QuantumGraphAttentionNetwork

Struct QuantumGraphAttentionNetwork 

Source
pub struct QuantumGraphAttentionNetwork { /* private fields */ }
Expand description

Main Quantum Graph Attention Network

Implementations§

Source§

impl QuantumGraphAttentionNetwork

Source

pub fn new(config: QGATConfig) -> Result<Self>

Create a new Quantum Graph Attention Network

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 310)
275fn quantum_graph_attention_demonstration() -> Result<()> {
276    println!("   Initializing Quantum Graph Attention Network...");
277
278    // Configure advanced QGAT
279    let config = QGATConfig {
280        node_qubits: 5,
281        edge_qubits: 3,
282        num_attention_heads: 8,
283        hidden_dim: 128,
284        output_dim: 32,
285        num_layers: 4,
286        attention_config: QGATAttentionConfig {
287            attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
288            dropout_rate: 0.1,
289            scaled_attention: true,
290            temperature: 0.8,
291            multi_head: true,
292            normalization: AttentionNormalization::LayerNorm,
293        },
294        pooling_config: PoolingConfig {
295            pooling_type: PoolingType::QuantumGlobalPool,
296            pooling_ratio: 0.5,
297            learnable_pooling: true,
298            quantum_pooling: true,
299        },
300        training_config: QGATTrainingConfig {
301            epochs: 150,
302            learning_rate: 0.0005,
303            batch_size: 8,
304            loss_function: LossFunction::CrossEntropy,
305            ..Default::default()
306        },
307        ..Default::default()
308    };
309
310    let qgat = QuantumGraphAttentionNetwork::new(config)?;
311    println!("   QGAT initialized with {} attention heads", 8);
312
313    // Create complex graph data
314    let graphs = generate_complex_graphs(50)?;
315    println!("   Generated {} complex graphs", graphs.len());
316
317    // Test forward pass
318    let sample_graph = &graphs[0];
319    let output = qgat.forward(sample_graph)?;
320    println!("   ✅ QGAT Forward Pass Complete!");
321    println!(
322        "      Input graph: {} nodes, {} edges",
323        sample_graph.num_nodes, sample_graph.num_edges
324    );
325    println!("      Output shape: {:?}", output.shape());
326
327    // Analyze attention patterns
328    let attention_analysis = qgat.analyze_attention(sample_graph)?;
329    println!("      Attention Analysis:");
330    println!(
331        "         Number of attention heads: {}",
332        attention_analysis.attention_weights.len()
333    );
334    println!(
335        "         Average entropy: {:.4}",
336        attention_analysis.average_entropy
337    );
338
339    // Graph representation learning
340    let graph_embeddings = qgat.forward(sample_graph)?;
341    let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
342    println!("      Graph embedding norm: {embedding_norm:.4}");
343
344    Ok(())
345}
346
347/// Advanced Integration Showcase
348fn advanced_integration_showcase() -> Result<()> {
349    println!("   Creating multi-algorithm quantum ML pipeline...");
350
351    // Step 1: Use QPINN to solve a PDE and extract features
352    println!("   Stage 1: QPINN feature extraction from PDE solution");
353    let pde_features = extract_pde_features_with_qpinn()?;
354    println!(
355        "      Extracted {} features from PDE solution",
356        pde_features.len()
357    );
358
359    // Step 2: Use QRC to process temporal dynamics
360    println!("   Stage 2: QRC temporal pattern recognition");
361    let temporal_patterns = process_temporal_with_qrc(&pde_features)?;
362    println!(
363        "      Identified {} temporal patterns",
364        temporal_patterns.nrows()
365    );
366
367    // Step 3: Use QGAT for relationship modeling
368    println!("   Stage 3: QGAT relationship modeling");
369    let relationship_graph = create_relationship_graph(&temporal_patterns)?;
370    let graph_insights = analyze_with_qgat(&relationship_graph)?;
371    println!(
372        "      Generated relationship insights: {:.4} complexity score",
373        graph_insights.sum() / graph_insights.len() as f64
374    );
375
376    // Step 4: QNODE for continuous optimization
377    println!("   Stage 4: QNODE continuous optimization");
378    let optimization_result = optimize_with_qnode(&graph_insights)?;
379    println!("      Optimization converged to: {optimization_result:.6}");
380
381    println!("   ✅ Multi-Algorithm Pipeline Complete!");
382    println!("      Successfully integrated 4 cutting-edge quantum algorithms");
383    println!("      Pipeline demonstrates quantum synergies and enhanced capabilities");
384
385    Ok(())
386}
387
388/// Comprehensive Benchmarking
389fn comprehensive_benchmarking() -> Result<()> {
390    println!("   Running comprehensive quantum advantage benchmarks...");
391
392    // Benchmark QNODE vs Classical NODE
393    println!("   Benchmarking QNODE vs Classical Neural ODE...");
394    let qnode_config = QNODEConfig::default();
395    let mut qnode = QuantumNeuralODE::new(qnode_config)?;
396    let test_data = generate_benchmark_data()?;
397    let qnode_benchmark = benchmark_qnode_vs_classical(&mut qnode, &test_data)?;
398
399    println!(
400        "      QNODE Quantum Advantage: {:.2}x",
401        qnode_benchmark.quantum_advantage
402    );
403    println!(
404        "      QNODE Speed Ratio: {:.2}x",
405        qnode_benchmark.classical_time / qnode_benchmark.quantum_time
406    );
407
408    // Benchmark QRC vs Classical RC
409    println!("   Benchmarking QRC vs Classical Reservoir Computing...");
410    let qrc_config = QRCConfig::default();
411    let mut qrc = QuantumReservoirComputer::new(qrc_config)?;
412    let qrc_test_data = generate_qrc_benchmark_data()?;
413    let qrc_benchmark = benchmark_qrc_vs_classical(&mut qrc, &qrc_test_data)?;
414
415    println!(
416        "      QRC Quantum Advantage: {:.2}x",
417        qrc_benchmark.quantum_advantage
418    );
419    println!(
420        "      QRC Accuracy Improvement: {:.2}%",
421        (qrc_benchmark.quantum_advantage - 1.0) * 100.0
422    );
423
424    // Benchmark QGAT vs Classical GAT
425    println!("   Benchmarking QGAT vs Classical Graph Attention...");
426    let qgat_config = QGATConfig::default();
427    let qgat = QuantumGraphAttentionNetwork::new(qgat_config)?;
428    let qgat_test_graphs = generate_benchmark_graphs()?;
429    let qgat_benchmark = benchmark_qgat_vs_classical(&qgat, &qgat_test_graphs)?;
430
431    println!(
432        "      QGAT Quantum Advantage: {:.2}x",
433        qgat_benchmark.quantum_advantage
434    );
435    println!(
436        "      QGAT Processing Speed: {:.2}x faster",
437        qgat_benchmark.classical_time / qgat_benchmark.quantum_time
438    );
439
440    // Overall analysis
441    let avg_quantum_advantage = (qnode_benchmark.quantum_advantage
442        + qrc_benchmark.quantum_advantage
443        + qgat_benchmark.quantum_advantage)
444        / 3.0;
445
446    println!("   ✅ Comprehensive Benchmarking Complete!");
447    println!("      Average Quantum Advantage: {avg_quantum_advantage:.2}x");
448    println!("      All algorithms demonstrate quantum superiority");
449
450    Ok(())
451}
Source

pub fn forward(&self, graph: &Graph) -> Result<Array2<f64>>

Forward pass through the network

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 319)
275fn quantum_graph_attention_demonstration() -> Result<()> {
276    println!("   Initializing Quantum Graph Attention Network...");
277
278    // Configure advanced QGAT
279    let config = QGATConfig {
280        node_qubits: 5,
281        edge_qubits: 3,
282        num_attention_heads: 8,
283        hidden_dim: 128,
284        output_dim: 32,
285        num_layers: 4,
286        attention_config: QGATAttentionConfig {
287            attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
288            dropout_rate: 0.1,
289            scaled_attention: true,
290            temperature: 0.8,
291            multi_head: true,
292            normalization: AttentionNormalization::LayerNorm,
293        },
294        pooling_config: PoolingConfig {
295            pooling_type: PoolingType::QuantumGlobalPool,
296            pooling_ratio: 0.5,
297            learnable_pooling: true,
298            quantum_pooling: true,
299        },
300        training_config: QGATTrainingConfig {
301            epochs: 150,
302            learning_rate: 0.0005,
303            batch_size: 8,
304            loss_function: LossFunction::CrossEntropy,
305            ..Default::default()
306        },
307        ..Default::default()
308    };
309
310    let qgat = QuantumGraphAttentionNetwork::new(config)?;
311    println!("   QGAT initialized with {} attention heads", 8);
312
313    // Create complex graph data
314    let graphs = generate_complex_graphs(50)?;
315    println!("   Generated {} complex graphs", graphs.len());
316
317    // Test forward pass
318    let sample_graph = &graphs[0];
319    let output = qgat.forward(sample_graph)?;
320    println!("   ✅ QGAT Forward Pass Complete!");
321    println!(
322        "      Input graph: {} nodes, {} edges",
323        sample_graph.num_nodes, sample_graph.num_edges
324    );
325    println!("      Output shape: {:?}", output.shape());
326
327    // Analyze attention patterns
328    let attention_analysis = qgat.analyze_attention(sample_graph)?;
329    println!("      Attention Analysis:");
330    println!(
331        "         Number of attention heads: {}",
332        attention_analysis.attention_weights.len()
333    );
334    println!(
335        "         Average entropy: {:.4}",
336        attention_analysis.average_entropy
337    );
338
339    // Graph representation learning
340    let graph_embeddings = qgat.forward(sample_graph)?;
341    let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
342    println!("      Graph embedding norm: {embedding_norm:.4}");
343
344    Ok(())
345}
Source

pub fn train(&mut self, training_data: &[(Graph, Array1<f64>)]) -> Result<()>

Train the network on graph classification/regression tasks

Source

pub fn predict(&self, graph: &Graph) -> Result<Array2<f64>>

Predict on new graphs

Source

pub fn get_training_history(&self) -> &[TrainingMetrics]

Get training history

Source

pub fn analyze_attention(&self, graph: &Graph) -> Result<AttentionAnalysis>

Analyze attention patterns

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 328)
275fn quantum_graph_attention_demonstration() -> Result<()> {
276    println!("   Initializing Quantum Graph Attention Network...");
277
278    // Configure advanced QGAT
279    let config = QGATConfig {
280        node_qubits: 5,
281        edge_qubits: 3,
282        num_attention_heads: 8,
283        hidden_dim: 128,
284        output_dim: 32,
285        num_layers: 4,
286        attention_config: QGATAttentionConfig {
287            attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
288            dropout_rate: 0.1,
289            scaled_attention: true,
290            temperature: 0.8,
291            multi_head: true,
292            normalization: AttentionNormalization::LayerNorm,
293        },
294        pooling_config: PoolingConfig {
295            pooling_type: PoolingType::QuantumGlobalPool,
296            pooling_ratio: 0.5,
297            learnable_pooling: true,
298            quantum_pooling: true,
299        },
300        training_config: QGATTrainingConfig {
301            epochs: 150,
302            learning_rate: 0.0005,
303            batch_size: 8,
304            loss_function: LossFunction::CrossEntropy,
305            ..Default::default()
306        },
307        ..Default::default()
308    };
309
310    let qgat = QuantumGraphAttentionNetwork::new(config)?;
311    println!("   QGAT initialized with {} attention heads", 8);
312
313    // Create complex graph data
314    let graphs = generate_complex_graphs(50)?;
315    println!("   Generated {} complex graphs", graphs.len());
316
317    // Test forward pass
318    let sample_graph = &graphs[0];
319    let output = qgat.forward(sample_graph)?;
320    println!("   ✅ QGAT Forward Pass Complete!");
321    println!(
322        "      Input graph: {} nodes, {} edges",
323        sample_graph.num_nodes, sample_graph.num_edges
324    );
325    println!("      Output shape: {:?}", output.shape());
326
327    // Analyze attention patterns
328    let attention_analysis = qgat.analyze_attention(sample_graph)?;
329    println!("      Attention Analysis:");
330    println!(
331        "         Number of attention heads: {}",
332        attention_analysis.attention_weights.len()
333    );
334    println!(
335        "         Average entropy: {:.4}",
336        attention_analysis.average_entropy
337    );
338
339    // Graph representation learning
340    let graph_embeddings = qgat.forward(sample_graph)?;
341    let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
342    println!("      Graph embedding norm: {embedding_norm:.4}");
343
344    Ok(())
345}

Trait Implementations§

Source§

impl Clone for QuantumGraphAttentionNetwork

Source§

fn clone(&self) -> QuantumGraphAttentionNetwork

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumGraphAttentionNetwork

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V