PendulumEnvironment

Struct PendulumEnvironment 

Source
pub struct PendulumEnvironment { /* private fields */ }
Expand description

Pendulum environment for continuous control

Implementations§

Source§

impl PendulumEnvironment

Source

pub fn new() -> Self

Create new pendulum environment

Examples found in repository?
examples/continuous_rl.rs (line 45)
44fn test_pendulum_dynamics() -> Result<()> {
45    let mut env = PendulumEnvironment::new();
46
47    println!("   Initial state: {:?}", env.state());
48    println!("   Action bounds: {:?}", env.action_bounds());
49
50    // Run a few steps with different actions
51    let actions = vec![
52        Array1::from_vec(vec![0.0]),  // No torque
53        Array1::from_vec(vec![2.0]),  // Max positive torque
54        Array1::from_vec(vec![-2.0]), // Max negative torque
55    ];
56
57    for (i, action) in actions.iter().enumerate() {
58        let state = env.reset();
59        let (next_state, reward, done) = env.step(action.clone())?;
60
61        println!("\n   Step {} with action {:.1}:", i + 1, action[0]);
62        println!(
63            "     State: [θ_cos={:.3}, θ_sin={:.3}, θ_dot={:.3}]",
64            state[0], state[1], state[2]
65        );
66        println!(
67            "     Next: [θ_cos={:.3}, θ_sin={:.3}, θ_dot={:.3}]",
68            next_state[0], next_state[1], next_state[2]
69        );
70        println!("     Reward: {reward:.3}, Done: {done}");
71    }
72
73    Ok(())
74}
75
76/// Train QDDPG on pendulum control
77fn train_qddpg_pendulum() -> Result<()> {
78    let state_dim = 3;
79    let action_dim = 1;
80    let action_bounds = vec![(-2.0, 2.0)];
81    let num_qubits = 4;
82    let buffer_capacity = 10000;
83
84    // Create QDDPG agent
85    let mut agent = QuantumDDPG::new(
86        state_dim,
87        action_dim,
88        action_bounds,
89        num_qubits,
90        buffer_capacity,
91    )?;
92
93    // Create environment
94    let mut env = PendulumEnvironment::new();
95
96    // Create optimizers
97    let mut actor_optimizer = Adam::new(0.001);
98    let mut critic_optimizer = Adam::new(0.001);
99
100    // Train for a few episodes (reduced for demo)
101    let episodes = 50;
102    println!("   Training QDDPG for {episodes} episodes...");
103
104    let rewards = agent.train(
105        &mut env,
106        episodes,
107        &mut actor_optimizer,
108        &mut critic_optimizer,
109    )?;
110
111    // Print training statistics
112    let avg_initial = rewards[..10].iter().sum::<f64>() / 10.0;
113    let avg_final = rewards[rewards.len() - 10..].iter().sum::<f64>() / 10.0;
114
115    println!("\n   Training Statistics:");
116    println!("   - Average initial reward: {avg_initial:.2}");
117    println!("   - Average final reward: {avg_final:.2}");
118    println!("   - Improvement: {:.2}", avg_final - avg_initial);
119
120    // Test trained agent
121    println!("\n   Testing trained agent...");
122    test_trained_agent(&agent, &mut env)?;
123
124    Ok(())
125}
126
127/// Test a trained agent
128fn test_trained_agent(agent: &QuantumDDPG, env: &mut dyn ContinuousEnvironment) -> Result<()> {
129    let test_episodes = 5;
130    let mut test_rewards = Vec::new();
131
132    for episode in 0..test_episodes {
133        let mut state = env.reset();
134        let mut episode_reward = 0.0;
135        let mut done = false;
136        let mut steps = 0;
137
138        while !done && steps < 200 {
139            let action = agent.get_action(&state, false)?; // No exploration
140            let (next_state, reward, is_done) = env.step(action.clone())?;
141
142            state = next_state;
143            episode_reward += reward;
144            done = is_done;
145            steps += 1;
146        }
147
148        test_rewards.push(episode_reward);
149        println!(
150            "   Test episode {}: Reward = {:.2}, Steps = {}",
151            episode + 1,
152            episode_reward,
153            steps
154        );
155    }
156
157    let avg_test = test_rewards.iter().sum::<f64>() / f64::from(test_episodes);
158    println!("   Average test reward: {avg_test:.2}");
159
160    Ok(())
161}
162
163/// Compare trained policy with random policy
164fn compare_policies() -> Result<()> {
165    let mut env = PendulumEnvironment::new();
166    let episodes = 10;
167
168    // Random policy performance
169    println!("   Random Policy Performance:");
170    let mut random_rewards = Vec::new();
171
172    for _ in 0..episodes {
173        let mut state = env.reset();
174        let mut episode_reward = 0.0;
175        let mut done = false;
176
177        while !done {
178            // Random action in bounds
179            let action = Array1::from_vec(vec![4.0f64.mul_add(thread_rng().gen::<f64>(), -2.0)]);
180
181            let (next_state, reward, is_done) = env.step(action)?;
182            state = next_state;
183            episode_reward += reward;
184            done = is_done;
185        }
186
187        random_rewards.push(episode_reward);
188    }
189
190    let avg_random = random_rewards.iter().sum::<f64>() / f64::from(episodes);
191    println!("   Average random policy reward: {avg_random:.2}");
192
193    // Simple control policy (proportional control)
194    println!("\n   Simple Control Policy Performance:");
195    let mut control_rewards = Vec::new();
196
197    for _ in 0..episodes {
198        let mut state = env.reset();
199        let mut episode_reward = 0.0;
200        let mut done = false;
201
202        while !done {
203            // Proportional control: torque = -k * theta
204            let theta = state[1].atan2(state[0]); // Reconstruct angle
205            let action = Array1::from_vec(vec![(-2.0 * theta).clamp(-2.0, 2.0)]);
206
207            let (next_state, reward, is_done) = env.step(action)?;
208            state = next_state;
209            episode_reward += reward;
210            done = is_done;
211        }
212
213        control_rewards.push(episode_reward);
214    }
215
216    let avg_control = control_rewards.iter().sum::<f64>() / f64::from(episodes);
217    println!("   Average control policy reward: {avg_control:.2}");
218
219    println!("\n   Performance Summary:");
220    println!("   - Random policy: {avg_random:.2}");
221    println!("   - Simple control: {avg_control:.2}");
222    println!("   - Improvement: {:.2}", avg_control - avg_random);
223
224    Ok(())
225}

Trait Implementations§

Source§

impl ContinuousEnvironment for PendulumEnvironment

Source§

fn state(&self) -> Array1<f64>

Gets the current state
Source§

fn action_bounds(&self) -> Vec<(f64, f64)>

Gets the action space bounds (min, max) for each dimension
Source§

fn step(&mut self, action: Array1<f64>) -> Result<(Array1<f64>, f64, bool)>

Takes a continuous action and returns reward and next state
Source§

fn reset(&mut self) -> Array1<f64>

Resets the environment
Source§

fn state_dim(&self) -> usize

Get state dimension
Source§

fn action_dim(&self) -> usize

Get action dimension

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V