QuantumRBM

Struct QuantumRBM 

Source
pub struct QuantumRBM { /* private fields */ }
Expand description

Quantum Restricted Boltzmann Machine

Implementations§

Source§

impl QuantumRBM

Source

pub fn new( num_visible: usize, num_hidden: usize, temperature: f64, learning_rate: f64, ) -> Result<Self>

Create a new Quantum RBM

Examples found in repository?
examples/quantum_boltzmann.rs (lines 88-93)
84fn rbm_demo() -> Result<()> {
85    // Create RBM with annealing
86    let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
87
88    let mut rbm = QuantumRBM::new(
89        6,    // visible units
90        3,    // hidden units
91        2.0,  // initial temperature
92        0.01, // learning rate
93    )?
94    .with_annealing(annealing);
95
96    println!("   Created Quantum RBM with annealing schedule");
97
98    // Generate correlated binary data
99    let data = generate_correlated_data(200, 6);
100
101    // Train with PCD
102    println!("   Training with Persistent Contrastive Divergence...");
103    let losses = rbm.train_pcd(
104        &data, 100, // epochs
105        20,  // batch size
106        50,  // persistent chains
107    )?;
108
109    // Analyze training
110    let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
111    println!("   Training statistics:");
112    println!("   - Loss reduction: {improvement:.1}%");
113    println!("   - Final temperature: 0.5");
114
115    // Test reconstruction
116    let test_data = data.slice(s![0..5, ..]).to_owned();
117    let reconstructed = rbm.qbm().reconstruct(&test_data)?;
118
119    println!("\n   Reconstruction quality:");
120    for i in 0..3 {
121        print!("   Original:      [");
122        for val in test_data.row(i) {
123            print!("{val:.0} ");
124        }
125        print!("]  →  Reconstructed: [");
126        for val in reconstructed.row(i) {
127            print!("{val:.0} ");
128        }
129        println!("]");
130    }
131
132    Ok(())
133}
134
135/// Deep Boltzmann Machine demonstration
136fn deep_boltzmann_demo() -> Result<()> {
137    // Create a 3-layer DBM
138    let layer_sizes = vec![8, 4, 2];
139    let mut dbm = DeepBoltzmannMachine::new(
140        layer_sizes.clone(),
141        1.0,  // temperature
142        0.01, // learning rate
143    )?;
144
145    println!("   Created Deep Boltzmann Machine:");
146    println!("   - Architecture: {layer_sizes:?}");
147    println!("   - Total layers: {}", dbm.rbms().len());
148
149    // Generate hierarchical data
150    let data = generate_hierarchical_data(300, 8);
151
152    // Layer-wise pretraining
153    println!("\n   Performing layer-wise pretraining...");
154    dbm.pretrain(
155        &data, 50, // epochs per layer
156        30, // batch size
157    )?;
158
159    println!("\n   Pretraining complete!");
160    println!("   Each layer learned increasingly abstract features");
161
162    Ok(())
163}
164
165/// Energy landscape visualization
166fn energy_landscape_demo() -> Result<()> {
167    // Create small QBM for visualization
168    let qbm = QuantumBoltzmannMachine::new(
169        2,    // visible units (for 2D visualization)
170        1,    // hidden unit
171        0.5,  // temperature
172        0.01, // learning rate
173    )?;
174
175    println!("   Analyzing energy landscape of 2-unit system");
176
177    // Compute energy for all 4 possible states
178    let states = [
179        Array1::from_vec(vec![0.0, 0.0]),
180        Array1::from_vec(vec![0.0, 1.0]),
181        Array1::from_vec(vec![1.0, 0.0]),
182        Array1::from_vec(vec![1.0, 1.0]),
183    ];
184
185    println!("\n   State energies:");
186    for (i, state) in states.iter().enumerate() {
187        let energy = qbm.energy(state);
188        let prob = (-energy / qbm.temperature()).exp();
189        println!(
190            "   State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
191            state[0], state[1], energy, prob
192        );
193    }
194
195    // Show coupling matrix
196    println!("\n   Coupling matrix:");
197    for i in 0..3 {
198        print!("   [");
199        for j in 0..3 {
200            print!("{:6.3} ", qbm.couplings()[[i, j]]);
201        }
202        println!("]");
203    }
204
205    Ok(())
206}
207
208/// Pattern completion demonstration
209fn pattern_completion_demo() -> Result<()> {
210    // Create RBM
211    let mut rbm = QuantumRBM::new(
212        8,    // visible units
213        4,    // hidden units
214        1.0,  // temperature
215        0.02, // learning rate
216    )?;
217
218    // Train on specific patterns
219    let patterns = create_letter_patterns();
220    println!("   Training on letter-like patterns...");
221
222    rbm.train_pcd(&patterns, 100, 10, 20)?;
223
224    // Test pattern completion
225    println!("\n   Pattern completion test:");
226
227    // Create corrupted patterns
228    let mut corrupted = patterns.row(0).to_owned();
229    corrupted[3] = 1.0 - corrupted[3]; // Flip one bit
230    corrupted[5] = 1.0 - corrupted[5]; // Flip another
231
232    print!("   Corrupted:  [");
233    for val in &corrupted {
234        print!("{val:.0} ");
235    }
236    println!("]");
237
238    // Complete pattern
239    let completed = complete_pattern(&rbm, &corrupted)?;
240
241    print!("   Completed:  [");
242    for val in &completed {
243        print!("{val:.0} ");
244    }
245    println!("]");
246
247    print!("   Original:   [");
248    for val in patterns.row(0) {
249        print!("{val:.0} ");
250    }
251    println!("]");
252
253    let accuracy = patterns
254        .row(0)
255        .iter()
256        .zip(completed.iter())
257        .filter(|(&a, &b)| (a - b).abs() < 0.5)
258        .count() as f64
259        / 8.0;
260
261    println!("   Reconstruction accuracy: {:.1}%", accuracy * 100.0);
262
263    Ok(())
264}
Source

pub fn with_annealing(self, schedule: AnnealingSchedule) -> Self

Enable quantum annealing

Examples found in repository?
examples/quantum_boltzmann.rs (line 94)
84fn rbm_demo() -> Result<()> {
85    // Create RBM with annealing
86    let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
87
88    let mut rbm = QuantumRBM::new(
89        6,    // visible units
90        3,    // hidden units
91        2.0,  // initial temperature
92        0.01, // learning rate
93    )?
94    .with_annealing(annealing);
95
96    println!("   Created Quantum RBM with annealing schedule");
97
98    // Generate correlated binary data
99    let data = generate_correlated_data(200, 6);
100
101    // Train with PCD
102    println!("   Training with Persistent Contrastive Divergence...");
103    let losses = rbm.train_pcd(
104        &data, 100, // epochs
105        20,  // batch size
106        50,  // persistent chains
107    )?;
108
109    // Analyze training
110    let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
111    println!("   Training statistics:");
112    println!("   - Loss reduction: {improvement:.1}%");
113    println!("   - Final temperature: 0.5");
114
115    // Test reconstruction
116    let test_data = data.slice(s![0..5, ..]).to_owned();
117    let reconstructed = rbm.qbm().reconstruct(&test_data)?;
118
119    println!("\n   Reconstruction quality:");
120    for i in 0..3 {
121        print!("   Original:      [");
122        for val in test_data.row(i) {
123            print!("{val:.0} ");
124        }
125        print!("]  →  Reconstructed: [");
126        for val in reconstructed.row(i) {
127            print!("{val:.0} ");
128        }
129        println!("]");
130    }
131
132    Ok(())
133}
Source

pub fn create_rbm_circuit(&self) -> Result<()>

Create circuit for RBM sampling

Source

pub fn train_pcd( &mut self, data: &Array2<f64>, epochs: usize, batch_size: usize, num_persistent: usize, ) -> Result<Vec<f64>>

Train using persistent contrastive divergence

Examples found in repository?
examples/quantum_boltzmann.rs (lines 103-107)
84fn rbm_demo() -> Result<()> {
85    // Create RBM with annealing
86    let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
87
88    let mut rbm = QuantumRBM::new(
89        6,    // visible units
90        3,    // hidden units
91        2.0,  // initial temperature
92        0.01, // learning rate
93    )?
94    .with_annealing(annealing);
95
96    println!("   Created Quantum RBM with annealing schedule");
97
98    // Generate correlated binary data
99    let data = generate_correlated_data(200, 6);
100
101    // Train with PCD
102    println!("   Training with Persistent Contrastive Divergence...");
103    let losses = rbm.train_pcd(
104        &data, 100, // epochs
105        20,  // batch size
106        50,  // persistent chains
107    )?;
108
109    // Analyze training
110    let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
111    println!("   Training statistics:");
112    println!("   - Loss reduction: {improvement:.1}%");
113    println!("   - Final temperature: 0.5");
114
115    // Test reconstruction
116    let test_data = data.slice(s![0..5, ..]).to_owned();
117    let reconstructed = rbm.qbm().reconstruct(&test_data)?;
118
119    println!("\n   Reconstruction quality:");
120    for i in 0..3 {
121        print!("   Original:      [");
122        for val in test_data.row(i) {
123            print!("{val:.0} ");
124        }
125        print!("]  →  Reconstructed: [");
126        for val in reconstructed.row(i) {
127            print!("{val:.0} ");
128        }
129        println!("]");
130    }
131
132    Ok(())
133}
134
135/// Deep Boltzmann Machine demonstration
136fn deep_boltzmann_demo() -> Result<()> {
137    // Create a 3-layer DBM
138    let layer_sizes = vec![8, 4, 2];
139    let mut dbm = DeepBoltzmannMachine::new(
140        layer_sizes.clone(),
141        1.0,  // temperature
142        0.01, // learning rate
143    )?;
144
145    println!("   Created Deep Boltzmann Machine:");
146    println!("   - Architecture: {layer_sizes:?}");
147    println!("   - Total layers: {}", dbm.rbms().len());
148
149    // Generate hierarchical data
150    let data = generate_hierarchical_data(300, 8);
151
152    // Layer-wise pretraining
153    println!("\n   Performing layer-wise pretraining...");
154    dbm.pretrain(
155        &data, 50, // epochs per layer
156        30, // batch size
157    )?;
158
159    println!("\n   Pretraining complete!");
160    println!("   Each layer learned increasingly abstract features");
161
162    Ok(())
163}
164
165/// Energy landscape visualization
166fn energy_landscape_demo() -> Result<()> {
167    // Create small QBM for visualization
168    let qbm = QuantumBoltzmannMachine::new(
169        2,    // visible units (for 2D visualization)
170        1,    // hidden unit
171        0.5,  // temperature
172        0.01, // learning rate
173    )?;
174
175    println!("   Analyzing energy landscape of 2-unit system");
176
177    // Compute energy for all 4 possible states
178    let states = [
179        Array1::from_vec(vec![0.0, 0.0]),
180        Array1::from_vec(vec![0.0, 1.0]),
181        Array1::from_vec(vec![1.0, 0.0]),
182        Array1::from_vec(vec![1.0, 1.0]),
183    ];
184
185    println!("\n   State energies:");
186    for (i, state) in states.iter().enumerate() {
187        let energy = qbm.energy(state);
188        let prob = (-energy / qbm.temperature()).exp();
189        println!(
190            "   State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
191            state[0], state[1], energy, prob
192        );
193    }
194
195    // Show coupling matrix
196    println!("\n   Coupling matrix:");
197    for i in 0..3 {
198        print!("   [");
199        for j in 0..3 {
200            print!("{:6.3} ", qbm.couplings()[[i, j]]);
201        }
202        println!("]");
203    }
204
205    Ok(())
206}
207
208/// Pattern completion demonstration
209fn pattern_completion_demo() -> Result<()> {
210    // Create RBM
211    let mut rbm = QuantumRBM::new(
212        8,    // visible units
213        4,    // hidden units
214        1.0,  // temperature
215        0.02, // learning rate
216    )?;
217
218    // Train on specific patterns
219    let patterns = create_letter_patterns();
220    println!("   Training on letter-like patterns...");
221
222    rbm.train_pcd(&patterns, 100, 10, 20)?;
223
224    // Test pattern completion
225    println!("\n   Pattern completion test:");
226
227    // Create corrupted patterns
228    let mut corrupted = patterns.row(0).to_owned();
229    corrupted[3] = 1.0 - corrupted[3]; // Flip one bit
230    corrupted[5] = 1.0 - corrupted[5]; // Flip another
231
232    print!("   Corrupted:  [");
233    for val in &corrupted {
234        print!("{val:.0} ");
235    }
236    println!("]");
237
238    // Complete pattern
239    let completed = complete_pattern(&rbm, &corrupted)?;
240
241    print!("   Completed:  [");
242    for val in &completed {
243        print!("{val:.0} ");
244    }
245    println!("]");
246
247    print!("   Original:   [");
248    for val in patterns.row(0) {
249        print!("{val:.0} ");
250    }
251    println!("]");
252
253    let accuracy = patterns
254        .row(0)
255        .iter()
256        .zip(completed.iter())
257        .filter(|(&a, &b)| (a - b).abs() < 0.5)
258        .count() as f64
259        / 8.0;
260
261    println!("   Reconstruction accuracy: {:.1}%", accuracy * 100.0);
262
263    Ok(())
264}
Source

pub fn qbm(&self) -> &QuantumBoltzmannMachine

Get reference to the underlying QBM

Examples found in repository?
examples/quantum_boltzmann.rs (line 117)
84fn rbm_demo() -> Result<()> {
85    // Create RBM with annealing
86    let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
87
88    let mut rbm = QuantumRBM::new(
89        6,    // visible units
90        3,    // hidden units
91        2.0,  // initial temperature
92        0.01, // learning rate
93    )?
94    .with_annealing(annealing);
95
96    println!("   Created Quantum RBM with annealing schedule");
97
98    // Generate correlated binary data
99    let data = generate_correlated_data(200, 6);
100
101    // Train with PCD
102    println!("   Training with Persistent Contrastive Divergence...");
103    let losses = rbm.train_pcd(
104        &data, 100, // epochs
105        20,  // batch size
106        50,  // persistent chains
107    )?;
108
109    // Analyze training
110    let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
111    println!("   Training statistics:");
112    println!("   - Loss reduction: {improvement:.1}%");
113    println!("   - Final temperature: 0.5");
114
115    // Test reconstruction
116    let test_data = data.slice(s![0..5, ..]).to_owned();
117    let reconstructed = rbm.qbm().reconstruct(&test_data)?;
118
119    println!("\n   Reconstruction quality:");
120    for i in 0..3 {
121        print!("   Original:      [");
122        for val in test_data.row(i) {
123            print!("{val:.0} ");
124        }
125        print!("]  →  Reconstructed: [");
126        for val in reconstructed.row(i) {
127            print!("{val:.0} ");
128        }
129        println!("]");
130    }
131
132    Ok(())
133}
134
135/// Deep Boltzmann Machine demonstration
136fn deep_boltzmann_demo() -> Result<()> {
137    // Create a 3-layer DBM
138    let layer_sizes = vec![8, 4, 2];
139    let mut dbm = DeepBoltzmannMachine::new(
140        layer_sizes.clone(),
141        1.0,  // temperature
142        0.01, // learning rate
143    )?;
144
145    println!("   Created Deep Boltzmann Machine:");
146    println!("   - Architecture: {layer_sizes:?}");
147    println!("   - Total layers: {}", dbm.rbms().len());
148
149    // Generate hierarchical data
150    let data = generate_hierarchical_data(300, 8);
151
152    // Layer-wise pretraining
153    println!("\n   Performing layer-wise pretraining...");
154    dbm.pretrain(
155        &data, 50, // epochs per layer
156        30, // batch size
157    )?;
158
159    println!("\n   Pretraining complete!");
160    println!("   Each layer learned increasingly abstract features");
161
162    Ok(())
163}
164
165/// Energy landscape visualization
166fn energy_landscape_demo() -> Result<()> {
167    // Create small QBM for visualization
168    let qbm = QuantumBoltzmannMachine::new(
169        2,    // visible units (for 2D visualization)
170        1,    // hidden unit
171        0.5,  // temperature
172        0.01, // learning rate
173    )?;
174
175    println!("   Analyzing energy landscape of 2-unit system");
176
177    // Compute energy for all 4 possible states
178    let states = [
179        Array1::from_vec(vec![0.0, 0.0]),
180        Array1::from_vec(vec![0.0, 1.0]),
181        Array1::from_vec(vec![1.0, 0.0]),
182        Array1::from_vec(vec![1.0, 1.0]),
183    ];
184
185    println!("\n   State energies:");
186    for (i, state) in states.iter().enumerate() {
187        let energy = qbm.energy(state);
188        let prob = (-energy / qbm.temperature()).exp();
189        println!(
190            "   State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
191            state[0], state[1], energy, prob
192        );
193    }
194
195    // Show coupling matrix
196    println!("\n   Coupling matrix:");
197    for i in 0..3 {
198        print!("   [");
199        for j in 0..3 {
200            print!("{:6.3} ", qbm.couplings()[[i, j]]);
201        }
202        println!("]");
203    }
204
205    Ok(())
206}
207
208/// Pattern completion demonstration
209fn pattern_completion_demo() -> Result<()> {
210    // Create RBM
211    let mut rbm = QuantumRBM::new(
212        8,    // visible units
213        4,    // hidden units
214        1.0,  // temperature
215        0.02, // learning rate
216    )?;
217
218    // Train on specific patterns
219    let patterns = create_letter_patterns();
220    println!("   Training on letter-like patterns...");
221
222    rbm.train_pcd(&patterns, 100, 10, 20)?;
223
224    // Test pattern completion
225    println!("\n   Pattern completion test:");
226
227    // Create corrupted patterns
228    let mut corrupted = patterns.row(0).to_owned();
229    corrupted[3] = 1.0 - corrupted[3]; // Flip one bit
230    corrupted[5] = 1.0 - corrupted[5]; // Flip another
231
232    print!("   Corrupted:  [");
233    for val in &corrupted {
234        print!("{val:.0} ");
235    }
236    println!("]");
237
238    // Complete pattern
239    let completed = complete_pattern(&rbm, &corrupted)?;
240
241    print!("   Completed:  [");
242    for val in &completed {
243        print!("{val:.0} ");
244    }
245    println!("]");
246
247    print!("   Original:   [");
248    for val in patterns.row(0) {
249        print!("{val:.0} ");
250    }
251    println!("]");
252
253    let accuracy = patterns
254        .row(0)
255        .iter()
256        .zip(completed.iter())
257        .filter(|(&a, &b)| (a - b).abs() < 0.5)
258        .count() as f64
259        / 8.0;
260
261    println!("   Reconstruction accuracy: {:.1}%", accuracy * 100.0);
262
263    Ok(())
264}
265
266/// Generate binary patterns
267fn generate_binary_patterns(n_samples: usize, n_features: usize) -> Array2<f64> {
268    Array2::from_shape_fn((n_samples, n_features), |(_, _)| {
269        if thread_rng().gen::<f64>() > 0.5 {
270            1.0
271        } else {
272            0.0
273        }
274    })
275}
276
277/// Generate correlated binary data
278fn generate_correlated_data(n_samples: usize, n_features: usize) -> Array2<f64> {
279    let mut data = Array2::zeros((n_samples, n_features));
280
281    for i in 0..n_samples {
282        // Generate correlated features
283        let base = if thread_rng().gen::<f64>() > 0.5 {
284            1.0
285        } else {
286            0.0
287        };
288
289        for j in 0..n_features {
290            if j % 2 == 0 {
291                data[[i, j]] = base;
292            } else {
293                // Correlate with previous feature
294                data[[i, j]] = if thread_rng().gen::<f64>() > 0.2 {
295                    base
296                } else {
297                    1.0 - base
298                };
299            }
300        }
301    }
302
303    data
304}
305
306/// Generate hierarchical data
307fn generate_hierarchical_data(n_samples: usize, n_features: usize) -> Array2<f64> {
308    let mut data = Array2::zeros((n_samples, n_features));
309
310    for i in 0..n_samples {
311        // Choose high-level pattern
312        let pattern_type = i % 3;
313
314        match pattern_type {
315            0 => {
316                // Pattern A: alternating
317                for j in 0..n_features {
318                    data[[i, j]] = (j % 2) as f64;
319                }
320            }
321            1 => {
322                // Pattern B: blocks
323                for j in 0..n_features {
324                    data[[i, j]] = ((j / 2) % 2) as f64;
325                }
326            }
327            _ => {
328                // Pattern C: random with structure
329                let shift = (thread_rng().gen::<f64>() * 4.0) as usize;
330                for j in 0..n_features {
331                    data[[i, j]] = if (j + shift) % 3 == 0 { 1.0 } else { 0.0 };
332                }
333            }
334        }
335
336        // Add noise
337        for j in 0..n_features {
338            if thread_rng().gen::<f64>() < 0.1 {
339                data[[i, j]] = 1.0 - data[[i, j]];
340            }
341        }
342    }
343
344    data
345}
346
347/// Create letter-like patterns
348fn create_letter_patterns() -> Array2<f64> {
349    // Simple 8-bit patterns resembling letters
350    Array2::from_shape_vec(
351        (4, 8),
352        vec![
353            // Pattern 'L'
354            1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, // Pattern 'T'
355            1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Pattern 'I'
356            0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, // Pattern 'H'
357            1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0,
358        ],
359    )
360    .unwrap()
361}
362
363/// Complete a partial pattern
364fn complete_pattern(rbm: &QuantumRBM, partial: &Array1<f64>) -> Result<Array1<f64>> {
365    // Use Gibbs sampling to complete pattern
366    let mut current = partial.clone();
367
368    for _ in 0..10 {
369        let hidden = rbm.qbm().sample_hidden_given_visible(&current.view())?;
370        current = rbm.qbm().sample_visible_given_hidden(&hidden)?;
371    }
372
373    Ok(current)
374}

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V