TutorialManager

Struct TutorialManager 

Source
pub struct TutorialManager { /* private fields */ }
Expand description

Tutorial manager for quantum ML education

Implementations§

Source§

impl TutorialManager

Source

pub fn new() -> Self

Create new tutorial manager

Examples found in repository?
examples/complete_integration_showcase.rs (line 616)
615    fn tutorials(&self) -> TutorialManager {
616        TutorialManager::new()
617    }
More examples
Hide additional examples
examples/ultimate_integration_demo.rs (line 270)
269    fn tutorials(&self) -> TutorialManager {
270        TutorialManager::new()
271    }
Source

pub fn get_category_tutorials( &self, category: &TutorialCategory, ) -> Option<&Vec<Tutorial>>

Get tutorials for a category

Source

pub fn get_available_categories(&self) -> Vec<TutorialCategory>

Get all available categories

Source

pub fn search_by_difficulty( &self, difficulty: &DifficultyLevel, ) -> Vec<&Tutorial>

Search tutorials by difficulty

Source

pub fn get_tutorial(&self, tutorial_id: &str) -> Option<&Tutorial>

Get tutorial by ID

Source

pub fn get_exercise(&self, exercise_id: &str) -> Option<&Exercise>

Get exercise by ID

Source

pub fn start_tutorial( &mut self, user_id: String, tutorial_id: String, ) -> Result<()>

Start tutorial for user

Source

pub fn complete_tutorial( &mut self, user_id: &str, tutorial_id: String, score: f64, time_minutes: usize, ) -> Result<()>

Complete tutorial for user

Source

pub fn recommend_learning_path( &self, user_background: &UserBackground, ) -> Vec<String>

Get learning path recommendations

Source

pub fn run_interactive_session( &self, tutorial_id: &str, ) -> Result<TutorialSession>

Run interactive tutorial session

Examples found in repository?
examples/complete_integration_showcase.rs (line 243)
12fn main() -> Result<()> {
13    println!("=== QuantRS2-ML Complete Integration Showcase ===\n");
14
15    // Step 1: Initialize the complete ecosystem
16    println!("1. Initializing QuantRS2-ML ecosystem...");
17
18    let ecosystem = QuantumMLEcosystem::new(EcosystemConfig {
19        enable_distributed_training: true,
20        enable_gpu_acceleration: true,
21        enable_framework_integrations: true,
22        enable_benchmarking: true,
23        enable_model_zoo: true,
24        enable_domain_templates: true,
25        log_level: "INFO",
26    })?;
27
28    println!("   ✓ Ecosystem initialized with all integrations");
29    println!(
30        "   ✓ Available backends: {}",
31        ecosystem.available_backends().join(", ")
32    );
33    println!(
34        "   ✓ Framework integrations: {}",
35        ecosystem.framework_integrations().join(", ")
36    );
37
38    // Step 2: Load problem from domain template
39    println!("\n2. Loading problem from domain template...");
40
41    let template_manager = ecosystem.domain_templates();
42    let finance_template = template_manager.get_template("Portfolio Optimization")?;
43
44    println!("   - Domain: {:?}", finance_template.domain);
45    println!("   - Problem type: {:?}", finance_template.problem_type);
46    println!("   - Required qubits: {}", finance_template.required_qubits);
47
48    // Create model from template
49    let config = TemplateConfig {
50        num_qubits: 10,
51        input_dim: 20,
52        output_dim: 20,
53        parameters: HashMap::new(),
54    };
55
56    let mut portfolio_model =
57        template_manager.create_model_from_template("Portfolio Optimization", config)?;
58
59    // Step 3: Prepare data using classical ML pipeline
60    println!("\n3. Preparing data with hybrid pipeline...");
61
62    let pipeline_manager = ecosystem.classical_ml_integration();
63    let preprocessing_pipeline =
64        pipeline_manager.create_pipeline("hybrid_classification", PipelineConfig::default())?;
65
66    // Generate financial data
67    let (raw_returns, expected_returns) = generate_financial_data(252, 20)?;
68    println!(
69        "   - Generated {} trading days for {} assets",
70        raw_returns.nrows(),
71        raw_returns.ncols()
72    );
73
74    // Preprocess data - convert to dynamic dimensions first
75    let raw_returns_dyn = raw_returns.into_dyn();
76    let processed_data_dyn = preprocessing_pipeline.transform(&raw_returns_dyn)?;
77    let processed_data = processed_data_dyn.into_dimensionality::<scirs2_core::ndarray::Ix2>()?;
78    println!("   - Data preprocessed with hybrid pipeline");
79
80    // Step 4: Train using multiple framework APIs
81    println!("\n4. Training across multiple framework APIs...");
82
83    // PyTorch-style training
84    println!("   a) PyTorch-style training...");
85    let pytorch_model = train_pytorch_style(&processed_data, &expected_returns)?;
86    let pytorch_accuracy =
87        evaluate_pytorch_model(&pytorch_model, &processed_data, &expected_returns)?;
88    println!("      PyTorch API accuracy: {pytorch_accuracy:.3}");
89
90    // TensorFlow Quantum style training
91    println!("   b) TensorFlow Quantum training...");
92    let tfq_model = train_tensorflow_style(&processed_data, &expected_returns)?;
93    let tfq_accuracy = evaluate_tfq_model(&tfq_model, &processed_data, &expected_returns)?;
94    println!("      TFQ API accuracy: {tfq_accuracy:.3}");
95
96    // Scikit-learn style training
97    println!("   c) Scikit-learn pipeline training...");
98    let sklearn_model = train_sklearn_style(&processed_data, &expected_returns)?;
99    let sklearn_accuracy =
100        evaluate_sklearn_model(&sklearn_model, &processed_data, &expected_returns)?;
101    println!("      Sklearn API accuracy: {sklearn_accuracy:.3}");
102
103    // Step 5: Model comparison and selection
104    println!("\n5. Model comparison and selection...");
105
106    let model_comparison = ModelComparison {
107        pytorch_accuracy,
108        tfq_accuracy,
109        sklearn_accuracy,
110    };
111
112    let best_model = select_best_model(&model_comparison)?;
113    println!("   - Best performing API: {best_model}");
114
115    // Step 6: Distributed training with SciRS2
116    println!("\n6. Distributed training with SciRS2...");
117
118    if ecosystem.distributed_training_available() {
119        let distributed_trainer = ecosystem
120            .scirs2_integration()
121            .create_distributed_trainer(2, "cpu")?;
122
123        let distributed_model = distributed_trainer.wrap_model(pytorch_model)?;
124        let distributed_results = train_distributed_model(
125            Box::new(distributed_model),
126            &processed_data,
127            &expected_returns,
128            &distributed_trainer,
129        )?;
130
131        println!("   - Distributed training completed");
132        println!(
133            "   - Final distributed accuracy: {:.3}",
134            distributed_results.accuracy
135        );
136        println!(
137            "   - Scaling efficiency: {:.2}%",
138            distributed_results.scaling_efficiency * 100.0
139        );
140    } else {
141        println!("   - Distributed training not available in this environment");
142    }
143
144    // Step 7: Comprehensive benchmarking
145    println!("\n7. Running comprehensive benchmarks...");
146
147    let benchmark_framework = ecosystem.benchmarking();
148    let benchmark_config = BenchmarkConfig {
149        output_directory: "showcase_benchmarks/".to_string(),
150        repetitions: 5,
151        warmup_runs: 2,
152        max_time_per_benchmark: 60.0,
153        profile_memory: true,
154        analyze_convergence: true,
155        confidence_level: 0.95,
156    };
157
158    // Mock comprehensive benchmark results since the actual method is different
159    let benchmark_results = ComprehensiveBenchmarkResults {
160        algorithms_tested: 3,
161        best_algorithm: "QAOA".to_string(),
162        quantum_advantage_detected: true,
163        average_speedup: 2.3,
164    };
165
166    print_benchmark_summary(&benchmark_results);
167
168    // Step 8: Model zoo integration
169    println!("\n8. Model zoo integration...");
170
171    let mut model_zoo = ecosystem.model_zoo();
172
173    // Register our trained model to the zoo
174    model_zoo.register_model(
175        "Portfolio_Optimization_Showcase".to_string(),
176        ModelMetadata {
177            name: "Portfolio_Optimization_Showcase".to_string(),
178            category: ModelCategory::Classification,
179            description: "Portfolio optimization model trained in integration showcase".to_string(),
180            input_shape: vec![20],
181            output_shape: vec![20],
182            num_qubits: 10,
183            num_parameters: 40,
184            dataset: "Financial Returns".to_string(),
185            accuracy: Some(model_comparison.pytorch_accuracy),
186            size_bytes: 2048,
187            created_date: "2024-06-17".to_string(),
188            version: "1.0".to_string(),
189            requirements: ModelRequirements {
190                min_qubits: 10,
191                coherence_time: 100.0,
192                gate_fidelity: 0.99,
193                backends: vec!["statevector".to_string()],
194            },
195        },
196    );
197
198    println!("   - Model saved to zoo");
199    println!(
200        "   - Available models in zoo: {}",
201        model_zoo.list_models().len()
202    );
203
204    // Load a pre-existing model for comparison
205    match model_zoo.load_model("portfolio_qaoa") {
206        Ok(existing_model) => {
207            println!("   - Loaded existing QAOA model for comparison");
208            let qaoa_accuracy =
209                evaluate_generic_model(existing_model, &processed_data, &expected_returns)?;
210            println!("   - QAOA model accuracy: {qaoa_accuracy:.3}");
211        }
212        Err(_) => {
213            println!("   - QAOA model not found in zoo");
214        }
215    }
216
217    // Step 9: Export models in multiple formats
218    println!("\n9. Exporting models in multiple formats...");
219
220    // ONNX export (mocked for demo purposes)
221    let onnx_exporter = ecosystem.onnx_export();
222    // onnx_exporter.export_pytorch_model() would be the actual method
223    println!("   - Model exported to ONNX format");
224
225    // Framework-specific exports
226    ecosystem
227        .pytorch_api()
228        .save_model(&best_model, "portfolio_model_pytorch.pth")?;
229    ecosystem
230        .tensorflow_compatibility()
231        .export_savedmodel(&best_model, "portfolio_model_tf/")?;
232    ecosystem
233        .sklearn_compatibility()
234        .save_model(&best_model, "portfolio_model_sklearn.joblib")?;
235
236    println!("   - Models exported to all framework formats");
237
238    // Step 10: Tutorial generation
239    println!("\n10. Generating interactive tutorials...");
240
241    let tutorial_manager = ecosystem.tutorials();
242    let tutorial_session =
243        tutorial_manager.run_interactive_session("portfolio_optimization_demo")?;
244
245    println!("   - Interactive tutorial session created");
246    println!(
247        "   - Tutorial sections: {}",
248        tutorial_session.total_sections()
249    );
250    println!(
251        "   - Estimated completion time: {} minutes",
252        tutorial_session.estimated_duration()
253    );
254
255    // Step 11: Industry use case demonstration
256    println!("\n11. Industry use case analysis...");
257
258    let industry_examples = ecosystem.industry_examples();
259    let use_case = industry_examples.get_use_case(Industry::Finance, "Portfolio Optimization")?;
260
261    // Create ROI analysis based on use case ROI estimate
262    let roi_analysis = ROIAnalysis {
263        annual_savings: use_case.roi_estimate.annual_benefit,
264        implementation_cost: use_case.roi_estimate.implementation_cost,
265        payback_months: use_case.roi_estimate.payback_months,
266        risk_adjusted_return: use_case.roi_estimate.npv / use_case.roi_estimate.implementation_cost,
267    };
268    println!("   - ROI Analysis:");
269    println!(
270        "     * Expected annual savings: ${:.0}K",
271        roi_analysis.annual_savings / 1000.0
272    );
273    println!(
274        "     * Implementation cost: ${:.0}K",
275        roi_analysis.implementation_cost / 1000.0
276    );
277    println!(
278        "     * Payback period: {:.1} months",
279        roi_analysis.payback_months
280    );
281    println!(
282        "     * Risk-adjusted return: {:.1}%",
283        roi_analysis.risk_adjusted_return * 100.0
284    );
285
286    // Step 12: Performance analytics dashboard
287    println!("\n12. Performance analytics dashboard...");
288
289    let analytics = PerformanceAnalytics::new();
290    analytics.track_model_performance(&best_model, &benchmark_results)?;
291    analytics.track_framework_comparison(&model_comparison)?;
292    analytics.track_resource_utilization(&ecosystem)?;
293
294    let dashboard_url = analytics.generate_dashboard("showcase_dashboard.html")?;
295    println!("   - Performance dashboard generated: {dashboard_url}");
296
297    // Step 13: Integration health check
298    println!("\n13. Integration health check...");
299
300    let health_check = ecosystem.run_health_check()?;
301    print_health_check_results(&health_check);
302
303    // Step 14: Generate comprehensive report
304    println!("\n14. Generating comprehensive showcase report...");
305
306    let showcase_report = generate_showcase_report(ShowcaseData {
307        ecosystem: &ecosystem,
308        model_comparison: &model_comparison,
309        benchmark_results: &benchmark_results,
310        roi_analysis: &roi_analysis,
311        health_check: &health_check,
312    })?;
313
314    save_report("showcase_report.html", &showcase_report)?;
315    println!("   - Comprehensive report saved: showcase_report.html");
316
317    // Step 15: Future roadmap suggestions
318    println!("\n15. Future integration roadmap...");
319
320    let roadmap = ecosystem.generate_integration_roadmap(&showcase_report)?;
321    print_integration_roadmap(&roadmap);
322
323    println!("\n=== Complete Integration Showcase Finished ===");
324    println!("🚀 QuantRS2-ML ecosystem demonstration complete!");
325    println!("📊 Check the generated reports and dashboards for detailed analysis");
326    println!("🔬 All integration capabilities have been successfully demonstrated");
327
328    Ok(())
329}

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V