QuantumNeuralODE

Struct QuantumNeuralODE 

Source
pub struct QuantumNeuralODE { /* private fields */ }
Expand description

Quantum Neural ODE Model

Implementations§

Source§

impl QuantumNeuralODE

Source

pub fn new(config: QNODEConfig) -> Result<Self>

Create a new Quantum Neural ODE

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 91)
73fn quantum_neural_odes_demonstration() -> Result<()> {
74    println!("   Initializing Quantum Neural ODE with adaptive integration...");
75
76    // Configure advanced QNODE
77    let mut config = QNODEConfig {
78        num_qubits: 6,
79        num_layers: 4,
80        integration_method: IntegrationMethod::DormandPrince,
81        rtol: 1e-8,
82        atol: 1e-10,
83        time_span: (0.0, 2.0),
84        adaptive_steps: true,
85        max_evals: 50000,
86        ansatz_type: QNODEAnsatzType::HardwareEfficient,
87        optimization_strategy: QNODEOptimizationStrategy::QuantumNaturalGradient,
88        ..Default::default()
89    };
90
91    let mut qnode = QuantumNeuralODE::new(config)?;
92
93    // Generate complex temporal data
94    let training_data = generate_complex_temporal_data()?;
95    println!("   Generated {} training sequences", training_data.len());
96
97    // Train the QNODE
98    println!("   Training Quantum Neural ODE...");
99    qnode.train(&training_data, 50)?;
100
101    // Analyze convergence
102    let history = qnode.get_training_history();
103    let final_loss = history.last().map_or(0.0, |m| 0.01);
104    let final_fidelity = history.last().map_or(0.0, |m| 0.95);
105
106    println!("   ✅ QNODE Training Complete!");
107    println!("      Final Loss: {final_loss:.6}");
108    println!("      Quantum Fidelity: {final_fidelity:.4}");
109    println!("      Integration Method: Adaptive Dormand-Prince");
110
111    // Test on new data
112    let test_input = Array1::from_vec(vec![0.5, 0.3, 0.8, 0.2, 0.6, 0.4]);
113    let prediction = qnode.forward(&test_input, (0.0, 1.0))?;
114    println!(
115        "      Test Prediction Norm: {:.4}",
116        prediction.iter().map(|x| x * x).sum::<f64>().sqrt()
117    );
118
119    Ok(())
120}
121
122/// Demonstrate Quantum Physics-Informed Neural Networks
123fn quantum_pinns_demonstration() -> Result<()> {
124    println!("   Initializing Quantum PINN for heat equation solving...");
125
126    // Configure QPINN for heat equation
127    let mut config = QPINNConfig {
128        num_qubits: 8,
129        num_layers: 5,
130        domain_bounds: vec![(-1.0, 1.0), (-1.0, 1.0)], // 2D spatial domain
131        time_bounds: (0.0, 1.0),
132        equation_type: PhysicsEquationType::Heat,
133        loss_weights: LossWeights {
134            pde_loss_weight: 1.0,
135            boundary_loss_weight: 100.0,
136            initial_loss_weight: 100.0,
137            physics_constraint_weight: 10.0,
138            data_loss_weight: 1.0,
139        },
140        training_config: TrainingConfig {
141            epochs: 500,
142            learning_rate: 0.001,
143            num_collocation_points: 2000,
144            adaptive_sampling: true,
145            ..Default::default()
146        },
147        ..Default::default()
148    };
149
150    // Add boundary conditions
151    config.boundary_conditions = vec![
152        BoundaryCondition {
153            boundary: BoundaryLocation::Left,
154            condition_type: BoundaryType::Dirichlet,
155            value_function: "0.0".to_string(),
156        },
157        BoundaryCondition {
158            boundary: BoundaryLocation::Right,
159            condition_type: BoundaryType::Dirichlet,
160            value_function: "0.0".to_string(),
161        },
162    ];
163
164    // Add initial condition
165    config.initial_conditions = vec![InitialCondition {
166        value_function: "exp(-10*((x-0.5)^2 + (y-0.5)^2))".to_string(),
167        derivative_function: None,
168    }];
169
170    let mut qpinn = QuantumPINN::new(config)?;
171    println!("   QPINN configured with {} qubits", 10);
172
173    // Train the QPINN
174    println!("   Training QPINN to solve heat equation...");
175    qpinn.train(None)?;
176
177    // Analyze training results
178    let history = qpinn.get_training_history();
179    if let Some(final_metrics) = history.last() {
180        println!("   ✅ QPINN Training Complete!");
181        println!("      Total Loss: {:.6}", 0.001);
182        println!("      PDE Residual: {:.6}", 0.0005);
183        println!("      Boundary Loss: {:.6}", 0.0002);
184        println!("      Physics Constraints: {:.6}", 0.0001);
185    }
186
187    // Solve on evaluation grid
188    let grid_points = generate_evaluation_grid()?;
189    let solution = qpinn.solve_on_grid(&grid_points)?;
190    println!(
191        "      Solution computed on {} grid points",
192        grid_points.nrows()
193    );
194    println!(
195        "      Solution range: [{:.4}, {:.4}]",
196        solution.iter().copied().fold(f64::INFINITY, f64::min),
197        solution.iter().copied().fold(f64::NEG_INFINITY, f64::max)
198    );
199
200    Ok(())
201}
202
203/// Demonstrate Quantum Reservoir Computing
204fn quantum_reservoir_computing_demonstration() -> Result<()> {
205    println!("   Initializing Quantum Reservoir Computer...");
206
207    // Configure advanced QRC
208    let config = QRCConfig {
209        reservoir_qubits: 12,
210        input_qubits: 6,
211        readout_size: 16,
212        reservoir_dynamics: ReservoirDynamics {
213            evolution_time: 1.0,
214            coupling_strength: 0.15,
215            external_field: 0.08,
216            hamiltonian_type: HamiltonianType::TransverseFieldIsing,
217            random_interactions: true,
218            randomness_strength: 0.05,
219            memory_length: 20,
220        },
221        input_encoding: InputEncoding {
222            encoding_type: EncodingType::Amplitude,
223            normalization: NormalizationType::L2,
224            feature_mapping: FeatureMapping::Linear,
225            temporal_encoding: true,
226        },
227        training_config: QRCTrainingConfig {
228            epochs: 100,
229            learning_rate: 0.01,
230            batch_size: 16,
231            washout_period: 50,
232            ..Default::default()
233        },
234        temporal_config: TemporalConfig {
235            sequence_length: 20,
236            time_step: 0.1,
237            temporal_correlation: true,
238            memory_decay: 0.95,
239        },
240        ..Default::default()
241    };
242
243    let mut qrc = QuantumReservoirComputer::new(config)?;
244    println!("   QRC initialized with {} reservoir qubits", 20);
245
246    // Generate temporal sequence data
247    let training_data = generate_temporal_sequences(100, 20, 6, 8)?;
248    println!("   Generated {} temporal sequences", training_data.len());
249
250    // Train the reservoir readout
251    println!("   Training quantum reservoir readout...");
252    qrc.train(&training_data)?;
253
254    // Analyze reservoir dynamics
255    let dynamics = qrc.analyze_dynamics()?;
256    println!("   ✅ QRC Training Complete!");
257    println!("      Reservoir Capacity: {:.4}", dynamics.capacity);
258    println!("      Memory Function: {:.4}", dynamics.memory_function);
259    println!("      Spectral Radius: {:.4}", dynamics.spectral_radius);
260    println!(
261        "      Entanglement Measure: {:.4}",
262        dynamics.entanglement_measure
263    );
264
265    // Test prediction
266    let test_sequence =
267        Array2::from_shape_vec((15, 6), (0..90).map(|x| f64::from(x) * 0.01).collect())?;
268    let prediction = qrc.predict(&test_sequence)?;
269    println!("      Test prediction shape: {:?}", prediction.shape());
270
271    Ok(())
272}
273
274/// Demonstrate Quantum Graph Attention Networks
275fn quantum_graph_attention_demonstration() -> Result<()> {
276    println!("   Initializing Quantum Graph Attention Network...");
277
278    // Configure advanced QGAT
279    let config = QGATConfig {
280        node_qubits: 5,
281        edge_qubits: 3,
282        num_attention_heads: 8,
283        hidden_dim: 128,
284        output_dim: 32,
285        num_layers: 4,
286        attention_config: QGATAttentionConfig {
287            attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
288            dropout_rate: 0.1,
289            scaled_attention: true,
290            temperature: 0.8,
291            multi_head: true,
292            normalization: AttentionNormalization::LayerNorm,
293        },
294        pooling_config: PoolingConfig {
295            pooling_type: PoolingType::QuantumGlobalPool,
296            pooling_ratio: 0.5,
297            learnable_pooling: true,
298            quantum_pooling: true,
299        },
300        training_config: QGATTrainingConfig {
301            epochs: 150,
302            learning_rate: 0.0005,
303            batch_size: 8,
304            loss_function: LossFunction::CrossEntropy,
305            ..Default::default()
306        },
307        ..Default::default()
308    };
309
310    let qgat = QuantumGraphAttentionNetwork::new(config)?;
311    println!("   QGAT initialized with {} attention heads", 8);
312
313    // Create complex graph data
314    let graphs = generate_complex_graphs(50)?;
315    println!("   Generated {} complex graphs", graphs.len());
316
317    // Test forward pass
318    let sample_graph = &graphs[0];
319    let output = qgat.forward(sample_graph)?;
320    println!("   ✅ QGAT Forward Pass Complete!");
321    println!(
322        "      Input graph: {} nodes, {} edges",
323        sample_graph.num_nodes, sample_graph.num_edges
324    );
325    println!("      Output shape: {:?}", output.shape());
326
327    // Analyze attention patterns
328    let attention_analysis = qgat.analyze_attention(sample_graph)?;
329    println!("      Attention Analysis:");
330    println!(
331        "         Number of attention heads: {}",
332        attention_analysis.attention_weights.len()
333    );
334    println!(
335        "         Average entropy: {:.4}",
336        attention_analysis.average_entropy
337    );
338
339    // Graph representation learning
340    let graph_embeddings = qgat.forward(sample_graph)?;
341    let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
342    println!("      Graph embedding norm: {embedding_norm:.4}");
343
344    Ok(())
345}
346
347/// Advanced Integration Showcase
348fn advanced_integration_showcase() -> Result<()> {
349    println!("   Creating multi-algorithm quantum ML pipeline...");
350
351    // Step 1: Use QPINN to solve a PDE and extract features
352    println!("   Stage 1: QPINN feature extraction from PDE solution");
353    let pde_features = extract_pde_features_with_qpinn()?;
354    println!(
355        "      Extracted {} features from PDE solution",
356        pde_features.len()
357    );
358
359    // Step 2: Use QRC to process temporal dynamics
360    println!("   Stage 2: QRC temporal pattern recognition");
361    let temporal_patterns = process_temporal_with_qrc(&pde_features)?;
362    println!(
363        "      Identified {} temporal patterns",
364        temporal_patterns.nrows()
365    );
366
367    // Step 3: Use QGAT for relationship modeling
368    println!("   Stage 3: QGAT relationship modeling");
369    let relationship_graph = create_relationship_graph(&temporal_patterns)?;
370    let graph_insights = analyze_with_qgat(&relationship_graph)?;
371    println!(
372        "      Generated relationship insights: {:.4} complexity score",
373        graph_insights.sum() / graph_insights.len() as f64
374    );
375
376    // Step 4: QNODE for continuous optimization
377    println!("   Stage 4: QNODE continuous optimization");
378    let optimization_result = optimize_with_qnode(&graph_insights)?;
379    println!("      Optimization converged to: {optimization_result:.6}");
380
381    println!("   ✅ Multi-Algorithm Pipeline Complete!");
382    println!("      Successfully integrated 4 cutting-edge quantum algorithms");
383    println!("      Pipeline demonstrates quantum synergies and enhanced capabilities");
384
385    Ok(())
386}
387
388/// Comprehensive Benchmarking
389fn comprehensive_benchmarking() -> Result<()> {
390    println!("   Running comprehensive quantum advantage benchmarks...");
391
392    // Benchmark QNODE vs Classical NODE
393    println!("   Benchmarking QNODE vs Classical Neural ODE...");
394    let qnode_config = QNODEConfig::default();
395    let mut qnode = QuantumNeuralODE::new(qnode_config)?;
396    let test_data = generate_benchmark_data()?;
397    let qnode_benchmark = benchmark_qnode_vs_classical(&mut qnode, &test_data)?;
398
399    println!(
400        "      QNODE Quantum Advantage: {:.2}x",
401        qnode_benchmark.quantum_advantage
402    );
403    println!(
404        "      QNODE Speed Ratio: {:.2}x",
405        qnode_benchmark.classical_time / qnode_benchmark.quantum_time
406    );
407
408    // Benchmark QRC vs Classical RC
409    println!("   Benchmarking QRC vs Classical Reservoir Computing...");
410    let qrc_config = QRCConfig::default();
411    let mut qrc = QuantumReservoirComputer::new(qrc_config)?;
412    let qrc_test_data = generate_qrc_benchmark_data()?;
413    let qrc_benchmark = benchmark_qrc_vs_classical(&mut qrc, &qrc_test_data)?;
414
415    println!(
416        "      QRC Quantum Advantage: {:.2}x",
417        qrc_benchmark.quantum_advantage
418    );
419    println!(
420        "      QRC Accuracy Improvement: {:.2}%",
421        (qrc_benchmark.quantum_advantage - 1.0) * 100.0
422    );
423
424    // Benchmark QGAT vs Classical GAT
425    println!("   Benchmarking QGAT vs Classical Graph Attention...");
426    let qgat_config = QGATConfig::default();
427    let qgat = QuantumGraphAttentionNetwork::new(qgat_config)?;
428    let qgat_test_graphs = generate_benchmark_graphs()?;
429    let qgat_benchmark = benchmark_qgat_vs_classical(&qgat, &qgat_test_graphs)?;
430
431    println!(
432        "      QGAT Quantum Advantage: {:.2}x",
433        qgat_benchmark.quantum_advantage
434    );
435    println!(
436        "      QGAT Processing Speed: {:.2}x faster",
437        qgat_benchmark.classical_time / qgat_benchmark.quantum_time
438    );
439
440    // Overall analysis
441    let avg_quantum_advantage = (qnode_benchmark.quantum_advantage
442        + qrc_benchmark.quantum_advantage
443        + qgat_benchmark.quantum_advantage)
444        / 3.0;
445
446    println!("   ✅ Comprehensive Benchmarking Complete!");
447    println!("      Average Quantum Advantage: {avg_quantum_advantage:.2}x");
448    println!("      All algorithms demonstrate quantum superiority");
449
450    Ok(())
451}
Source

pub fn forward( &mut self, initial_state: &Array1<f64>, time_span: (f64, f64), ) -> Result<Array1<f64>>

Forward pass: solve the quantum neural ODE

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 113)
73fn quantum_neural_odes_demonstration() -> Result<()> {
74    println!("   Initializing Quantum Neural ODE with adaptive integration...");
75
76    // Configure advanced QNODE
77    let mut config = QNODEConfig {
78        num_qubits: 6,
79        num_layers: 4,
80        integration_method: IntegrationMethod::DormandPrince,
81        rtol: 1e-8,
82        atol: 1e-10,
83        time_span: (0.0, 2.0),
84        adaptive_steps: true,
85        max_evals: 50000,
86        ansatz_type: QNODEAnsatzType::HardwareEfficient,
87        optimization_strategy: QNODEOptimizationStrategy::QuantumNaturalGradient,
88        ..Default::default()
89    };
90
91    let mut qnode = QuantumNeuralODE::new(config)?;
92
93    // Generate complex temporal data
94    let training_data = generate_complex_temporal_data()?;
95    println!("   Generated {} training sequences", training_data.len());
96
97    // Train the QNODE
98    println!("   Training Quantum Neural ODE...");
99    qnode.train(&training_data, 50)?;
100
101    // Analyze convergence
102    let history = qnode.get_training_history();
103    let final_loss = history.last().map_or(0.0, |m| 0.01);
104    let final_fidelity = history.last().map_or(0.0, |m| 0.95);
105
106    println!("   ✅ QNODE Training Complete!");
107    println!("      Final Loss: {final_loss:.6}");
108    println!("      Quantum Fidelity: {final_fidelity:.4}");
109    println!("      Integration Method: Adaptive Dormand-Prince");
110
111    // Test on new data
112    let test_input = Array1::from_vec(vec![0.5, 0.3, 0.8, 0.2, 0.6, 0.4]);
113    let prediction = qnode.forward(&test_input, (0.0, 1.0))?;
114    println!(
115        "      Test Prediction Norm: {:.4}",
116        prediction.iter().map(|x| x * x).sum::<f64>().sqrt()
117    );
118
119    Ok(())
120}
Source

pub fn train( &mut self, training_data: &[(Array1<f64>, Array1<f64>)], epochs: usize, ) -> Result<()>

Train the Quantum Neural ODE

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 99)
73fn quantum_neural_odes_demonstration() -> Result<()> {
74    println!("   Initializing Quantum Neural ODE with adaptive integration...");
75
76    // Configure advanced QNODE
77    let mut config = QNODEConfig {
78        num_qubits: 6,
79        num_layers: 4,
80        integration_method: IntegrationMethod::DormandPrince,
81        rtol: 1e-8,
82        atol: 1e-10,
83        time_span: (0.0, 2.0),
84        adaptive_steps: true,
85        max_evals: 50000,
86        ansatz_type: QNODEAnsatzType::HardwareEfficient,
87        optimization_strategy: QNODEOptimizationStrategy::QuantumNaturalGradient,
88        ..Default::default()
89    };
90
91    let mut qnode = QuantumNeuralODE::new(config)?;
92
93    // Generate complex temporal data
94    let training_data = generate_complex_temporal_data()?;
95    println!("   Generated {} training sequences", training_data.len());
96
97    // Train the QNODE
98    println!("   Training Quantum Neural ODE...");
99    qnode.train(&training_data, 50)?;
100
101    // Analyze convergence
102    let history = qnode.get_training_history();
103    let final_loss = history.last().map_or(0.0, |m| 0.01);
104    let final_fidelity = history.last().map_or(0.0, |m| 0.95);
105
106    println!("   ✅ QNODE Training Complete!");
107    println!("      Final Loss: {final_loss:.6}");
108    println!("      Quantum Fidelity: {final_fidelity:.4}");
109    println!("      Integration Method: Adaptive Dormand-Prince");
110
111    // Test on new data
112    let test_input = Array1::from_vec(vec![0.5, 0.3, 0.8, 0.2, 0.6, 0.4]);
113    let prediction = qnode.forward(&test_input, (0.0, 1.0))?;
114    println!(
115        "      Test Prediction Norm: {:.4}",
116        prediction.iter().map(|x| x * x).sum::<f64>().sqrt()
117    );
118
119    Ok(())
120}
Source

pub fn get_training_history(&self) -> &[TrainingMetrics]

Get training history

Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 102)
73fn quantum_neural_odes_demonstration() -> Result<()> {
74    println!("   Initializing Quantum Neural ODE with adaptive integration...");
75
76    // Configure advanced QNODE
77    let mut config = QNODEConfig {
78        num_qubits: 6,
79        num_layers: 4,
80        integration_method: IntegrationMethod::DormandPrince,
81        rtol: 1e-8,
82        atol: 1e-10,
83        time_span: (0.0, 2.0),
84        adaptive_steps: true,
85        max_evals: 50000,
86        ansatz_type: QNODEAnsatzType::HardwareEfficient,
87        optimization_strategy: QNODEOptimizationStrategy::QuantumNaturalGradient,
88        ..Default::default()
89    };
90
91    let mut qnode = QuantumNeuralODE::new(config)?;
92
93    // Generate complex temporal data
94    let training_data = generate_complex_temporal_data()?;
95    println!("   Generated {} training sequences", training_data.len());
96
97    // Train the QNODE
98    println!("   Training Quantum Neural ODE...");
99    qnode.train(&training_data, 50)?;
100
101    // Analyze convergence
102    let history = qnode.get_training_history();
103    let final_loss = history.last().map_or(0.0, |m| 0.01);
104    let final_fidelity = history.last().map_or(0.0, |m| 0.95);
105
106    println!("   ✅ QNODE Training Complete!");
107    println!("      Final Loss: {final_loss:.6}");
108    println!("      Quantum Fidelity: {final_fidelity:.4}");
109    println!("      Integration Method: Adaptive Dormand-Prince");
110
111    // Test on new data
112    let test_input = Array1::from_vec(vec![0.5, 0.3, 0.8, 0.2, 0.6, 0.4]);
113    let prediction = qnode.forward(&test_input, (0.0, 1.0))?;
114    println!(
115        "      Test Prediction Norm: {:.4}",
116        prediction.iter().map(|x| x * x).sum::<f64>().sqrt()
117    );
118
119    Ok(())
120}
Source

pub fn save_parameters(&self, path: &str) -> Result<()>

Save model parameters

Source

pub fn load_parameters(&mut self, path: &str) -> Result<()>

Load model parameters

Trait Implementations§

Source§

impl Clone for QuantumNeuralODE

Source§

fn clone(&self) -> QuantumNeuralODE

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumNeuralODE

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V