.pretrain(
147 &data, 50, // epochs per layer
148 30, // batch size
149 )?;
150
151 println!("\n Pretraining complete!");
152 println!(" Each layer learned increasingly abstract features");
153
154 Ok(())
155}
156
157/// Energy landscape visualization
158fn energy_landscape_demo() -> Result<()> {
159 // Create small QBM for visualization
160 let qbm = QuantumBoltzmannMachine::new(
161 2, // visible units (for 2D visualization)
162 1, // hidden unit
163 0.5, // temperature
164 0.01, // learning rate
165 )?;
166
167 println!(" Analyzing energy landscape of 2-unit system");
168
169 // Compute energy for all 4 possible states
170 let states = [
171 Array1::from_vec(vec![0.0, 0.0]),
172 Array1::from_vec(vec![0.0, 1.0]),
173 Array1::from_vec(vec![1.0, 0.0]),
174 Array1::from_vec(vec![1.0, 1.0]),
175 ];
176
177 println!("\n State energies:");
178 for (i, state) in states.iter().enumerate() {
179 let energy = qbm.energy(state);
180 let prob = (-energy / qbm.temperature()).exp();
181 println!(
182 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
183 state[0], state[1], energy, prob
184 );
185 }
186
187 // Show coupling matrix
188 println!("\n Coupling matrix:");
189 for i in 0..3 {
190 print!(" [");
191 for j in 0..3 {
192 print!("{:6.3} ", qbm.couplings()[[i, j]]);
193 }
194 println!("]");
195 }
196
197 Ok(())
198}
199
200/// Pattern completion demonstration
201fn pattern_completion_demo() -> Result<()> {
202 // Create RBM
203 let mut rbm = QuantumRBM::new(
204 8, // visible units
205 4, // hidden units
206 1.0, // temperature
207 0.02, // learning rate
208 )?;
209
210 // Train on specific patterns
211 let patterns = create_letter_patterns();
212 println!(" Training on letter-like patterns...");
213
214 rbm.train_pcd(&patterns, 100, 10, 20)?;
215
216 // Test pattern completion
217 println!("\n Pattern completion test:");
218
219 // Create corrupted patterns
220 let mut corrupted = patterns.row(0).to_owned();
221 corrupted[3] = 1.0 - corrupted[3]; // Flip one bit
222 corrupted[5] = 1.0 - corrupted[5]; // Flip another
223
224 print!(" Corrupted: [");
225 for val in &corrupted {
226 print!("{val:.0} ");
227 }
228 println!("]");
229
230 // Complete pattern
231 let completed = complete_pattern(&rbm, &corrupted)?;
232
233 print!(" Completed: [");
234 for val in &completed {
235 print!("{val:.0} ");
236 }
237 println!("]");
238
239 print!(" Original: [");
240 for val in patterns.row(0) {
241 print!("{val:.0} ");
242 }
243 println!("]");
244
245 let accuracy = patterns
246 .row(0)
247 .iter()
248 .zip(completed.iter())
249 .filter(|(&a, &b)| (a - b).abs() < 0.5)
250 .count() as f64
251 / 8.0;
252
253 println!(" Reconstruction accuracy: {:.1}%", accuracy * 100.0);
254
255 Ok(())
256}Sourcepub fn qbm(&self) -> &QuantumBoltzmannMachine
pub fn qbm(&self) -> &QuantumBoltzmannMachine
Get reference to the underlying QBM
Examples found in repository?
examples/quantum_boltzmann.rs (line 109)
76fn rbm_demo() -> Result<()> {
77 // Create RBM with annealing
78 let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
79
80 let mut rbm = QuantumRBM::new(
81 6, // visible units
82 3, // hidden units
83 2.0, // initial temperature
84 0.01, // learning rate
85 )?
86 .with_annealing(annealing);
87
88 println!(" Created Quantum RBM with annealing schedule");
89
90 // Generate correlated binary data
91 let data = generate_correlated_data(200, 6);
92
93 // Train with PCD
94 println!(" Training with Persistent Contrastive Divergence...");
95 let losses = rbm.train_pcd(
96 &data, 100, // epochs
97 20, // batch size
98 50, // persistent chains
99 )?;
100
101 // Analyze training
102 let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
103 println!(" Training statistics:");
104 println!(" - Loss reduction: {improvement:.1}%");
105 println!(" - Final temperature: 0.5");
106
107 // Test reconstruction
108 let test_data = data.slice(s![0..5, ..]).to_owned();
109 let reconstructed = rbm.qbm().reconstruct(&test_data)?;
110
111 println!("\n Reconstruction quality:");
112 for i in 0..3 {
113 print!(" Original: [");
114 for val in test_data.row(i) {
115 print!("{val:.0} ");
116 }
117 print!("] → Reconstructed: [");
118 for val in reconstructed.row(i) {
119 print!("{val:.0} ");
120 }
121 println!("]");
122 }
123
124 Ok(())
125}
126
127/// Deep Boltzmann Machine demonstration
128fn deep_boltzmann_demo() -> Result<()> {
129 // Create a 3-layer DBM
130 let layer_sizes = vec![8, 4, 2];
131 let mut dbm = DeepBoltzmannMachine::new(
132 layer_sizes.clone(),
133 1.0, // temperature
134 0.01, // learning rate
135 )?;
136
137 println!(" Created Deep Boltzmann Machine:");
138 println!(" - Architecture: {layer_sizes:?}");
139 println!(" - Total layers: {}", dbm.rbms().len());
140
141 // Generate hierarchical data
142 let data = generate_hierarchical_data(300, 8);
143
144 // Layer-wise pretraining
145 println!("\n Performing layer-wise pretraining...");
146 dbm.pretrain(
147 &data, 50, // epochs per layer
148 30, // batch size
149 )?;
150
151 println!("\n Pretraining complete!");
152 println!(" Each layer learned increasingly abstract features");
153
154 Ok(())
155}
156
157/// Energy landscape visualization
158fn energy_landscape_demo() -> Result<()> {
159 // Create small QBM for visualization
160 let qbm = QuantumBoltzmannMachine::new(
161 2, // visible units (for 2D visualization)
162 1, // hidden unit
163 0.5, // temperature
164 0.01, // learning rate
165 )?;
166
167 println!(" Analyzing energy landscape of 2-unit system");
168
169 // Compute energy for all 4 possible states
170 let states = [
171 Array1::from_vec(vec![0.0, 0.0]),
172 Array1::from_vec(vec![0.0, 1.0]),
173 Array1::from_vec(vec![1.0, 0.0]),
174 Array1::from_vec(vec![1.0, 1.0]),
175 ];
176
177 println!("\n State energies:");
178 for (i, state) in states.iter().enumerate() {
179 let energy = qbm.energy(state);
180 let prob = (-energy / qbm.temperature()).exp();
181 println!(
182 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
183 state[0], state[1], energy, prob
184 );
185 }
186
187 // Show coupling matrix
188 println!("\n Coupling matrix:");
189 for i in 0..3 {
190 print!(" [");
191 for j in 0..3 {
192 print!("{:6.3} ", qbm.couplings()[[i, j]]);
193 }
194 println!("]");
195 }
196
197 Ok(())
198}
199
200/// Pattern completion demonstration
201fn pattern_completion_demo() -> Result<()> {
202 // Create RBM
203 let mut rbm = QuantumRBM::new(
204 8, // visible units
205 4, // hidden units
206 1.0, // temperature
207 0.02, // learning rate
208 )?;
209
210 // Train on specific patterns
211 let patterns = create_letter_patterns();
212 println!(" Training on letter-like patterns...");
213
214 rbm.train_pcd(&patterns, 100, 10, 20)?;
215
216 // Test pattern completion
217 println!("\n Pattern completion test:");
218
219 // Create corrupted patterns
220 let mut corrupted = patterns.row(0).to_owned();
221 corrupted[3] = 1.0 - corrupted[3]; // Flip one bit
222 corrupted[5] = 1.0 - corrupted[5]; // Flip another
223
224 print!(" Corrupted: [");
225 for val in &corrupted {
226 print!("{val:.0} ");
227 }
228 println!("]");
229
230 // Complete pattern
231 let completed = complete_pattern(&rbm, &corrupted)?;
232
233 print!(" Completed: [");
234 for val in &completed {
235 print!("{val:.0} ");
236 }
237 println!("]");
238
239 print!(" Original: [");
240 for val in patterns.row(0) {
241 print!("{val:.0} ");
242 }
243 println!("]");
244
245 let accuracy = patterns
246 .row(0)
247 .iter()
248 .zip(completed.iter())
249 .filter(|(&a, &b)| (a - b).abs() < 0.5)
250 .count() as f64
251 / 8.0;
252
253 println!(" Reconstruction accuracy: {:.1}%", accuracy * 100.0);
254
255 Ok(())
256}
257
258/// Generate binary patterns
259fn generate_binary_patterns(n_samples: usize, n_features: usize) -> Array2<f64> {
260 Array2::from_shape_fn((n_samples, n_features), |(_, _)| {
261 if thread_rng().gen::<f64>() > 0.5 {
262 1.0
263 } else {
264 0.0
265 }
266 })
267}
268
269/// Generate correlated binary data
270fn generate_correlated_data(n_samples: usize, n_features: usize) -> Array2<f64> {
271 let mut data = Array2::zeros((n_samples, n_features));
272
273 for i in 0..n_samples {
274 // Generate correlated features
275 let base = if thread_rng().gen::<f64>() > 0.5 {
276 1.0
277 } else {
278 0.0
279 };
280
281 for j in 0..n_features {
282 if j % 2 == 0 {
283 data[[i, j]] = base;
284 } else {
285 // Correlate with previous feature
286 data[[i, j]] = if thread_rng().gen::<f64>() > 0.2 {
287 base
288 } else {
289 1.0 - base
290 };
291 }
292 }
293 }
294
295 data
296}
297
298/// Generate hierarchical data
299fn generate_hierarchical_data(n_samples: usize, n_features: usize) -> Array2<f64> {
300 let mut data = Array2::zeros((n_samples, n_features));
301
302 for i in 0..n_samples {
303 // Choose high-level pattern
304 let pattern_type = i % 3;
305
306 match pattern_type {
307 0 => {
308 // Pattern A: alternating
309 for j in 0..n_features {
310 data[[i, j]] = (j % 2) as f64;
311 }
312 }
313 1 => {
314 // Pattern B: blocks
315 for j in 0..n_features {
316 data[[i, j]] = ((j / 2) % 2) as f64;
317 }
318 }
319 _ => {
320 // Pattern C: random with structure
321 let shift = (thread_rng().gen::<f64>() * 4.0) as usize;
322 for j in 0..n_features {
323 data[[i, j]] = if (j + shift) % 3 == 0 { 1.0 } else { 0.0 };
324 }
325 }
326 }
327
328 // Add noise
329 for j in 0..n_features {
330 if thread_rng().gen::<f64>() < 0.1 {
331 data[[i, j]] = 1.0 - data[[i, j]];
332 }
333 }
334 }
335
336 data
337}
338
339/// Create letter-like patterns
340fn create_letter_patterns() -> Array2<f64> {
341 // Simple 8-bit patterns resembling letters
342 Array2::from_shape_vec(
343 (4, 8),
344 vec![
345 // Pattern 'L'
346 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, // Pattern 'T'
347 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Pattern 'I'
348 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Pattern 'H'
349 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0,
350 ],
351 )
352 .unwrap()
353}
354
355/// Complete a partial pattern
356fn complete_pattern(rbm: &QuantumRBM, partial: &Array1<f64>) -> Result<Array1<f64>> {
357 // Use Gibbs sampling to complete pattern
358 let mut current = partial.clone();
359
360 for _ in 0..10 {
361 let hidden = rbm.qbm().sample_hidden_given_visible(¤t.view())?;
362 current = rbm.qbm().sample_visible_given_hidden(&hidden)?;
363 }
364
365 Ok(current)
366}Auto Trait Implementations§
impl Freeze for QuantumRBM
impl RefUnwindSafe for QuantumRBM
impl Send for QuantumRBM
impl Sync for QuantumRBM
impl Unpin for QuantumRBM
impl UnwindSafe for QuantumRBM
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.