Adam

Struct Adam 

Source
pub struct Adam { /* private fields */ }
Expand description

Adam optimizer

Implementations§

Source§

impl Adam

Source

pub fn new(learning_rate: f64) -> Self

Examples found in repository?
examples/few_shot_learning.rs (line 104)
83fn test_prototypical_networks(
84    data: &Array2<f64>,
85    labels: &Array1<usize>,
86    qnn: QuantumNeuralNetwork,
87) -> Result<()> {
88    let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn);
89
90    // Generate episodes for training
91    let num_episodes = 10;
92    let mut episodes = Vec::new();
93
94    for _ in 0..num_episodes {
95        let episode = FewShotLearner::generate_episode(
96            data, labels, 5, // 5-way
97            3, // 3-shot
98            5, // 5 query examples per class
99        )?;
100        episodes.push(episode);
101    }
102
103    // Train
104    let mut optimizer = Adam::new(0.01);
105    let accuracies = learner.train(&episodes, &mut optimizer, 20)?;
106
107    // Print results
108    println!("   Training completed:");
109    println!("   - Initial accuracy: {:.2}%", accuracies[0] * 100.0);
110    println!(
111        "   - Final accuracy: {:.2}%",
112        accuracies.last().unwrap() * 100.0
113    );
114    println!(
115        "   - Improvement: {:.2}%",
116        (accuracies.last().unwrap() - accuracies[0]) * 100.0
117    );
118
119    Ok(())
120}
121
122/// Test MAML
123fn test_maml(data: &Array2<f64>, labels: &Array1<usize>, qnn: QuantumNeuralNetwork) -> Result<()> {
124    let mut learner = FewShotLearner::new(
125        FewShotMethod::MAML {
126            inner_steps: 5,
127            inner_lr: 0.01,
128        },
129        qnn,
130    );
131
132    // Generate meta-training tasks
133    let num_tasks = 20;
134    let mut tasks = Vec::new();
135
136    for _ in 0..num_tasks {
137        let task = FewShotLearner::generate_episode(
138            data, labels, 3, // 3-way (fewer classes for MAML)
139            5, // 5-shot
140            5, // 5 query examples
141        )?;
142        tasks.push(task);
143    }
144
145    // Meta-train
146    let mut meta_optimizer = Adam::new(0.001);
147    let losses = learner.train(&tasks, &mut meta_optimizer, 10)?;
148
149    println!("   Meta-training completed:");
150    println!("   - Initial loss: {:.4}", losses[0]);
151    println!("   - Final loss: {:.4}", losses.last().unwrap());
152    println!(
153        "   - Convergence rate: {:.2}%",
154        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
155    );
156
157    Ok(())
158}
159
160/// Compare performance across different K-shot values
161fn compare_shot_performance(
162    data: &Array2<f64>,
163    labels: &Array1<usize>,
164    qnn: QuantumNeuralNetwork,
165) -> Result<()> {
166    let k_values = vec![1, 3, 5, 10];
167
168    for k in k_values {
169        println!("\n   Testing {}-shot learning:", k);
170
171        let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn.clone());
172
173        // Generate episodes
174        let mut episodes = Vec::new();
175        for _ in 0..5 {
176            let episode = FewShotLearner::generate_episode(
177                data, labels, 3, // 3-way
178                k, // k-shot
179                5, // 5 query
180            )?;
181            episodes.push(episode);
182        }
183
184        // Quick training
185        let mut optimizer = Adam::new(0.01);
186        let accuracies = learner.train(&episodes, &mut optimizer, 10)?;
187
188        println!(
189            "     Final accuracy: {:.2}%",
190            accuracies.last().unwrap() * 100.0
191        );
192    }
193
194    Ok(())
195}
More examples
Hide additional examples
examples/quantum_diffusion.rs (line 108)
86fn train_diffusion_model() -> Result<()> {
87    // Generate synthetic 2D data (two moons)
88    let num_samples = 200;
89    let data = generate_two_moons(num_samples);
90
91    println!("   Generated {} samples of 2D two-moons data", num_samples);
92
93    // Create diffusion model
94    let mut model = QuantumDiffusionModel::new(
95        2,  // data dimension
96        4,  // num qubits
97        50, // timesteps
98        NoiseSchedule::Cosine { s: 0.008 },
99    )?;
100
101    println!("   Created quantum diffusion model:");
102    println!("   - Data dimension: 2");
103    println!("   - Qubits: 4");
104    println!("   - Timesteps: 50");
105    println!("   - Schedule: Cosine");
106
107    // Train model
108    let mut optimizer = Adam::new(0.001);
109    let epochs = 100;
110    let batch_size = 32;
111
112    println!("\n   Training for {} epochs...", epochs);
113    let losses = model.train(&data, &mut optimizer, epochs, batch_size)?;
114
115    // Print training statistics
116    println!("\n   Training Statistics:");
117    println!("   - Initial loss: {:.4}", losses[0]);
118    println!("   - Final loss: {:.4}", losses.last().unwrap());
119    println!(
120        "   - Improvement: {:.2}%",
121        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
122    );
123
124    Ok(())
125}
examples/continuous_rl.rs (line 89)
69fn train_qddpg_pendulum() -> Result<()> {
70    let state_dim = 3;
71    let action_dim = 1;
72    let action_bounds = vec![(-2.0, 2.0)];
73    let num_qubits = 4;
74    let buffer_capacity = 10000;
75
76    // Create QDDPG agent
77    let mut agent = QuantumDDPG::new(
78        state_dim,
79        action_dim,
80        action_bounds,
81        num_qubits,
82        buffer_capacity,
83    )?;
84
85    // Create environment
86    let mut env = PendulumEnvironment::new();
87
88    // Create optimizers
89    let mut actor_optimizer = Adam::new(0.001);
90    let mut critic_optimizer = Adam::new(0.001);
91
92    // Train for a few episodes (reduced for demo)
93    let episodes = 50;
94    println!("   Training QDDPG for {} episodes...", episodes);
95
96    let rewards = agent.train(
97        &mut env,
98        episodes,
99        &mut actor_optimizer,
100        &mut critic_optimizer,
101    )?;
102
103    // Print training statistics
104    let avg_initial = rewards[..10].iter().sum::<f64>() / 10.0;
105    let avg_final = rewards[rewards.len() - 10..].iter().sum::<f64>() / 10.0;
106
107    println!("\n   Training Statistics:");
108    println!("   - Average initial reward: {:.2}", avg_initial);
109    println!("   - Average final reward: {:.2}", avg_final);
110    println!("   - Improvement: {:.2}", avg_final - avg_initial);
111
112    // Test trained agent
113    println!("\n   Testing trained agent...");
114    test_trained_agent(&agent, &mut env)?;
115
116    Ok(())
117}
examples/quantum_meta_learning.rs (line 86)
48fn maml_demo() -> Result<()> {
49    // Create quantum model
50    let layers = vec![
51        QNNLayerType::EncodingLayer { num_features: 4 },
52        QNNLayerType::VariationalLayer { num_params: 12 },
53        QNNLayerType::EntanglementLayer {
54            connectivity: "circular".to_string(),
55        },
56        QNNLayerType::VariationalLayer { num_params: 12 },
57        QNNLayerType::MeasurementLayer {
58            measurement_basis: "computational".to_string(),
59        },
60    ];
61
62    let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
63
64    // Create MAML learner
65    let algorithm = MetaLearningAlgorithm::MAML {
66        inner_steps: 5,
67        inner_lr: 0.01,
68        first_order: true, // Use first-order approximation for efficiency
69    };
70
71    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
72
73    println!("   Created MAML meta-learner:");
74    println!("   - Inner steps: 5");
75    println!("   - Inner learning rate: 0.01");
76    println!("   - Using first-order approximation");
77
78    // Generate tasks
79    let generator = TaskGenerator::new(4, 3);
80    let tasks: Vec<MetaTask> = (0..20)
81        .map(|_| generator.generate_rotation_task(30))
82        .collect();
83
84    // Meta-train
85    println!("\n   Meta-training on 20 rotation tasks...");
86    let mut optimizer = Adam::new(0.001);
87    meta_learner.meta_train(&tasks, &mut optimizer, 50, 5)?;
88
89    // Test adaptation
90    let test_task = generator.generate_rotation_task(20);
91    println!("\n   Testing adaptation to new task...");
92
93    let adapted_params = meta_learner.adapt_to_task(&test_task)?;
94    println!("   Successfully adapted to new task");
95    println!(
96        "   Parameter adaptation magnitude: {:.4}",
97        (&adapted_params - meta_learner.meta_params())
98            .mapv(|x| x.abs())
99            .mean()
100            .unwrap()
101    );
102
103    Ok(())
104}
105
106/// Reptile algorithm demonstration
107fn reptile_demo() -> Result<()> {
108    let layers = vec![
109        QNNLayerType::EncodingLayer { num_features: 2 },
110        QNNLayerType::VariationalLayer { num_params: 8 },
111        QNNLayerType::MeasurementLayer {
112            measurement_basis: "Pauli-Z".to_string(),
113        },
114    ];
115
116    let qnn = QuantumNeuralNetwork::new(layers, 4, 2, 2)?;
117
118    let algorithm = MetaLearningAlgorithm::Reptile {
119        inner_steps: 10,
120        inner_lr: 0.1,
121    };
122
123    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
124
125    println!("   Created Reptile meta-learner:");
126    println!("   - Inner steps: 10");
127    println!("   - Inner learning rate: 0.1");
128
129    // Generate sinusoid tasks
130    let generator = TaskGenerator::new(2, 2);
131    let tasks: Vec<MetaTask> = (0..15)
132        .map(|_| generator.generate_sinusoid_task(40))
133        .collect();
134
135    println!("\n   Meta-training on 15 sinusoid tasks...");
136    let mut optimizer = Adam::new(0.001);
137    meta_learner.meta_train(&tasks, &mut optimizer, 30, 3)?;
138
139    println!("   Reptile training complete");
140
141    // Analyze task similarities
142    println!("\n   Task parameter statistics:");
143    for (i, task) in tasks.iter().take(3).enumerate() {
144        if let Some(amplitude) = task.metadata.get("amplitude") {
145            if let Some(phase) = task.metadata.get("phase") {
146                println!(
147                    "   Task {}: amplitude={:.2}, phase={:.2}",
148                    i, amplitude, phase
149                );
150            }
151        }
152    }
153
154    Ok(())
155}
156
157/// ProtoMAML demonstration
158fn protomaml_demo() -> Result<()> {
159    let layers = vec![
160        QNNLayerType::EncodingLayer { num_features: 8 },
161        QNNLayerType::VariationalLayer { num_params: 16 },
162        QNNLayerType::EntanglementLayer {
163            connectivity: "full".to_string(),
164        },
165        QNNLayerType::MeasurementLayer {
166            measurement_basis: "computational".to_string(),
167        },
168    ];
169
170    let qnn = QuantumNeuralNetwork::new(layers, 4, 8, 16)?;
171
172    let algorithm = MetaLearningAlgorithm::ProtoMAML {
173        inner_steps: 5,
174        inner_lr: 0.01,
175        proto_weight: 0.5, // Weight for prototype regularization
176    };
177
178    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
179
180    println!("   Created ProtoMAML meta-learner:");
181    println!("   - Combines MAML with prototypical networks");
182    println!("   - Prototype weight: 0.5");
183
184    // Generate classification tasks
185    let generator = TaskGenerator::new(8, 4);
186    let tasks: Vec<MetaTask> = (0..10)
187        .map(|_| generator.generate_rotation_task(50))
188        .collect();
189
190    println!("\n   Meta-training on 4-way classification tasks...");
191    let mut optimizer = Adam::new(0.001);
192    meta_learner.meta_train(&tasks, &mut optimizer, 40, 2)?;
193
194    println!("   ProtoMAML leverages both gradient-based and metric-based learning");
195
196    Ok(())
197}
198
199/// Meta-SGD demonstration
200fn metasgd_demo() -> Result<()> {
201    let layers = vec![
202        QNNLayerType::EncodingLayer { num_features: 4 },
203        QNNLayerType::VariationalLayer { num_params: 12 },
204        QNNLayerType::MeasurementLayer {
205            measurement_basis: "Pauli-XYZ".to_string(),
206        },
207    ];
208
209    let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
210
211    let algorithm = MetaLearningAlgorithm::MetaSGD { inner_steps: 3 };
212
213    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
214
215    println!("   Created Meta-SGD learner:");
216    println!("   - Learns per-parameter learning rates");
217    println!("   - Inner steps: 3");
218
219    // Generate diverse tasks
220    let generator = TaskGenerator::new(4, 3);
221    let mut tasks = Vec::new();
222
223    // Mix different task types
224    for i in 0..12 {
225        if i % 2 == 0 {
226            tasks.push(generator.generate_rotation_task(30));
227        } else {
228            tasks.push(generator.generate_sinusoid_task(30));
229        }
230    }
231
232    println!("\n   Meta-training on mixed task distribution...");
233    let mut optimizer = Adam::new(0.0005);
234    meta_learner.meta_train(&tasks, &mut optimizer, 50, 4)?;
235
236    if let Some(lr) = meta_learner.per_param_lr() {
237        println!("\n   Learned per-parameter learning rates:");
238        println!(
239            "   - Min LR: {:.4}",
240            lr.iter().cloned().fold(f64::INFINITY, f64::min)
241        );
242        println!(
243            "   - Max LR: {:.4}",
244            lr.iter().cloned().fold(f64::NEG_INFINITY, f64::max)
245        );
246        println!("   - Mean LR: {:.4}", lr.mean().unwrap());
247    }
248
249    Ok(())
250}
251
252/// ANIL demonstration
253fn anil_demo() -> Result<()> {
254    let layers = vec![
255        QNNLayerType::EncodingLayer { num_features: 6 },
256        QNNLayerType::VariationalLayer { num_params: 12 },
257        QNNLayerType::EntanglementLayer {
258            connectivity: "circular".to_string(),
259        },
260        QNNLayerType::VariationalLayer { num_params: 12 },
261        QNNLayerType::VariationalLayer { num_params: 6 }, // Final layer (adapted)
262        QNNLayerType::MeasurementLayer {
263            measurement_basis: "computational".to_string(),
264        },
265    ];
266
267    let qnn = QuantumNeuralNetwork::new(layers, 4, 6, 2)?;
268
269    let algorithm = MetaLearningAlgorithm::ANIL {
270        inner_steps: 10,
271        inner_lr: 0.1,
272    };
273
274    let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
275
276    println!("   Created ANIL (Almost No Inner Loop) learner:");
277    println!("   - Only adapts final layer during inner loop");
278    println!("   - More parameter efficient than MAML");
279    println!("   - Inner steps: 10");
280
281    // Generate binary classification tasks
282    let generator = TaskGenerator::new(6, 2);
283    let tasks: Vec<MetaTask> = (0..15)
284        .map(|_| generator.generate_rotation_task(40))
285        .collect();
286
287    println!("\n   Meta-training on binary classification tasks...");
288    let mut optimizer = Adam::new(0.001);
289    meta_learner.meta_train(&tasks, &mut optimizer, 40, 5)?;
290
291    println!("   ANIL reduces computational cost while maintaining performance");
292
293    Ok(())
294}
examples/quantum_adversarial.rs (line 272)
225fn adversarial_training_demo() -> Result<()> {
226    // Create model and trainer
227    let layers = vec![
228        QNNLayerType::EncodingLayer { num_features: 4 },
229        QNNLayerType::VariationalLayer { num_params: 12 },
230        QNNLayerType::EntanglementLayer {
231            connectivity: "circular".to_string(),
232        },
233        QNNLayerType::MeasurementLayer {
234            measurement_basis: "computational".to_string(),
235        },
236    ];
237
238    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
239
240    let defense = QuantumDefenseStrategy::AdversarialTraining {
241        attack_types: vec![
242            QuantumAttackType::FGSM { epsilon: 0.08 },
243            QuantumAttackType::PGD {
244                epsilon: 0.08,
245                alpha: 0.01,
246                num_steps: 7,
247            },
248        ],
249        adversarial_ratio: 0.4,
250    };
251
252    let mut config = create_default_adversarial_config();
253    config.epochs = 20; // Reduced for demo
254    config.eval_interval = 5;
255
256    let mut trainer = QuantumAdversarialTrainer::new(model, defense, config);
257
258    println!("   Adversarial training configuration:");
259    println!("   - Attack types: FGSM + PGD");
260    println!("   - Adversarial ratio: 40%");
261    println!("   - Training epochs: 20");
262
263    // Generate synthetic training data
264    let train_data = generate_quantum_dataset(200, 4);
265    let train_labels = Array1::from_shape_fn(200, |i| i % 2);
266
267    let val_data = generate_quantum_dataset(50, 4);
268    let val_labels = Array1::from_shape_fn(50, |i| i % 2);
269
270    // Train with adversarial examples
271    println!("\n   Starting adversarial training...");
272    let mut optimizer = Adam::new(0.001);
273    let losses = trainer.train(
274        &train_data,
275        &train_labels,
276        &val_data,
277        &val_labels,
278        &mut optimizer,
279    )?;
280
281    println!("   Training completed!");
282    println!("   Final loss: {:.4}", losses.last().unwrap_or(&0.0));
283
284    // Show final robustness metrics
285    let metrics = trainer.get_robustness_metrics();
286    println!("\n   Final robustness metrics:");
287    println!("   - Clean accuracy: {:.3}", metrics.clean_accuracy);
288    println!("   - Robust accuracy: {:.3}", metrics.robust_accuracy);
289    println!(
290        "   - Attack success rate: {:.3}",
291        metrics.attack_success_rate
292    );
293
294    Ok(())
295}
examples/quantum_continual_learning.rs (line 82)
49fn ewc_demo() -> Result<()> {
50    // Create quantum model
51    let layers = vec![
52        QNNLayerType::EncodingLayer { num_features: 4 },
53        QNNLayerType::VariationalLayer { num_params: 12 },
54        QNNLayerType::EntanglementLayer {
55            connectivity: "circular".to_string(),
56        },
57        QNNLayerType::VariationalLayer { num_params: 8 },
58        QNNLayerType::MeasurementLayer {
59            measurement_basis: "computational".to_string(),
60        },
61    ];
62
63    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
64
65    // Create EWC strategy
66    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
67        importance_weight: 1000.0,
68        fisher_samples: 200,
69    };
70
71    let mut learner = QuantumContinualLearner::new(model, strategy);
72
73    println!("   Created EWC continual learner:");
74    println!("   - Importance weight: 1000.0");
75    println!("   - Fisher samples: 200");
76
77    // Generate task sequence
78    let tasks = generate_task_sequence(3, 100, 4);
79
80    println!("\n   Learning sequence of {} tasks...", tasks.len());
81
82    let mut optimizer = Adam::new(0.001);
83    let mut task_accuracies = Vec::new();
84
85    for (i, task) in tasks.iter().enumerate() {
86        println!("   \n   Training on {}...", task.task_id);
87
88        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
89        task_accuracies.push(metrics.current_accuracy);
90
91        println!("   - Current accuracy: {:.3}", metrics.current_accuracy);
92
93        // Evaluate forgetting on previous tasks
94        if i > 0 {
95            let all_accuracies = learner.evaluate_all_tasks()?;
96            let avg_prev_accuracy = all_accuracies
97                .iter()
98                .take(i)
99                .map(|(_, &acc)| acc)
100                .sum::<f64>()
101                / i as f64;
102
103            println!(
104                "   - Average accuracy on previous tasks: {:.3}",
105                avg_prev_accuracy
106            );
107        }
108    }
109
110    // Final evaluation
111    let forgetting_metrics = learner.get_forgetting_metrics();
112    println!("\n   EWC Results:");
113    println!(
114        "   - Average accuracy: {:.3}",
115        forgetting_metrics.average_accuracy
116    );
117    println!(
118        "   - Forgetting measure: {:.3}",
119        forgetting_metrics.forgetting_measure
120    );
121    println!(
122        "   - Continual learning score: {:.3}",
123        forgetting_metrics.continual_learning_score
124    );
125
126    Ok(())
127}
128
129/// Demonstrate Experience Replay
130fn experience_replay_demo() -> Result<()> {
131    let layers = vec![
132        QNNLayerType::EncodingLayer { num_features: 4 },
133        QNNLayerType::VariationalLayer { num_params: 8 },
134        QNNLayerType::MeasurementLayer {
135            measurement_basis: "computational".to_string(),
136        },
137    ];
138
139    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
140
141    let strategy = ContinualLearningStrategy::ExperienceReplay {
142        buffer_size: 500,
143        replay_ratio: 0.3,
144        memory_selection: MemorySelectionStrategy::Random,
145    };
146
147    let mut learner = QuantumContinualLearner::new(model, strategy);
148
149    println!("   Created Experience Replay learner:");
150    println!("   - Buffer size: 500");
151    println!("   - Replay ratio: 30%");
152    println!("   - Selection: Random");
153
154    // Generate diverse tasks
155    let tasks = generate_diverse_tasks(4, 80, 4);
156
157    println!("\n   Learning {} diverse tasks...", tasks.len());
158
159    let mut optimizer = Adam::new(0.002);
160
161    for (i, task) in tasks.iter().enumerate() {
162        println!("   \n   Learning {}...", task.task_id);
163
164        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
165
166        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
167
168        // Show memory buffer status
169        println!("   - Memory buffer usage: replay experiences stored");
170
171        if i > 0 {
172            let all_accuracies = learner.evaluate_all_tasks()?;
173            let retention_rate = all_accuracies.values().sum::<f64>() / all_accuracies.len() as f64;
174            println!("   - Average retention: {:.3}", retention_rate);
175        }
176    }
177
178    let final_metrics = learner.get_forgetting_metrics();
179    println!("\n   Experience Replay Results:");
180    println!(
181        "   - Final average accuracy: {:.3}",
182        final_metrics.average_accuracy
183    );
184    println!(
185        "   - Forgetting reduction: {:.3}",
186        1.0 - final_metrics.forgetting_measure
187    );
188
189    Ok(())
190}
191
192/// Demonstrate Progressive Networks
193fn progressive_networks_demo() -> Result<()> {
194    let layers = vec![
195        QNNLayerType::EncodingLayer { num_features: 4 },
196        QNNLayerType::VariationalLayer { num_params: 6 },
197        QNNLayerType::MeasurementLayer {
198            measurement_basis: "computational".to_string(),
199        },
200    ];
201
202    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
203
204    let strategy = ContinualLearningStrategy::ProgressiveNetworks {
205        lateral_connections: true,
206        adaptation_layers: 2,
207    };
208
209    let mut learner = QuantumContinualLearner::new(model, strategy);
210
211    println!("   Created Progressive Networks learner:");
212    println!("   - Lateral connections: enabled");
213    println!("   - Adaptation layers: 2");
214
215    // Generate related tasks for transfer learning
216    let tasks = generate_related_tasks(3, 60, 4);
217
218    println!("\n   Learning {} related tasks...", tasks.len());
219
220    let mut optimizer = Adam::new(0.001);
221    let mut learning_speeds = Vec::new();
222
223    for (i, task) in tasks.iter().enumerate() {
224        println!("   \n   Adding column for {}...", task.task_id);
225
226        let start_time = std::time::Instant::now();
227        let metrics = learner.learn_task(task.clone(), &mut optimizer, 20)?;
228        let learning_time = start_time.elapsed();
229
230        learning_speeds.push(learning_time);
231
232        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
233        println!("   - Learning time: {:.2?}", learning_time);
234
235        if i > 0 {
236            let speedup = learning_speeds[0].as_secs_f64() / learning_time.as_secs_f64();
237            println!("   - Learning speedup: {:.2}x", speedup);
238        }
239    }
240
241    println!("\n   Progressive Networks Results:");
242    println!("   - No catastrophic forgetting (by design)");
243    println!("   - Lateral connections enable knowledge transfer");
244    println!("   - Model capacity grows with new tasks");
245
246    Ok(())
247}
248
249/// Demonstrate Learning without Forgetting
250fn lwf_demo() -> Result<()> {
251    let layers = vec![
252        QNNLayerType::EncodingLayer { num_features: 4 },
253        QNNLayerType::VariationalLayer { num_params: 10 },
254        QNNLayerType::EntanglementLayer {
255            connectivity: "circular".to_string(),
256        },
257        QNNLayerType::MeasurementLayer {
258            measurement_basis: "computational".to_string(),
259        },
260    ];
261
262    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
263
264    let strategy = ContinualLearningStrategy::LearningWithoutForgetting {
265        distillation_weight: 0.5,
266        temperature: 3.0,
267    };
268
269    let mut learner = QuantumContinualLearner::new(model, strategy);
270
271    println!("   Created Learning without Forgetting learner:");
272    println!("   - Distillation weight: 0.5");
273    println!("   - Temperature: 3.0");
274
275    // Generate task sequence
276    let tasks = generate_task_sequence(4, 70, 4);
277
278    println!("\n   Learning with knowledge distillation...");
279
280    let mut optimizer = Adam::new(0.001);
281    let mut distillation_losses = Vec::new();
282
283    for (i, task) in tasks.iter().enumerate() {
284        println!("   \n   Learning {}...", task.task_id);
285
286        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
287
288        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
289
290        if i > 0 {
291            // Simulate distillation loss tracking
292            let distillation_loss = 0.1 + 0.3 * fastrand::f64();
293            distillation_losses.push(distillation_loss);
294            println!("   - Distillation loss: {:.3}", distillation_loss);
295
296            let all_accuracies = learner.evaluate_all_tasks()?;
297            let stability = all_accuracies
298                .values()
299                .map(|&acc| if acc > 0.6 { 1.0 } else { 0.0 })
300                .sum::<f64>()
301                / all_accuracies.len() as f64;
302
303            println!("   - Knowledge retention: {:.1}%", stability * 100.0);
304        }
305    }
306
307    println!("\n   LwF Results:");
308    println!("   - Knowledge distillation preserves previous task performance");
309    println!("   - Temperature scaling provides soft targets");
310    println!("   - Balances plasticity and stability");
311
312    Ok(())
313}
314
315/// Demonstrate Parameter Isolation
316fn parameter_isolation_demo() -> Result<()> {
317    let layers = vec![
318        QNNLayerType::EncodingLayer { num_features: 4 },
319        QNNLayerType::VariationalLayer { num_params: 16 },
320        QNNLayerType::EntanglementLayer {
321            connectivity: "full".to_string(),
322        },
323        QNNLayerType::MeasurementLayer {
324            measurement_basis: "computational".to_string(),
325        },
326    ];
327
328    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
329
330    let strategy = ContinualLearningStrategy::ParameterIsolation {
331        allocation_strategy: ParameterAllocationStrategy::Masking,
332        growth_threshold: 0.8,
333    };
334
335    let mut learner = QuantumContinualLearner::new(model, strategy);
336
337    println!("   Created Parameter Isolation learner:");
338    println!("   - Allocation strategy: Masking");
339    println!("   - Growth threshold: 0.8");
340
341    // Generate tasks with different requirements
342    let tasks = generate_varying_complexity_tasks(3, 90, 4);
343
344    println!("\n   Learning with parameter isolation...");
345
346    let mut optimizer = Adam::new(0.001);
347    let mut parameter_usage = Vec::new();
348
349    for (i, task) in tasks.iter().enumerate() {
350        println!("   \n   Allocating parameters for {}...", task.task_id);
351
352        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
353
354        // Simulate parameter usage tracking
355        let used_params = 16 * (i + 1) / tasks.len(); // Gradually use more parameters
356        parameter_usage.push(used_params);
357
358        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
359        println!("   - Parameters allocated: {}/{}", used_params, 16);
360        println!(
361            "   - Parameter efficiency: {:.1}%",
362            used_params as f64 / 16.0 * 100.0
363        );
364
365        if i > 0 {
366            let all_accuracies = learner.evaluate_all_tasks()?;
367            let interference = 1.0
368                - all_accuracies
369                    .values()
370                    .take(i)
371                    .map(|&acc| if acc > 0.7 { 1.0 } else { 0.0 })
372                    .sum::<f64>()
373                    / i as f64;
374
375            println!("   - Task interference: {:.1}%", interference * 100.0);
376        }
377    }
378
379    println!("\n   Parameter Isolation Results:");
380    println!("   - Dedicated parameters prevent interference");
381    println!("   - Scalable to many tasks");
382    println!("   - Maintains task-specific knowledge");
383
384    Ok(())
385}
386
387/// Demonstrate comprehensive task sequence evaluation
388fn task_sequence_demo() -> Result<()> {
389    println!("   Comprehensive continual learning evaluation...");
390
391    // Compare different strategies
392    let strategies = vec![
393        (
394            "EWC",
395            ContinualLearningStrategy::ElasticWeightConsolidation {
396                importance_weight: 500.0,
397                fisher_samples: 100,
398            },
399        ),
400        (
401            "Experience Replay",
402            ContinualLearningStrategy::ExperienceReplay {
403                buffer_size: 300,
404                replay_ratio: 0.2,
405                memory_selection: MemorySelectionStrategy::Random,
406            },
407        ),
408        (
409            "Quantum Regularization",
410            ContinualLearningStrategy::QuantumRegularization {
411                entanglement_preservation: 0.1,
412                parameter_drift_penalty: 0.5,
413            },
414        ),
415    ];
416
417    // Generate challenging task sequence
418    let tasks = generate_challenging_sequence(5, 60, 4);
419
420    println!(
421        "\n   Comparing strategies on {} challenging tasks:",
422        tasks.len()
423    );
424
425    for (strategy_name, strategy) in strategies {
426        println!("\n   --- {} ---", strategy_name);
427
428        let layers = vec![
429            QNNLayerType::EncodingLayer { num_features: 4 },
430            QNNLayerType::VariationalLayer { num_params: 8 },
431            QNNLayerType::MeasurementLayer {
432                measurement_basis: "computational".to_string(),
433            },
434        ];
435
436        let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
437        let mut learner = QuantumContinualLearner::new(model, strategy);
438        let mut optimizer = Adam::new(0.001);
439
440        for task in &tasks {
441            learner.learn_task(task.clone(), &mut optimizer, 20)?;
442        }
443
444        let final_metrics = learner.get_forgetting_metrics();
445        println!(
446            "   - Average accuracy: {:.3}",
447            final_metrics.average_accuracy
448        );
449        println!(
450            "   - Forgetting measure: {:.3}",
451            final_metrics.forgetting_measure
452        );
453        println!(
454            "   - CL score: {:.3}",
455            final_metrics.continual_learning_score
456        );
457    }
458
459    Ok(())
460}
461
462/// Demonstrate forgetting analysis
463fn forgetting_analysis_demo() -> Result<()> {
464    println!("   Detailed forgetting analysis...");
465
466    let layers = vec![
467        QNNLayerType::EncodingLayer { num_features: 4 },
468        QNNLayerType::VariationalLayer { num_params: 12 },
469        QNNLayerType::MeasurementLayer {
470            measurement_basis: "computational".to_string(),
471        },
472    ];
473
474    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
475
476    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
477        importance_weight: 1000.0,
478        fisher_samples: 150,
479    };
480
481    let mut learner = QuantumContinualLearner::new(model, strategy);
482
483    // Create tasks with increasing difficulty
484    let tasks = generate_increasing_difficulty_tasks(4, 80, 4);
485
486    println!("\n   Learning tasks with increasing difficulty...");
487
488    let mut optimizer = Adam::new(0.001);
489    let mut accuracy_matrix = Vec::new();
490
491    for (i, task) in tasks.iter().enumerate() {
492        println!(
493            "   \n   Learning {} (difficulty level {})...",
494            task.task_id,
495            i + 1
496        );
497
498        learner.learn_task(task.clone(), &mut optimizer, 25)?;
499
500        // Evaluate on all tasks learned so far
501        let all_accuracies = learner.evaluate_all_tasks()?;
502        let mut current_row = Vec::new();
503
504        for j in 0..=i {
505            let task_id = &tasks[j].task_id;
506            let accuracy = all_accuracies.get(task_id).unwrap_or(&0.0);
507            current_row.push(*accuracy);
508        }
509
510        accuracy_matrix.push(current_row.clone());
511
512        // Print current performance
513        for (j, &acc) in current_row.iter().enumerate() {
514            println!("   - Task {}: {:.3}", j + 1, acc);
515        }
516    }
517
518    println!("\n   Forgetting Analysis Results:");
519
520    // Compute backward transfer
521    for i in 1..accuracy_matrix.len() {
522        for j in 0..i {
523            let current_acc = accuracy_matrix[i][j];
524            let original_acc = accuracy_matrix[j][j];
525            let forgetting = (original_acc - current_acc).max(0.0);
526
527            if forgetting > 0.1 {
528                println!("   - Significant forgetting detected for Task {} after learning Task {}: {:.3}",
529                    j + 1, i + 1, forgetting);
530            }
531        }
532    }
533
534    // Compute average forgetting
535    let mut total_forgetting = 0.0;
536    let mut num_comparisons = 0;
537
538    for i in 1..accuracy_matrix.len() {
539        for j in 0..i {
540            let current_acc = accuracy_matrix[i][j];
541            let original_acc = accuracy_matrix[j][j];
542            total_forgetting += (original_acc - current_acc).max(0.0);
543            num_comparisons += 1;
544        }
545    }
546
547    let avg_forgetting = if num_comparisons > 0 {
548        total_forgetting / num_comparisons as f64
549    } else {
550        0.0
551    };
552
553    println!("   - Average forgetting: {:.3}", avg_forgetting);
554
555    // Compute final average accuracy
556    if let Some(final_row) = accuracy_matrix.last() {
557        let final_avg = final_row.iter().sum::<f64>() / final_row.len() as f64;
558        println!("   - Final average accuracy: {:.3}", final_avg);
559        println!(
560            "   - Continual learning effectiveness: {:.1}%",
561            (1.0 - avg_forgetting) * 100.0
562        );
563    }
564
565    Ok(())
566}

Trait Implementations§

Source§

impl Optimizer for Adam

Source§

fn step( &mut self, params: &mut HashMap<String, f64>, gradients: &HashMap<String, f64>, )

Update parameters given gradients
Source§

fn reset(&mut self)

Reset optimizer state

Auto Trait Implementations§

§

impl Freeze for Adam

§

impl RefUnwindSafe for Adam

§

impl Send for Adam

§

impl Sync for Adam

§

impl Unpin for Adam

§

impl UnwindSafe for Adam

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,