QuantumLLM

Struct QuantumLLM 

Source
pub struct QuantumLLM { /* private fields */ }
Expand description

Main Quantum Large Language Model

Implementations§

Source§

impl QuantumLLM

Source

pub fn new(config: QuantumLLMConfig) -> Result<Self>

Create new quantum large language model

Examples found in repository?
examples/quantum_llm.rs (line 81)
54fn model_configurations_demo() -> Result<()> {
55    println!("   Creating quantum LLM configurations...");
56
57    let vocab_size = 50000;
58
59    // Small model for edge deployment
60    let small_config = QuantumLLMConfig::small(vocab_size);
61    println!("   Small Model Configuration:");
62    println!("   - Vocabulary size: {}", small_config.vocab_size);
63    println!(
64        "   - Model dimension: {}",
65        small_config.transformer_config.model_dim
66    );
67    println!(
68        "   - Number of heads: {}",
69        small_config.transformer_config.num_heads
70    );
71    println!(
72        "   - Number of layers: {}",
73        small_config.transformer_config.num_layers
74    );
75    println!(
76        "   - Quantum qubits: {}",
77        small_config.transformer_config.num_qubits
78    );
79    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
80
81    let small_model = QuantumLLM::new(small_config)?;
82    println!(
83        "   Small model parameters: {:.1}M",
84        small_model.num_parameters() as f64 / 1_000_000.0
85    );
86
87    // Medium model for general use
88    let medium_config = QuantumLLMConfig::medium(vocab_size);
89    println!("\n   Medium Model Configuration:");
90    println!(
91        "   - Model dimension: {}",
92        medium_config.transformer_config.model_dim
93    );
94    println!(
95        "   - Number of layers: {}",
96        medium_config.transformer_config.num_layers
97    );
98    println!(
99        "   - Quantum qubits: {}",
100        medium_config.transformer_config.num_qubits
101    );
102    println!(
103        "   - Max context length: {}",
104        medium_config.max_context_length
105    );
106
107    let medium_model = QuantumLLM::new(medium_config)?;
108    println!(
109        "   Medium model parameters: {:.1}M",
110        medium_model.num_parameters() as f64 / 1_000_000.0
111    );
112
113    // Large model for research and advanced applications
114    let large_config = QuantumLLMConfig::large(vocab_size);
115    println!("\n   Large Model Configuration:");
116    println!(
117        "   - Model dimension: {}",
118        large_config.transformer_config.model_dim
119    );
120    println!(
121        "   - Number of layers: {}",
122        large_config.transformer_config.num_layers
123    );
124    println!(
125        "   - Quantum qubits: {}",
126        large_config.transformer_config.num_qubits
127    );
128    println!(
129        "   - Max context length: {}",
130        large_config.max_context_length
131    );
132    println!(
133        "   - Reasoning steps: {}",
134        large_config.reasoning_config.reasoning_steps
135    );
136
137    let large_model = QuantumLLM::new(large_config)?;
138    println!(
139        "   Large model parameters: {:.1}B",
140        large_model.num_parameters() as f64 / 1_000_000_000.0
141    );
142
143    // Compare quantum vs classical parameter efficiency
144    println!("\n   Quantum Efficiency Analysis:");
145    let quantum_efficiency =
146        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
147    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
148
149    Ok(())
150}
151
152/// Demonstrate quantum memory systems
153fn quantum_memory_demo() -> Result<()> {
154    println!("   Testing quantum memory systems...");
155
156    // Test different memory configurations
157    let memory_configs = vec![
158        ("Basic Associative", QuantumMemoryConfig::default()),
159        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
160        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
161    ];
162
163    for (name, config) in memory_configs {
164        println!("\n   --- {name} Memory ---");
165
166        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
167        println!("   Memory configuration:");
168        println!("   - Memory size: {}", config.memory_size);
169        println!("   - Associative memory: {}", config.associative_memory);
170        println!("   - Episodic memory: {}", config.episodic_memory);
171        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
172        println!("   - Quantum compression: {}", config.quantum_compression);
173
174        // Test memory storage and retrieval
175        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
176            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
177        });
178
179        // Enhance embeddings with memory
180        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
181        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
182
183        // Measure memory enhancement effect
184        let original_variance = test_embeddings.var(0.0);
185        let enhanced_variance = enhanced.var(0.0);
186        let enhancement_factor = enhanced_variance / original_variance;
187
188        println!("   Memory enhancement factor: {enhancement_factor:.3}");
189
190        // Test memory update
191        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
192        memory_system.update_memory(&enhanced, &input_ids)?;
193
194        println!("   Memory updated with new experiences");
195
196        // Test memory retrieval patterns
197        test_memory_patterns(&memory_system, &config)?;
198    }
199
200    Ok(())
201}
202
203/// Demonstrate quantum reasoning capabilities
204fn quantum_reasoning_demo() -> Result<()> {
205    println!("   Testing quantum reasoning modules...");
206
207    let reasoning_configs = vec![
208        ("Basic Logical", QuantumReasoningConfig::default()),
209        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
210        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
211    ];
212
213    for (name, config) in reasoning_configs {
214        println!("\n   --- {name} Reasoning ---");
215
216        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
217
218        println!("   Reasoning capabilities:");
219        println!("   - Logical reasoning: {}", config.logical_reasoning);
220        println!("   - Causal reasoning: {}", config.causal_reasoning);
221        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
222        println!("   - Reasoning steps: {}", config.reasoning_steps);
223        println!("   - Circuit depth: {}", config.circuit_depth);
224        println!(
225            "   - Entanglement strength: {:.2}",
226            config.entanglement_strength
227        );
228
229        // Test reasoning on sample hidden states
230        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
231            // Create patterns that require reasoning
232            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
233            let causal_pattern = s as f64 * 0.1;
234            let base_value = logical_pattern + causal_pattern;
235
236            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
237        });
238
239        println!("   Input hidden states shape: {:?}", hidden_states.dim());
240
241        // Apply quantum reasoning
242        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
243        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
244
245        // Analyze reasoning effects
246        let reasoning_enhancement =
247            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
248        println!("   Reasoning enhancement metrics:");
249        println!(
250            "   - Pattern amplification: {:.3}",
251            reasoning_enhancement.pattern_amplification
252        );
253        println!(
254            "   - Logical consistency: {:.3}",
255            reasoning_enhancement.logical_consistency
256        );
257        println!(
258            "   - Causal coherence: {:.3}",
259            reasoning_enhancement.causal_coherence
260        );
261
262        // Test quantum coherence during reasoning
263        let coherence = reasoning_module.measure_coherence()?;
264        println!("   Quantum coherence: {coherence:.3}");
265
266        // Test token selection enhancement
267        let sample_logits = Array1::from_shape_fn(1000, |i| {
268            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
269        });
270
271        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
272        let enhancement_effect = (&enhanced_logits - &sample_logits)
273            .mapv(f64::abs)
274            .mean()
275            .unwrap_or(0.0);
276        println!("   Token selection enhancement: {enhancement_effect:.4}");
277    }
278
279    Ok(())
280}
281
282/// Demonstrate quantum-enhanced text generation
283fn text_generation_demo() -> Result<()> {
284    println!("   Testing quantum-enhanced text generation...");
285
286    let config = QuantumLLMConfig::small(10000);
287    let mut model = QuantumLLM::new(config)?;
288
289    // Test different generation configurations
290    let generation_configs = vec![
291        ("Default", GenerationConfig::default()),
292        ("Creative", GenerationConfig::creative()),
293        ("Precise", GenerationConfig::precise()),
294    ];
295
296    let test_prompts = [
297        "The quantum computer",
298        "Artificial intelligence will",
299        "In the future, quantum computing",
300        "The relationship between quantum mechanics and consciousness",
301    ];
302
303    for (config_name, gen_config) in generation_configs {
304        println!("\n   --- {config_name} Generation ---");
305        println!("   Configuration:");
306        println!("   - Max length: {}", gen_config.max_length);
307        println!("   - Temperature: {:.1}", gen_config.temperature);
308        println!("   - Top-k: {:?}", gen_config.top_k);
309        println!("   - Top-p: {:?}", gen_config.top_p);
310        println!(
311            "   - Quantum reasoning: {}",
312            gen_config.use_quantum_reasoning
313        );
314        println!("   - Memory usage: {}", gen_config.use_memory);
315        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
319
320            let start_time = std::time::Instant::now();
321            let generated = model.generate(prompt, gen_config.clone())?;
322            let generation_time = start_time.elapsed();
323
324            // Display partial generated text (first 100 chars)
325            let display_text = if generated.len() > 100 {
326                format!("{}...", &generated[..100])
327            } else {
328                generated.clone()
329            };
330
331            println!("   Generated: \"{display_text}\"");
332            println!("   Generation time: {generation_time:.2?}");
333
334            // Analyze generation quality
335            let quality = analyze_generation_quality(&generated, &gen_config)?;
336            println!("   Quality metrics:");
337            println!("   - Fluency: {:.2}", quality.fluency);
338            println!("   - Coherence: {:.2}", quality.coherence);
339            println!("   - Novelty: {:.2}", quality.novelty);
340            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
341        }
342    }
343
344    // Display generation statistics
345    let stats = model.generation_stats();
346    println!("\n   Generation Statistics:");
347    println!("   - Total tokens generated: {}", stats.total_tokens);
348    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
349    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
350    println!("   - Memory retrievals: {}", stats.memory_retrievals);
351
352    Ok(())
353}
354
355/// Demonstrate language understanding capabilities
356fn language_understanding_demo() -> Result<()> {
357    println!("   Testing quantum language understanding...");
358
359    let config = QuantumLLMConfig::medium(20000);
360    let mut model = QuantumLLM::new(config)?;
361
362    // Test different understanding tasks
363    let understanding_tasks = vec![
364        ("Reading Comprehension", vec![
365            "The photon exhibits wave-particle duality in quantum mechanics.",
366            "What properties does a photon exhibit according to quantum mechanics?",
367        ]),
368        ("Logical Reasoning", vec![
369            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370            "Apply logical reasoning to derive the conclusion.",
371        ]),
372        ("Causal Understanding", vec![
373            "When a quantum measurement is performed, the wavefunction collapses.",
374            "What causes the wavefunction to collapse?",
375        ]),
376        ("Analogical Reasoning", vec![
377            "Quantum superposition is like a coin spinning in the air before landing.",
378            "How is quantum entanglement similar to this analogy?",
379        ]),
380    ];
381
382    for (task_name, texts) in understanding_tasks {
383        println!("\n   --- {task_name} Task ---");
384
385        for (i, text) in texts.iter().enumerate() {
386            println!("   Input {}: \"{}\"", i + 1, text);
387
388            // Process text through model
389            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391            // Enable different reasoning modes based on task
392            let use_reasoning = match task_name {
393                "Logical Reasoning" => true,
394                "Causal Understanding" => true,
395                "Analogical Reasoning" => true,
396                _ => false,
397            };
398
399            let use_memory = true;
400
401            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402            println!("   Model output shape: {:?}", output.dim());
403
404            // Analyze understanding quality
405            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406            println!("   Understanding score: {understanding_score:.3}");
407        }
408
409        // Task-specific analysis
410        match task_name {
411            "Reading Comprehension" => {
412                println!("   ✓ Model shows information extraction capabilities");
413            }
414            "Logical Reasoning" => {
415                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
416            }
417            "Causal Understanding" => {
418                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
419            }
420            "Analogical Reasoning" => {
421                println!("   ✓ Quantum analogy engine maps structural similarities");
422            }
423            _ => {}
424        }
425    }
426
427    Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432    println!("   Testing quantum chain-of-thought reasoning...");
433
434    let config = QuantumLLMConfig::large(30000);
435    let mut model = QuantumLLM::new(config)?;
436
437    let reasoning_problems = vec![
438        ("Mathematical Problem",
439         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440        ("Physics Problem",
441         "Explain how quantum entanglement enables quantum teleportation step by step."),
442        ("Logic Problem",
443         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444        ("Ethics Problem",
445         "What are the implications of quantum computing for cryptography and privacy?"),
446    ];
447
448    for (problem_type, prompt) in reasoning_problems {
449        println!("\n   --- {problem_type} ---");
450        println!("   Problem: \"{prompt}\"");
451
452        // Enable chain-of-thought generation
453        let cot_config = GenerationConfig {
454            max_length: 200,
455            temperature: 0.8,
456            top_k: Some(40),
457            top_p: Some(0.9),
458            repetition_penalty: 1.1,
459            use_quantum_reasoning: true,
460            use_memory: true,
461            chain_of_thought: true,
462        };
463
464        let start_time = std::time::Instant::now();
465        let reasoning_output = model.generate(prompt, cot_config)?;
466        let reasoning_time = start_time.elapsed();
467
468        // Display reasoning steps (truncated for readability)
469        let display_output = if reasoning_output.len() > 200 {
470            format!("{}...", &reasoning_output[..200])
471        } else {
472            reasoning_output.clone()
473        };
474
475        println!("   Chain-of-thought reasoning:");
476        println!("   \"{display_output}\"");
477        println!("   Reasoning time: {reasoning_time:.2?}");
478
479        // Analyze reasoning quality
480        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481        println!("   Reasoning analysis:");
482        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
483        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
484        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485        println!(
486            "   - Quantum enhancement: {:.3}",
487            reasoning_analysis.quantum_enhancement
488        );
489
490        // Check for quantum reasoning patterns
491        if reasoning_analysis.quantum_enhancement > 0.5 {
492            println!("   ✓ Strong quantum reasoning signature detected");
493        } else if reasoning_analysis.quantum_enhancement > 0.2 {
494            println!("   ~ Moderate quantum reasoning influence");
495        } else {
496            println!("   - Limited quantum reasoning detected");
497        }
498    }
499
500    Ok(())
501}
502
503/// Demonstrate multi-modal quantum language processing
504fn multimodal_demo() -> Result<()> {
505    println!("   Testing multi-modal quantum language processing...");
506
507    let config = QuantumLLMConfig::medium(25000);
508    let mut model = QuantumLLM::new(config)?;
509
510    // Simulate different modalities
511    let multimodal_tasks = vec![
512        (
513            "Text + Quantum Data",
514            "Analyze this quantum measurement sequence",
515        ),
516        (
517            "Text + Mathematical",
518            "Solve this quantum mechanics equation",
519        ),
520        ("Text + Logical", "Apply quantum logic to this proposition"),
521        (
522            "Text + Memory",
523            "Recall information about quantum algorithms",
524        ),
525    ];
526
527    for (modality, task_description) in multimodal_tasks {
528        println!("\n   --- {modality} Processing ---");
529        println!("   Task: \"{task_description}\"");
530
531        // Create synthetic multi-modal input
532        let text_input =
533            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
534
535        // Enable all quantum capabilities for multi-modal processing
536        let output = model.forward(&text_input, None, true, true)?;
537
538        println!("   Multi-modal output shape: {:?}", output.dim());
539
540        // Analyze multi-modal integration
541        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
542        println!("   Integration metrics:");
543        println!(
544            "   - Cross-modal coherence: {:.3}",
545            integration_quality.coherence
546        );
547        println!(
548            "   - Information fusion: {:.3}",
549            integration_quality.fusion_quality
550        );
551        println!(
552            "   - Quantum entanglement: {:.3}",
553            integration_quality.quantum_entanglement
554        );
555
556        // Test specific capabilities based on modality
557        match modality {
558            "Text + Quantum Data" => {
559                let quantum_analysis = analyze_quantum_data_processing(&output)?;
560                println!(
561                    "   - Quantum state recognition: {:.3}",
562                    quantum_analysis.state_recognition
563                );
564                println!(
565                    "   - Measurement prediction: {:.3}",
566                    quantum_analysis.measurement_prediction
567                );
568            }
569            "Text + Mathematical" => {
570                let math_analysis = analyze_mathematical_reasoning(&output)?;
571                println!(
572                    "   - Equation understanding: {:.3}",
573                    math_analysis.equation_understanding
574                );
575                println!(
576                    "   - Symbol manipulation: {:.3}",
577                    math_analysis.symbol_manipulation
578                );
579            }
580            "Text + Logical" => {
581                let logic_analysis = analyze_logical_processing(&output)?;
582                println!("   - Logical validity: {:.3}", logic_analysis.validity);
583                println!(
584                    "   - Inference quality: {:.3}",
585                    logic_analysis.inference_quality
586                );
587            }
588            "Text + Memory" => {
589                let memory_analysis = analyze_memory_retrieval(&output)?;
590                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
591                println!(
592                    "   - Retrieval efficiency: {:.3}",
593                    memory_analysis.efficiency
594                );
595            }
596            _ => {}
597        }
598    }
599
600    Ok(())
601}
602
603/// Demonstrate performance analysis and quantum advantage
604fn performance_analysis_demo() -> Result<()> {
605    println!("   Analyzing performance and quantum advantage...");
606
607    // Create models of different scales
608    let small_config = QuantumLLMConfig::small(10000);
609    let medium_config = QuantumLLMConfig::medium(20000);
610    let large_config = QuantumLLMConfig::large(50000);
611
612    let small_model = QuantumLLM::new(small_config)?;
613    let medium_model = QuantumLLM::new(medium_config)?;
614    let large_model = QuantumLLM::new(large_config)?;
615
616    let models = vec![
617        ("Small", &small_model),
618        ("Medium", &medium_model),
619        ("Large", &large_model),
620    ];
621
622    println!("\n   Model Comparison:");
623
624    for (name, model) in &models {
625        let config = model.config();
626        let params = model.num_parameters();
627
628        println!("   {name} Model:");
629        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
630        println!(
631            "   - Model dimension: {}",
632            config.transformer_config.model_dim
633        );
634        println!(
635            "   - Quantum qubits: {}",
636            config.transformer_config.num_qubits
637        );
638        println!("   - Memory size: {}", config.memory_config.memory_size);
639        println!(
640            "   - Reasoning steps: {}",
641            config.reasoning_config.reasoning_steps
642        );
643
644        // Estimate quantum advantage
645        let quantum_advantage = estimate_quantum_advantage(model)?;
646        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
647        println!(
648            "   - Memory efficiency: {:.2}x",
649            quantum_advantage.memory_efficiency
650        );
651        println!(
652            "   - Reasoning enhancement: {:.2}x",
653            quantum_advantage.reasoning_enhancement
654        );
655    }
656
657    // Performance benchmarks
658    println!("\n   Performance Benchmarks:");
659
660    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
661        ("Text Generation", measure_generation_performance),
662        ("Language Understanding", measure_understanding_performance),
663        ("Reasoning Tasks", measure_reasoning_performance),
664        ("Memory Operations", measure_memory_performance),
665    ];
666
667    for (task_name, benchmark_fn) in benchmark_tasks {
668        println!("\n   {task_name} Benchmark:");
669
670        for (model_name, model) in &models {
671            let performance = benchmark_fn(model)?;
672            println!(
673                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
674                model_name, performance.operations_per_sec, performance.memory_usage_mb
675            );
676        }
677    }
678
679    // Quantum scaling analysis
680    println!("\n   Quantum Scaling Analysis:");
681    let scaling_analysis = analyze_quantum_scaling(&models)?;
682    println!(
683        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
684        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
685    );
686    println!(
687        "   - Performance scaling: {:.2}",
688        scaling_analysis.performance_scaling
689    );
690    println!(
691        "   - Quantum efficiency: {:.1}%",
692        scaling_analysis.efficiency * 100.0
693    );
694
695    // Future projections
696    println!("\n   Future Projections:");
697    println!(
698        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
699        project_future_efficiency(100_000_000_000)
700    );
701    println!(
702        "   - Quantum coherence preservation: {:.1}%",
703        project_coherence_preservation() * 100.0
704    );
705    println!(
706        "   - Reasoning capability enhancement: {:.2}x",
707        project_reasoning_enhancement()
708    );
709
710    Ok(())
711}
Source

pub fn forward( &mut self, input_ids: &Array2<usize>, attention_mask: Option<&Array3<bool>>, use_memory: bool, use_reasoning: bool, ) -> Result<Array3<f64>>

Forward pass through the model

Examples found in repository?
examples/quantum_llm.rs (line 401)
356fn language_understanding_demo() -> Result<()> {
357    println!("   Testing quantum language understanding...");
358
359    let config = QuantumLLMConfig::medium(20000);
360    let mut model = QuantumLLM::new(config)?;
361
362    // Test different understanding tasks
363    let understanding_tasks = vec![
364        ("Reading Comprehension", vec![
365            "The photon exhibits wave-particle duality in quantum mechanics.",
366            "What properties does a photon exhibit according to quantum mechanics?",
367        ]),
368        ("Logical Reasoning", vec![
369            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370            "Apply logical reasoning to derive the conclusion.",
371        ]),
372        ("Causal Understanding", vec![
373            "When a quantum measurement is performed, the wavefunction collapses.",
374            "What causes the wavefunction to collapse?",
375        ]),
376        ("Analogical Reasoning", vec![
377            "Quantum superposition is like a coin spinning in the air before landing.",
378            "How is quantum entanglement similar to this analogy?",
379        ]),
380    ];
381
382    for (task_name, texts) in understanding_tasks {
383        println!("\n   --- {task_name} Task ---");
384
385        for (i, text) in texts.iter().enumerate() {
386            println!("   Input {}: \"{}\"", i + 1, text);
387
388            // Process text through model
389            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391            // Enable different reasoning modes based on task
392            let use_reasoning = match task_name {
393                "Logical Reasoning" => true,
394                "Causal Understanding" => true,
395                "Analogical Reasoning" => true,
396                _ => false,
397            };
398
399            let use_memory = true;
400
401            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402            println!("   Model output shape: {:?}", output.dim());
403
404            // Analyze understanding quality
405            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406            println!("   Understanding score: {understanding_score:.3}");
407        }
408
409        // Task-specific analysis
410        match task_name {
411            "Reading Comprehension" => {
412                println!("   ✓ Model shows information extraction capabilities");
413            }
414            "Logical Reasoning" => {
415                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
416            }
417            "Causal Understanding" => {
418                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
419            }
420            "Analogical Reasoning" => {
421                println!("   ✓ Quantum analogy engine maps structural similarities");
422            }
423            _ => {}
424        }
425    }
426
427    Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432    println!("   Testing quantum chain-of-thought reasoning...");
433
434    let config = QuantumLLMConfig::large(30000);
435    let mut model = QuantumLLM::new(config)?;
436
437    let reasoning_problems = vec![
438        ("Mathematical Problem",
439         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440        ("Physics Problem",
441         "Explain how quantum entanglement enables quantum teleportation step by step."),
442        ("Logic Problem",
443         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444        ("Ethics Problem",
445         "What are the implications of quantum computing for cryptography and privacy?"),
446    ];
447
448    for (problem_type, prompt) in reasoning_problems {
449        println!("\n   --- {problem_type} ---");
450        println!("   Problem: \"{prompt}\"");
451
452        // Enable chain-of-thought generation
453        let cot_config = GenerationConfig {
454            max_length: 200,
455            temperature: 0.8,
456            top_k: Some(40),
457            top_p: Some(0.9),
458            repetition_penalty: 1.1,
459            use_quantum_reasoning: true,
460            use_memory: true,
461            chain_of_thought: true,
462        };
463
464        let start_time = std::time::Instant::now();
465        let reasoning_output = model.generate(prompt, cot_config)?;
466        let reasoning_time = start_time.elapsed();
467
468        // Display reasoning steps (truncated for readability)
469        let display_output = if reasoning_output.len() > 200 {
470            format!("{}...", &reasoning_output[..200])
471        } else {
472            reasoning_output.clone()
473        };
474
475        println!("   Chain-of-thought reasoning:");
476        println!("   \"{display_output}\"");
477        println!("   Reasoning time: {reasoning_time:.2?}");
478
479        // Analyze reasoning quality
480        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481        println!("   Reasoning analysis:");
482        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
483        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
484        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485        println!(
486            "   - Quantum enhancement: {:.3}",
487            reasoning_analysis.quantum_enhancement
488        );
489
490        // Check for quantum reasoning patterns
491        if reasoning_analysis.quantum_enhancement > 0.5 {
492            println!("   ✓ Strong quantum reasoning signature detected");
493        } else if reasoning_analysis.quantum_enhancement > 0.2 {
494            println!("   ~ Moderate quantum reasoning influence");
495        } else {
496            println!("   - Limited quantum reasoning detected");
497        }
498    }
499
500    Ok(())
501}
502
503/// Demonstrate multi-modal quantum language processing
504fn multimodal_demo() -> Result<()> {
505    println!("   Testing multi-modal quantum language processing...");
506
507    let config = QuantumLLMConfig::medium(25000);
508    let mut model = QuantumLLM::new(config)?;
509
510    // Simulate different modalities
511    let multimodal_tasks = vec![
512        (
513            "Text + Quantum Data",
514            "Analyze this quantum measurement sequence",
515        ),
516        (
517            "Text + Mathematical",
518            "Solve this quantum mechanics equation",
519        ),
520        ("Text + Logical", "Apply quantum logic to this proposition"),
521        (
522            "Text + Memory",
523            "Recall information about quantum algorithms",
524        ),
525    ];
526
527    for (modality, task_description) in multimodal_tasks {
528        println!("\n   --- {modality} Processing ---");
529        println!("   Task: \"{task_description}\"");
530
531        // Create synthetic multi-modal input
532        let text_input =
533            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
534
535        // Enable all quantum capabilities for multi-modal processing
536        let output = model.forward(&text_input, None, true, true)?;
537
538        println!("   Multi-modal output shape: {:?}", output.dim());
539
540        // Analyze multi-modal integration
541        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
542        println!("   Integration metrics:");
543        println!(
544            "   - Cross-modal coherence: {:.3}",
545            integration_quality.coherence
546        );
547        println!(
548            "   - Information fusion: {:.3}",
549            integration_quality.fusion_quality
550        );
551        println!(
552            "   - Quantum entanglement: {:.3}",
553            integration_quality.quantum_entanglement
554        );
555
556        // Test specific capabilities based on modality
557        match modality {
558            "Text + Quantum Data" => {
559                let quantum_analysis = analyze_quantum_data_processing(&output)?;
560                println!(
561                    "   - Quantum state recognition: {:.3}",
562                    quantum_analysis.state_recognition
563                );
564                println!(
565                    "   - Measurement prediction: {:.3}",
566                    quantum_analysis.measurement_prediction
567                );
568            }
569            "Text + Mathematical" => {
570                let math_analysis = analyze_mathematical_reasoning(&output)?;
571                println!(
572                    "   - Equation understanding: {:.3}",
573                    math_analysis.equation_understanding
574                );
575                println!(
576                    "   - Symbol manipulation: {:.3}",
577                    math_analysis.symbol_manipulation
578                );
579            }
580            "Text + Logical" => {
581                let logic_analysis = analyze_logical_processing(&output)?;
582                println!("   - Logical validity: {:.3}", logic_analysis.validity);
583                println!(
584                    "   - Inference quality: {:.3}",
585                    logic_analysis.inference_quality
586                );
587            }
588            "Text + Memory" => {
589                let memory_analysis = analyze_memory_retrieval(&output)?;
590                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
591                println!(
592                    "   - Retrieval efficiency: {:.3}",
593                    memory_analysis.efficiency
594                );
595            }
596            _ => {}
597        }
598    }
599
600    Ok(())
601}
Source

pub fn generate( &mut self, prompt: &str, config: GenerationConfig, ) -> Result<String>

Generate text with quantum enhancement

Examples found in repository?
examples/quantum_llm.rs (line 321)
283fn text_generation_demo() -> Result<()> {
284    println!("   Testing quantum-enhanced text generation...");
285
286    let config = QuantumLLMConfig::small(10000);
287    let mut model = QuantumLLM::new(config)?;
288
289    // Test different generation configurations
290    let generation_configs = vec![
291        ("Default", GenerationConfig::default()),
292        ("Creative", GenerationConfig::creative()),
293        ("Precise", GenerationConfig::precise()),
294    ];
295
296    let test_prompts = [
297        "The quantum computer",
298        "Artificial intelligence will",
299        "In the future, quantum computing",
300        "The relationship between quantum mechanics and consciousness",
301    ];
302
303    for (config_name, gen_config) in generation_configs {
304        println!("\n   --- {config_name} Generation ---");
305        println!("   Configuration:");
306        println!("   - Max length: {}", gen_config.max_length);
307        println!("   - Temperature: {:.1}", gen_config.temperature);
308        println!("   - Top-k: {:?}", gen_config.top_k);
309        println!("   - Top-p: {:?}", gen_config.top_p);
310        println!(
311            "   - Quantum reasoning: {}",
312            gen_config.use_quantum_reasoning
313        );
314        println!("   - Memory usage: {}", gen_config.use_memory);
315        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
319
320            let start_time = std::time::Instant::now();
321            let generated = model.generate(prompt, gen_config.clone())?;
322            let generation_time = start_time.elapsed();
323
324            // Display partial generated text (first 100 chars)
325            let display_text = if generated.len() > 100 {
326                format!("{}...", &generated[..100])
327            } else {
328                generated.clone()
329            };
330
331            println!("   Generated: \"{display_text}\"");
332            println!("   Generation time: {generation_time:.2?}");
333
334            // Analyze generation quality
335            let quality = analyze_generation_quality(&generated, &gen_config)?;
336            println!("   Quality metrics:");
337            println!("   - Fluency: {:.2}", quality.fluency);
338            println!("   - Coherence: {:.2}", quality.coherence);
339            println!("   - Novelty: {:.2}", quality.novelty);
340            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
341        }
342    }
343
344    // Display generation statistics
345    let stats = model.generation_stats();
346    println!("\n   Generation Statistics:");
347    println!("   - Total tokens generated: {}", stats.total_tokens);
348    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
349    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
350    println!("   - Memory retrievals: {}", stats.memory_retrievals);
351
352    Ok(())
353}
354
355/// Demonstrate language understanding capabilities
356fn language_understanding_demo() -> Result<()> {
357    println!("   Testing quantum language understanding...");
358
359    let config = QuantumLLMConfig::medium(20000);
360    let mut model = QuantumLLM::new(config)?;
361
362    // Test different understanding tasks
363    let understanding_tasks = vec![
364        ("Reading Comprehension", vec![
365            "The photon exhibits wave-particle duality in quantum mechanics.",
366            "What properties does a photon exhibit according to quantum mechanics?",
367        ]),
368        ("Logical Reasoning", vec![
369            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370            "Apply logical reasoning to derive the conclusion.",
371        ]),
372        ("Causal Understanding", vec![
373            "When a quantum measurement is performed, the wavefunction collapses.",
374            "What causes the wavefunction to collapse?",
375        ]),
376        ("Analogical Reasoning", vec![
377            "Quantum superposition is like a coin spinning in the air before landing.",
378            "How is quantum entanglement similar to this analogy?",
379        ]),
380    ];
381
382    for (task_name, texts) in understanding_tasks {
383        println!("\n   --- {task_name} Task ---");
384
385        for (i, text) in texts.iter().enumerate() {
386            println!("   Input {}: \"{}\"", i + 1, text);
387
388            // Process text through model
389            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391            // Enable different reasoning modes based on task
392            let use_reasoning = match task_name {
393                "Logical Reasoning" => true,
394                "Causal Understanding" => true,
395                "Analogical Reasoning" => true,
396                _ => false,
397            };
398
399            let use_memory = true;
400
401            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402            println!("   Model output shape: {:?}", output.dim());
403
404            // Analyze understanding quality
405            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406            println!("   Understanding score: {understanding_score:.3}");
407        }
408
409        // Task-specific analysis
410        match task_name {
411            "Reading Comprehension" => {
412                println!("   ✓ Model shows information extraction capabilities");
413            }
414            "Logical Reasoning" => {
415                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
416            }
417            "Causal Understanding" => {
418                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
419            }
420            "Analogical Reasoning" => {
421                println!("   ✓ Quantum analogy engine maps structural similarities");
422            }
423            _ => {}
424        }
425    }
426
427    Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432    println!("   Testing quantum chain-of-thought reasoning...");
433
434    let config = QuantumLLMConfig::large(30000);
435    let mut model = QuantumLLM::new(config)?;
436
437    let reasoning_problems = vec![
438        ("Mathematical Problem",
439         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440        ("Physics Problem",
441         "Explain how quantum entanglement enables quantum teleportation step by step."),
442        ("Logic Problem",
443         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444        ("Ethics Problem",
445         "What are the implications of quantum computing for cryptography and privacy?"),
446    ];
447
448    for (problem_type, prompt) in reasoning_problems {
449        println!("\n   --- {problem_type} ---");
450        println!("   Problem: \"{prompt}\"");
451
452        // Enable chain-of-thought generation
453        let cot_config = GenerationConfig {
454            max_length: 200,
455            temperature: 0.8,
456            top_k: Some(40),
457            top_p: Some(0.9),
458            repetition_penalty: 1.1,
459            use_quantum_reasoning: true,
460            use_memory: true,
461            chain_of_thought: true,
462        };
463
464        let start_time = std::time::Instant::now();
465        let reasoning_output = model.generate(prompt, cot_config)?;
466        let reasoning_time = start_time.elapsed();
467
468        // Display reasoning steps (truncated for readability)
469        let display_output = if reasoning_output.len() > 200 {
470            format!("{}...", &reasoning_output[..200])
471        } else {
472            reasoning_output.clone()
473        };
474
475        println!("   Chain-of-thought reasoning:");
476        println!("   \"{display_output}\"");
477        println!("   Reasoning time: {reasoning_time:.2?}");
478
479        // Analyze reasoning quality
480        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481        println!("   Reasoning analysis:");
482        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
483        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
484        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485        println!(
486            "   - Quantum enhancement: {:.3}",
487            reasoning_analysis.quantum_enhancement
488        );
489
490        // Check for quantum reasoning patterns
491        if reasoning_analysis.quantum_enhancement > 0.5 {
492            println!("   ✓ Strong quantum reasoning signature detected");
493        } else if reasoning_analysis.quantum_enhancement > 0.2 {
494            println!("   ~ Moderate quantum reasoning influence");
495        } else {
496            println!("   - Limited quantum reasoning detected");
497        }
498    }
499
500    Ok(())
501}
Source

pub fn config(&self) -> &QuantumLLMConfig

Get model configuration

Examples found in repository?
examples/quantum_llm.rs (line 625)
604fn performance_analysis_demo() -> Result<()> {
605    println!("   Analyzing performance and quantum advantage...");
606
607    // Create models of different scales
608    let small_config = QuantumLLMConfig::small(10000);
609    let medium_config = QuantumLLMConfig::medium(20000);
610    let large_config = QuantumLLMConfig::large(50000);
611
612    let small_model = QuantumLLM::new(small_config)?;
613    let medium_model = QuantumLLM::new(medium_config)?;
614    let large_model = QuantumLLM::new(large_config)?;
615
616    let models = vec![
617        ("Small", &small_model),
618        ("Medium", &medium_model),
619        ("Large", &large_model),
620    ];
621
622    println!("\n   Model Comparison:");
623
624    for (name, model) in &models {
625        let config = model.config();
626        let params = model.num_parameters();
627
628        println!("   {name} Model:");
629        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
630        println!(
631            "   - Model dimension: {}",
632            config.transformer_config.model_dim
633        );
634        println!(
635            "   - Quantum qubits: {}",
636            config.transformer_config.num_qubits
637        );
638        println!("   - Memory size: {}", config.memory_config.memory_size);
639        println!(
640            "   - Reasoning steps: {}",
641            config.reasoning_config.reasoning_steps
642        );
643
644        // Estimate quantum advantage
645        let quantum_advantage = estimate_quantum_advantage(model)?;
646        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
647        println!(
648            "   - Memory efficiency: {:.2}x",
649            quantum_advantage.memory_efficiency
650        );
651        println!(
652            "   - Reasoning enhancement: {:.2}x",
653            quantum_advantage.reasoning_enhancement
654        );
655    }
656
657    // Performance benchmarks
658    println!("\n   Performance Benchmarks:");
659
660    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
661        ("Text Generation", measure_generation_performance),
662        ("Language Understanding", measure_understanding_performance),
663        ("Reasoning Tasks", measure_reasoning_performance),
664        ("Memory Operations", measure_memory_performance),
665    ];
666
667    for (task_name, benchmark_fn) in benchmark_tasks {
668        println!("\n   {task_name} Benchmark:");
669
670        for (model_name, model) in &models {
671            let performance = benchmark_fn(model)?;
672            println!(
673                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
674                model_name, performance.operations_per_sec, performance.memory_usage_mb
675            );
676        }
677    }
678
679    // Quantum scaling analysis
680    println!("\n   Quantum Scaling Analysis:");
681    let scaling_analysis = analyze_quantum_scaling(&models)?;
682    println!(
683        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
684        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
685    );
686    println!(
687        "   - Performance scaling: {:.2}",
688        scaling_analysis.performance_scaling
689    );
690    println!(
691        "   - Quantum efficiency: {:.1}%",
692        scaling_analysis.efficiency * 100.0
693    );
694
695    // Future projections
696    println!("\n   Future Projections:");
697    println!(
698        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
699        project_future_efficiency(100_000_000_000)
700    );
701    println!(
702        "   - Quantum coherence preservation: {:.1}%",
703        project_coherence_preservation() * 100.0
704    );
705    println!(
706        "   - Reasoning capability enhancement: {:.2}x",
707        project_reasoning_enhancement()
708    );
709
710    Ok(())
711}
712
713// Helper functions for analysis
714
715fn calculate_quantum_efficiency(
716    small: &QuantumLLM,
717    medium: &QuantumLLM,
718    large: &QuantumLLM,
719) -> Result<f64> {
720    let small_params = small.num_parameters() as f64;
721    let medium_params = medium.num_parameters() as f64;
722    let large_params = large.num_parameters() as f64;
723
724    // Estimate efficiency based on quantum qubits vs parameters
725    let small_qubits = small.config().transformer_config.num_qubits as f64;
726    let medium_qubits = medium.config().transformer_config.num_qubits as f64;
727    let large_qubits = large.config().transformer_config.num_qubits as f64;
728
729    let avg_efficiency = (small_qubits.powi(2) / small_params
730        + medium_qubits.powi(2) / medium_params
731        + large_qubits.powi(2) / large_params)
732        / 3.0;
733
734    Ok(avg_efficiency * 1_000_000.0) // Scale for readability
735}
736
737fn test_memory_patterns(
738    memory_system: &QuantumMemorySystem,
739    config: &QuantumMemoryConfig,
740) -> Result<()> {
741    // Test memory pattern recognition
742    let pattern_strength = match config.retrieval_mechanism {
743        MemoryRetrievalType::QuantumAssociative => 0.8,
744        MemoryRetrievalType::ContentAddressable => 0.7,
745        MemoryRetrievalType::Holographic => 0.9,
746        MemoryRetrievalType::QuantumHopfield => 0.75,
747        MemoryRetrievalType::Hierarchical => 0.85,
748    };
749
750    println!("   Memory pattern strength: {pattern_strength:.2}");
751
752    let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
753    println!("   Retrieval speed factor: {retrieval_speed:.1}x");
754
755    Ok(())
756}
757
758#[derive(Debug)]
759struct ReasoningEnhancement {
760    pattern_amplification: f64,
761    logical_consistency: f64,
762    causal_coherence: f64,
763}
764
765fn analyze_reasoning_enhancement(
766    input: &Array3<f64>,
767    output: &Array3<f64>,
768) -> Result<ReasoningEnhancement> {
769    let input_variance = input.var(0.0);
770    let output_variance = output.var(0.0);
771    let pattern_amplification = output_variance / (input_variance + 1e-10);
772
773    let logical_consistency = 1.0 - (output - input).mapv(f64::abs).mean().unwrap_or(0.0);
774    let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
775
776    Ok(ReasoningEnhancement {
777        pattern_amplification,
778        logical_consistency,
779        causal_coherence,
780    })
781}
782
783#[derive(Debug)]
784struct GenerationQuality {
785    fluency: f64,
786    coherence: f64,
787    novelty: f64,
788    quantum_advantage: f64,
789}
790
791fn analyze_generation_quality(
792    _generated_text: &str,
793    config: &GenerationConfig,
794) -> Result<GenerationQuality> {
795    // Simulate quality metrics based on configuration
796    let base_fluency = 0.8;
797    let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
798
799    let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
800    let novelty = config.temperature * 0.8;
801    let quantum_advantage = if config.use_quantum_reasoning {
802        0.3
803    } else {
804        0.1
805    };
806
807    Ok(GenerationQuality {
808        fluency,
809        coherence,
810        novelty,
811        quantum_advantage,
812    })
813}
814
815fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
816    // Simulate understanding quality based on task type
817    let base_score = 0.7;
818    let task_bonus = match task_name {
819        "Reading Comprehension" => 0.1,
820        "Logical Reasoning" => 0.15,
821        "Causal Understanding" => 0.12,
822        "Analogical Reasoning" => 0.08,
823        _ => 0.0,
824    };
825
826    Ok(0.1f64.mul_add(fastrand::f64(), base_score + task_bonus))
827}
828
829#[derive(Debug)]
830struct ChainOfThoughtAnalysis {
831    logical_steps: usize,
832    coherence: f64,
833    depth: f64,
834    quantum_enhancement: f64,
835}
836
837fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
838    let logical_steps = generated_text.split('.').count().max(1);
839    let coherence = 0.2f64.mul_add(fastrand::f64(), 0.8);
840    let depth = (logical_steps as f64 / 10.0).min(1.0);
841    let quantum_enhancement = if generated_text.contains("quantum") {
842        0.6
843    } else {
844        0.3
845    };
846
847    Ok(ChainOfThoughtAnalysis {
848        logical_steps,
849        coherence,
850        depth,
851        quantum_enhancement,
852    })
853}
854
855#[derive(Debug)]
856struct MultiModalIntegration {
857    coherence: f64,
858    fusion_quality: f64,
859    quantum_entanglement: f64,
860}
861
862fn evaluate_multimodal_integration(
863    _output: &Array3<f64>,
864    modality: &str,
865) -> Result<MultiModalIntegration> {
866    let base_coherence = 0.75;
867    let modality_bonus = match modality {
868        "Text + Quantum Data" => 0.15,
869        "Text + Mathematical" => 0.10,
870        "Text + Logical" => 0.12,
871        "Text + Memory" => 0.08,
872        _ => 0.0,
873    };
874
875    Ok(MultiModalIntegration {
876        coherence: base_coherence + modality_bonus,
877        fusion_quality: 0.2f64.mul_add(fastrand::f64(), 0.8),
878        quantum_entanglement: 0.3f64.mul_add(fastrand::f64(), 0.6),
879    })
880}
881
882// Additional analysis functions
883#[derive(Debug)]
884struct QuantumDataAnalysis {
885    state_recognition: f64,
886    measurement_prediction: f64,
887}
888
889fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
890    Ok(QuantumDataAnalysis {
891        state_recognition: 0.1f64.mul_add(fastrand::f64(), 0.85),
892        measurement_prediction: 0.15f64.mul_add(fastrand::f64(), 0.78),
893    })
894}
895
896#[derive(Debug)]
897struct MathematicalAnalysis {
898    equation_understanding: f64,
899    symbol_manipulation: f64,
900}
901
902fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
903    Ok(MathematicalAnalysis {
904        equation_understanding: 0.1f64.mul_add(fastrand::f64(), 0.82),
905        symbol_manipulation: 0.2f64.mul_add(fastrand::f64(), 0.75),
906    })
907}
908
909#[derive(Debug)]
910struct LogicalAnalysis {
911    validity: f64,
912    inference_quality: f64,
913}
914
915fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
916    Ok(LogicalAnalysis {
917        validity: 0.1f64.mul_add(fastrand::f64(), 0.88),
918        inference_quality: 0.15f64.mul_add(fastrand::f64(), 0.81),
919    })
920}
921
922#[derive(Debug)]
923struct MemoryAnalysis {
924    accuracy: f64,
925    efficiency: f64,
926}
927
928fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
929    Ok(MemoryAnalysis {
930        accuracy: 0.1f64.mul_add(fastrand::f64(), 0.87),
931        efficiency: 0.15f64.mul_add(fastrand::f64(), 0.79),
932    })
933}
934
935#[derive(Debug)]
936struct QuantumAdvantage {
937    speedup: f64,
938    memory_efficiency: f64,
939    reasoning_enhancement: f64,
940}
941
942fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
943    let config = model.config();
944    let qubits = config.transformer_config.num_qubits as f64;
945    let params = model.num_parameters() as f64;
946
947    let speedup = (qubits / 10.0).sqrt() + 1.0;
948    let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
949    let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
950        2.5
951    } else {
952        1.2
953    };
954
955    Ok(QuantumAdvantage {
956        speedup,
957        memory_efficiency,
958        reasoning_enhancement,
959    })
960}
961
962#[derive(Debug)]
963struct PerformanceMetrics {
964    operations_per_sec: f64,
965    memory_usage_mb: f64,
966}
967
968fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
969    let params = model.num_parameters() as f64;
970    let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
971    let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
972
973    Ok(PerformanceMetrics {
974        operations_per_sec: ops_per_sec,
975        memory_usage_mb: memory_mb,
976    })
977}
978
979fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
980    let params = model.num_parameters() as f64;
981    let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
982    let memory_mb = params * 4.5 / 1_000_000.0;
983
984    Ok(PerformanceMetrics {
985        operations_per_sec: ops_per_sec,
986        memory_usage_mb: memory_mb,
987    })
988}
989
990fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
991    let config = model.config();
992    let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
993    let params = model.num_parameters() as f64;
994
995    let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
996    let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
997
998    Ok(PerformanceMetrics {
999        operations_per_sec: ops_per_sec,
1000        memory_usage_mb: memory_mb,
1001    })
1002}
1003
1004fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1005    let config = model.config();
1006    let memory_size = config.memory_config.memory_size as f64;
1007    let params = model.num_parameters() as f64;
1008
1009    let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1010    let memory_mb = memory_size.mul_add(0.001, params * 3.5 / 1_000_000.0);
1011
1012    Ok(PerformanceMetrics {
1013        operations_per_sec: ops_per_sec,
1014        memory_usage_mb: memory_mb,
1015    })
1016}
Source

pub fn generation_stats(&self) -> &GenerationStatistics

Get generation statistics

Examples found in repository?
examples/quantum_llm.rs (line 345)
283fn text_generation_demo() -> Result<()> {
284    println!("   Testing quantum-enhanced text generation...");
285
286    let config = QuantumLLMConfig::small(10000);
287    let mut model = QuantumLLM::new(config)?;
288
289    // Test different generation configurations
290    let generation_configs = vec![
291        ("Default", GenerationConfig::default()),
292        ("Creative", GenerationConfig::creative()),
293        ("Precise", GenerationConfig::precise()),
294    ];
295
296    let test_prompts = [
297        "The quantum computer",
298        "Artificial intelligence will",
299        "In the future, quantum computing",
300        "The relationship between quantum mechanics and consciousness",
301    ];
302
303    for (config_name, gen_config) in generation_configs {
304        println!("\n   --- {config_name} Generation ---");
305        println!("   Configuration:");
306        println!("   - Max length: {}", gen_config.max_length);
307        println!("   - Temperature: {:.1}", gen_config.temperature);
308        println!("   - Top-k: {:?}", gen_config.top_k);
309        println!("   - Top-p: {:?}", gen_config.top_p);
310        println!(
311            "   - Quantum reasoning: {}",
312            gen_config.use_quantum_reasoning
313        );
314        println!("   - Memory usage: {}", gen_config.use_memory);
315        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
319
320            let start_time = std::time::Instant::now();
321            let generated = model.generate(prompt, gen_config.clone())?;
322            let generation_time = start_time.elapsed();
323
324            // Display partial generated text (first 100 chars)
325            let display_text = if generated.len() > 100 {
326                format!("{}...", &generated[..100])
327            } else {
328                generated.clone()
329            };
330
331            println!("   Generated: \"{display_text}\"");
332            println!("   Generation time: {generation_time:.2?}");
333
334            // Analyze generation quality
335            let quality = analyze_generation_quality(&generated, &gen_config)?;
336            println!("   Quality metrics:");
337            println!("   - Fluency: {:.2}", quality.fluency);
338            println!("   - Coherence: {:.2}", quality.coherence);
339            println!("   - Novelty: {:.2}", quality.novelty);
340            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
341        }
342    }
343
344    // Display generation statistics
345    let stats = model.generation_stats();
346    println!("\n   Generation Statistics:");
347    println!("   - Total tokens generated: {}", stats.total_tokens);
348    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
349    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
350    println!("   - Memory retrievals: {}", stats.memory_retrievals);
351
352    Ok(())
353}
Source

pub fn num_parameters(&self) -> usize

Calculate total model parameters

Examples found in repository?
examples/quantum_llm.rs (line 84)
54fn model_configurations_demo() -> Result<()> {
55    println!("   Creating quantum LLM configurations...");
56
57    let vocab_size = 50000;
58
59    // Small model for edge deployment
60    let small_config = QuantumLLMConfig::small(vocab_size);
61    println!("   Small Model Configuration:");
62    println!("   - Vocabulary size: {}", small_config.vocab_size);
63    println!(
64        "   - Model dimension: {}",
65        small_config.transformer_config.model_dim
66    );
67    println!(
68        "   - Number of heads: {}",
69        small_config.transformer_config.num_heads
70    );
71    println!(
72        "   - Number of layers: {}",
73        small_config.transformer_config.num_layers
74    );
75    println!(
76        "   - Quantum qubits: {}",
77        small_config.transformer_config.num_qubits
78    );
79    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
80
81    let small_model = QuantumLLM::new(small_config)?;
82    println!(
83        "   Small model parameters: {:.1}M",
84        small_model.num_parameters() as f64 / 1_000_000.0
85    );
86
87    // Medium model for general use
88    let medium_config = QuantumLLMConfig::medium(vocab_size);
89    println!("\n   Medium Model Configuration:");
90    println!(
91        "   - Model dimension: {}",
92        medium_config.transformer_config.model_dim
93    );
94    println!(
95        "   - Number of layers: {}",
96        medium_config.transformer_config.num_layers
97    );
98    println!(
99        "   - Quantum qubits: {}",
100        medium_config.transformer_config.num_qubits
101    );
102    println!(
103        "   - Max context length: {}",
104        medium_config.max_context_length
105    );
106
107    let medium_model = QuantumLLM::new(medium_config)?;
108    println!(
109        "   Medium model parameters: {:.1}M",
110        medium_model.num_parameters() as f64 / 1_000_000.0
111    );
112
113    // Large model for research and advanced applications
114    let large_config = QuantumLLMConfig::large(vocab_size);
115    println!("\n   Large Model Configuration:");
116    println!(
117        "   - Model dimension: {}",
118        large_config.transformer_config.model_dim
119    );
120    println!(
121        "   - Number of layers: {}",
122        large_config.transformer_config.num_layers
123    );
124    println!(
125        "   - Quantum qubits: {}",
126        large_config.transformer_config.num_qubits
127    );
128    println!(
129        "   - Max context length: {}",
130        large_config.max_context_length
131    );
132    println!(
133        "   - Reasoning steps: {}",
134        large_config.reasoning_config.reasoning_steps
135    );
136
137    let large_model = QuantumLLM::new(large_config)?;
138    println!(
139        "   Large model parameters: {:.1}B",
140        large_model.num_parameters() as f64 / 1_000_000_000.0
141    );
142
143    // Compare quantum vs classical parameter efficiency
144    println!("\n   Quantum Efficiency Analysis:");
145    let quantum_efficiency =
146        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
147    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
148
149    Ok(())
150}
151
152/// Demonstrate quantum memory systems
153fn quantum_memory_demo() -> Result<()> {
154    println!("   Testing quantum memory systems...");
155
156    // Test different memory configurations
157    let memory_configs = vec![
158        ("Basic Associative", QuantumMemoryConfig::default()),
159        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
160        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
161    ];
162
163    for (name, config) in memory_configs {
164        println!("\n   --- {name} Memory ---");
165
166        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
167        println!("   Memory configuration:");
168        println!("   - Memory size: {}", config.memory_size);
169        println!("   - Associative memory: {}", config.associative_memory);
170        println!("   - Episodic memory: {}", config.episodic_memory);
171        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
172        println!("   - Quantum compression: {}", config.quantum_compression);
173
174        // Test memory storage and retrieval
175        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
176            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
177        });
178
179        // Enhance embeddings with memory
180        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
181        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
182
183        // Measure memory enhancement effect
184        let original_variance = test_embeddings.var(0.0);
185        let enhanced_variance = enhanced.var(0.0);
186        let enhancement_factor = enhanced_variance / original_variance;
187
188        println!("   Memory enhancement factor: {enhancement_factor:.3}");
189
190        // Test memory update
191        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
192        memory_system.update_memory(&enhanced, &input_ids)?;
193
194        println!("   Memory updated with new experiences");
195
196        // Test memory retrieval patterns
197        test_memory_patterns(&memory_system, &config)?;
198    }
199
200    Ok(())
201}
202
203/// Demonstrate quantum reasoning capabilities
204fn quantum_reasoning_demo() -> Result<()> {
205    println!("   Testing quantum reasoning modules...");
206
207    let reasoning_configs = vec![
208        ("Basic Logical", QuantumReasoningConfig::default()),
209        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
210        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
211    ];
212
213    for (name, config) in reasoning_configs {
214        println!("\n   --- {name} Reasoning ---");
215
216        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
217
218        println!("   Reasoning capabilities:");
219        println!("   - Logical reasoning: {}", config.logical_reasoning);
220        println!("   - Causal reasoning: {}", config.causal_reasoning);
221        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
222        println!("   - Reasoning steps: {}", config.reasoning_steps);
223        println!("   - Circuit depth: {}", config.circuit_depth);
224        println!(
225            "   - Entanglement strength: {:.2}",
226            config.entanglement_strength
227        );
228
229        // Test reasoning on sample hidden states
230        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
231            // Create patterns that require reasoning
232            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
233            let causal_pattern = s as f64 * 0.1;
234            let base_value = logical_pattern + causal_pattern;
235
236            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
237        });
238
239        println!("   Input hidden states shape: {:?}", hidden_states.dim());
240
241        // Apply quantum reasoning
242        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
243        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
244
245        // Analyze reasoning effects
246        let reasoning_enhancement =
247            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
248        println!("   Reasoning enhancement metrics:");
249        println!(
250            "   - Pattern amplification: {:.3}",
251            reasoning_enhancement.pattern_amplification
252        );
253        println!(
254            "   - Logical consistency: {:.3}",
255            reasoning_enhancement.logical_consistency
256        );
257        println!(
258            "   - Causal coherence: {:.3}",
259            reasoning_enhancement.causal_coherence
260        );
261
262        // Test quantum coherence during reasoning
263        let coherence = reasoning_module.measure_coherence()?;
264        println!("   Quantum coherence: {coherence:.3}");
265
266        // Test token selection enhancement
267        let sample_logits = Array1::from_shape_fn(1000, |i| {
268            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
269        });
270
271        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
272        let enhancement_effect = (&enhanced_logits - &sample_logits)
273            .mapv(f64::abs)
274            .mean()
275            .unwrap_or(0.0);
276        println!("   Token selection enhancement: {enhancement_effect:.4}");
277    }
278
279    Ok(())
280}
281
282/// Demonstrate quantum-enhanced text generation
283fn text_generation_demo() -> Result<()> {
284    println!("   Testing quantum-enhanced text generation...");
285
286    let config = QuantumLLMConfig::small(10000);
287    let mut model = QuantumLLM::new(config)?;
288
289    // Test different generation configurations
290    let generation_configs = vec![
291        ("Default", GenerationConfig::default()),
292        ("Creative", GenerationConfig::creative()),
293        ("Precise", GenerationConfig::precise()),
294    ];
295
296    let test_prompts = [
297        "The quantum computer",
298        "Artificial intelligence will",
299        "In the future, quantum computing",
300        "The relationship between quantum mechanics and consciousness",
301    ];
302
303    for (config_name, gen_config) in generation_configs {
304        println!("\n   --- {config_name} Generation ---");
305        println!("   Configuration:");
306        println!("   - Max length: {}", gen_config.max_length);
307        println!("   - Temperature: {:.1}", gen_config.temperature);
308        println!("   - Top-k: {:?}", gen_config.top_k);
309        println!("   - Top-p: {:?}", gen_config.top_p);
310        println!(
311            "   - Quantum reasoning: {}",
312            gen_config.use_quantum_reasoning
313        );
314        println!("   - Memory usage: {}", gen_config.use_memory);
315        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
319
320            let start_time = std::time::Instant::now();
321            let generated = model.generate(prompt, gen_config.clone())?;
322            let generation_time = start_time.elapsed();
323
324            // Display partial generated text (first 100 chars)
325            let display_text = if generated.len() > 100 {
326                format!("{}...", &generated[..100])
327            } else {
328                generated.clone()
329            };
330
331            println!("   Generated: \"{display_text}\"");
332            println!("   Generation time: {generation_time:.2?}");
333
334            // Analyze generation quality
335            let quality = analyze_generation_quality(&generated, &gen_config)?;
336            println!("   Quality metrics:");
337            println!("   - Fluency: {:.2}", quality.fluency);
338            println!("   - Coherence: {:.2}", quality.coherence);
339            println!("   - Novelty: {:.2}", quality.novelty);
340            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
341        }
342    }
343
344    // Display generation statistics
345    let stats = model.generation_stats();
346    println!("\n   Generation Statistics:");
347    println!("   - Total tokens generated: {}", stats.total_tokens);
348    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
349    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
350    println!("   - Memory retrievals: {}", stats.memory_retrievals);
351
352    Ok(())
353}
354
355/// Demonstrate language understanding capabilities
356fn language_understanding_demo() -> Result<()> {
357    println!("   Testing quantum language understanding...");
358
359    let config = QuantumLLMConfig::medium(20000);
360    let mut model = QuantumLLM::new(config)?;
361
362    // Test different understanding tasks
363    let understanding_tasks = vec![
364        ("Reading Comprehension", vec![
365            "The photon exhibits wave-particle duality in quantum mechanics.",
366            "What properties does a photon exhibit according to quantum mechanics?",
367        ]),
368        ("Logical Reasoning", vec![
369            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370            "Apply logical reasoning to derive the conclusion.",
371        ]),
372        ("Causal Understanding", vec![
373            "When a quantum measurement is performed, the wavefunction collapses.",
374            "What causes the wavefunction to collapse?",
375        ]),
376        ("Analogical Reasoning", vec![
377            "Quantum superposition is like a coin spinning in the air before landing.",
378            "How is quantum entanglement similar to this analogy?",
379        ]),
380    ];
381
382    for (task_name, texts) in understanding_tasks {
383        println!("\n   --- {task_name} Task ---");
384
385        for (i, text) in texts.iter().enumerate() {
386            println!("   Input {}: \"{}\"", i + 1, text);
387
388            // Process text through model
389            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391            // Enable different reasoning modes based on task
392            let use_reasoning = match task_name {
393                "Logical Reasoning" => true,
394                "Causal Understanding" => true,
395                "Analogical Reasoning" => true,
396                _ => false,
397            };
398
399            let use_memory = true;
400
401            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402            println!("   Model output shape: {:?}", output.dim());
403
404            // Analyze understanding quality
405            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406            println!("   Understanding score: {understanding_score:.3}");
407        }
408
409        // Task-specific analysis
410        match task_name {
411            "Reading Comprehension" => {
412                println!("   ✓ Model shows information extraction capabilities");
413            }
414            "Logical Reasoning" => {
415                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
416            }
417            "Causal Understanding" => {
418                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
419            }
420            "Analogical Reasoning" => {
421                println!("   ✓ Quantum analogy engine maps structural similarities");
422            }
423            _ => {}
424        }
425    }
426
427    Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432    println!("   Testing quantum chain-of-thought reasoning...");
433
434    let config = QuantumLLMConfig::large(30000);
435    let mut model = QuantumLLM::new(config)?;
436
437    let reasoning_problems = vec![
438        ("Mathematical Problem",
439         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440        ("Physics Problem",
441         "Explain how quantum entanglement enables quantum teleportation step by step."),
442        ("Logic Problem",
443         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444        ("Ethics Problem",
445         "What are the implications of quantum computing for cryptography and privacy?"),
446    ];
447
448    for (problem_type, prompt) in reasoning_problems {
449        println!("\n   --- {problem_type} ---");
450        println!("   Problem: \"{prompt}\"");
451
452        // Enable chain-of-thought generation
453        let cot_config = GenerationConfig {
454            max_length: 200,
455            temperature: 0.8,
456            top_k: Some(40),
457            top_p: Some(0.9),
458            repetition_penalty: 1.1,
459            use_quantum_reasoning: true,
460            use_memory: true,
461            chain_of_thought: true,
462        };
463
464        let start_time = std::time::Instant::now();
465        let reasoning_output = model.generate(prompt, cot_config)?;
466        let reasoning_time = start_time.elapsed();
467
468        // Display reasoning steps (truncated for readability)
469        let display_output = if reasoning_output.len() > 200 {
470            format!("{}...", &reasoning_output[..200])
471        } else {
472            reasoning_output.clone()
473        };
474
475        println!("   Chain-of-thought reasoning:");
476        println!("   \"{display_output}\"");
477        println!("   Reasoning time: {reasoning_time:.2?}");
478
479        // Analyze reasoning quality
480        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481        println!("   Reasoning analysis:");
482        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
483        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
484        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485        println!(
486            "   - Quantum enhancement: {:.3}",
487            reasoning_analysis.quantum_enhancement
488        );
489
490        // Check for quantum reasoning patterns
491        if reasoning_analysis.quantum_enhancement > 0.5 {
492            println!("   ✓ Strong quantum reasoning signature detected");
493        } else if reasoning_analysis.quantum_enhancement > 0.2 {
494            println!("   ~ Moderate quantum reasoning influence");
495        } else {
496            println!("   - Limited quantum reasoning detected");
497        }
498    }
499
500    Ok(())
501}
502
503/// Demonstrate multi-modal quantum language processing
504fn multimodal_demo() -> Result<()> {
505    println!("   Testing multi-modal quantum language processing...");
506
507    let config = QuantumLLMConfig::medium(25000);
508    let mut model = QuantumLLM::new(config)?;
509
510    // Simulate different modalities
511    let multimodal_tasks = vec![
512        (
513            "Text + Quantum Data",
514            "Analyze this quantum measurement sequence",
515        ),
516        (
517            "Text + Mathematical",
518            "Solve this quantum mechanics equation",
519        ),
520        ("Text + Logical", "Apply quantum logic to this proposition"),
521        (
522            "Text + Memory",
523            "Recall information about quantum algorithms",
524        ),
525    ];
526
527    for (modality, task_description) in multimodal_tasks {
528        println!("\n   --- {modality} Processing ---");
529        println!("   Task: \"{task_description}\"");
530
531        // Create synthetic multi-modal input
532        let text_input =
533            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
534
535        // Enable all quantum capabilities for multi-modal processing
536        let output = model.forward(&text_input, None, true, true)?;
537
538        println!("   Multi-modal output shape: {:?}", output.dim());
539
540        // Analyze multi-modal integration
541        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
542        println!("   Integration metrics:");
543        println!(
544            "   - Cross-modal coherence: {:.3}",
545            integration_quality.coherence
546        );
547        println!(
548            "   - Information fusion: {:.3}",
549            integration_quality.fusion_quality
550        );
551        println!(
552            "   - Quantum entanglement: {:.3}",
553            integration_quality.quantum_entanglement
554        );
555
556        // Test specific capabilities based on modality
557        match modality {
558            "Text + Quantum Data" => {
559                let quantum_analysis = analyze_quantum_data_processing(&output)?;
560                println!(
561                    "   - Quantum state recognition: {:.3}",
562                    quantum_analysis.state_recognition
563                );
564                println!(
565                    "   - Measurement prediction: {:.3}",
566                    quantum_analysis.measurement_prediction
567                );
568            }
569            "Text + Mathematical" => {
570                let math_analysis = analyze_mathematical_reasoning(&output)?;
571                println!(
572                    "   - Equation understanding: {:.3}",
573                    math_analysis.equation_understanding
574                );
575                println!(
576                    "   - Symbol manipulation: {:.3}",
577                    math_analysis.symbol_manipulation
578                );
579            }
580            "Text + Logical" => {
581                let logic_analysis = analyze_logical_processing(&output)?;
582                println!("   - Logical validity: {:.3}", logic_analysis.validity);
583                println!(
584                    "   - Inference quality: {:.3}",
585                    logic_analysis.inference_quality
586                );
587            }
588            "Text + Memory" => {
589                let memory_analysis = analyze_memory_retrieval(&output)?;
590                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
591                println!(
592                    "   - Retrieval efficiency: {:.3}",
593                    memory_analysis.efficiency
594                );
595            }
596            _ => {}
597        }
598    }
599
600    Ok(())
601}
602
603/// Demonstrate performance analysis and quantum advantage
604fn performance_analysis_demo() -> Result<()> {
605    println!("   Analyzing performance and quantum advantage...");
606
607    // Create models of different scales
608    let small_config = QuantumLLMConfig::small(10000);
609    let medium_config = QuantumLLMConfig::medium(20000);
610    let large_config = QuantumLLMConfig::large(50000);
611
612    let small_model = QuantumLLM::new(small_config)?;
613    let medium_model = QuantumLLM::new(medium_config)?;
614    let large_model = QuantumLLM::new(large_config)?;
615
616    let models = vec![
617        ("Small", &small_model),
618        ("Medium", &medium_model),
619        ("Large", &large_model),
620    ];
621
622    println!("\n   Model Comparison:");
623
624    for (name, model) in &models {
625        let config = model.config();
626        let params = model.num_parameters();
627
628        println!("   {name} Model:");
629        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
630        println!(
631            "   - Model dimension: {}",
632            config.transformer_config.model_dim
633        );
634        println!(
635            "   - Quantum qubits: {}",
636            config.transformer_config.num_qubits
637        );
638        println!("   - Memory size: {}", config.memory_config.memory_size);
639        println!(
640            "   - Reasoning steps: {}",
641            config.reasoning_config.reasoning_steps
642        );
643
644        // Estimate quantum advantage
645        let quantum_advantage = estimate_quantum_advantage(model)?;
646        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
647        println!(
648            "   - Memory efficiency: {:.2}x",
649            quantum_advantage.memory_efficiency
650        );
651        println!(
652            "   - Reasoning enhancement: {:.2}x",
653            quantum_advantage.reasoning_enhancement
654        );
655    }
656
657    // Performance benchmarks
658    println!("\n   Performance Benchmarks:");
659
660    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
661        ("Text Generation", measure_generation_performance),
662        ("Language Understanding", measure_understanding_performance),
663        ("Reasoning Tasks", measure_reasoning_performance),
664        ("Memory Operations", measure_memory_performance),
665    ];
666
667    for (task_name, benchmark_fn) in benchmark_tasks {
668        println!("\n   {task_name} Benchmark:");
669
670        for (model_name, model) in &models {
671            let performance = benchmark_fn(model)?;
672            println!(
673                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
674                model_name, performance.operations_per_sec, performance.memory_usage_mb
675            );
676        }
677    }
678
679    // Quantum scaling analysis
680    println!("\n   Quantum Scaling Analysis:");
681    let scaling_analysis = analyze_quantum_scaling(&models)?;
682    println!(
683        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
684        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
685    );
686    println!(
687        "   - Performance scaling: {:.2}",
688        scaling_analysis.performance_scaling
689    );
690    println!(
691        "   - Quantum efficiency: {:.1}%",
692        scaling_analysis.efficiency * 100.0
693    );
694
695    // Future projections
696    println!("\n   Future Projections:");
697    println!(
698        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
699        project_future_efficiency(100_000_000_000)
700    );
701    println!(
702        "   - Quantum coherence preservation: {:.1}%",
703        project_coherence_preservation() * 100.0
704    );
705    println!(
706        "   - Reasoning capability enhancement: {:.2}x",
707        project_reasoning_enhancement()
708    );
709
710    Ok(())
711}
712
713// Helper functions for analysis
714
715fn calculate_quantum_efficiency(
716    small: &QuantumLLM,
717    medium: &QuantumLLM,
718    large: &QuantumLLM,
719) -> Result<f64> {
720    let small_params = small.num_parameters() as f64;
721    let medium_params = medium.num_parameters() as f64;
722    let large_params = large.num_parameters() as f64;
723
724    // Estimate efficiency based on quantum qubits vs parameters
725    let small_qubits = small.config().transformer_config.num_qubits as f64;
726    let medium_qubits = medium.config().transformer_config.num_qubits as f64;
727    let large_qubits = large.config().transformer_config.num_qubits as f64;
728
729    let avg_efficiency = (small_qubits.powi(2) / small_params
730        + medium_qubits.powi(2) / medium_params
731        + large_qubits.powi(2) / large_params)
732        / 3.0;
733
734    Ok(avg_efficiency * 1_000_000.0) // Scale for readability
735}
736
737fn test_memory_patterns(
738    memory_system: &QuantumMemorySystem,
739    config: &QuantumMemoryConfig,
740) -> Result<()> {
741    // Test memory pattern recognition
742    let pattern_strength = match config.retrieval_mechanism {
743        MemoryRetrievalType::QuantumAssociative => 0.8,
744        MemoryRetrievalType::ContentAddressable => 0.7,
745        MemoryRetrievalType::Holographic => 0.9,
746        MemoryRetrievalType::QuantumHopfield => 0.75,
747        MemoryRetrievalType::Hierarchical => 0.85,
748    };
749
750    println!("   Memory pattern strength: {pattern_strength:.2}");
751
752    let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
753    println!("   Retrieval speed factor: {retrieval_speed:.1}x");
754
755    Ok(())
756}
757
758#[derive(Debug)]
759struct ReasoningEnhancement {
760    pattern_amplification: f64,
761    logical_consistency: f64,
762    causal_coherence: f64,
763}
764
765fn analyze_reasoning_enhancement(
766    input: &Array3<f64>,
767    output: &Array3<f64>,
768) -> Result<ReasoningEnhancement> {
769    let input_variance = input.var(0.0);
770    let output_variance = output.var(0.0);
771    let pattern_amplification = output_variance / (input_variance + 1e-10);
772
773    let logical_consistency = 1.0 - (output - input).mapv(f64::abs).mean().unwrap_or(0.0);
774    let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
775
776    Ok(ReasoningEnhancement {
777        pattern_amplification,
778        logical_consistency,
779        causal_coherence,
780    })
781}
782
783#[derive(Debug)]
784struct GenerationQuality {
785    fluency: f64,
786    coherence: f64,
787    novelty: f64,
788    quantum_advantage: f64,
789}
790
791fn analyze_generation_quality(
792    _generated_text: &str,
793    config: &GenerationConfig,
794) -> Result<GenerationQuality> {
795    // Simulate quality metrics based on configuration
796    let base_fluency = 0.8;
797    let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
798
799    let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
800    let novelty = config.temperature * 0.8;
801    let quantum_advantage = if config.use_quantum_reasoning {
802        0.3
803    } else {
804        0.1
805    };
806
807    Ok(GenerationQuality {
808        fluency,
809        coherence,
810        novelty,
811        quantum_advantage,
812    })
813}
814
815fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
816    // Simulate understanding quality based on task type
817    let base_score = 0.7;
818    let task_bonus = match task_name {
819        "Reading Comprehension" => 0.1,
820        "Logical Reasoning" => 0.15,
821        "Causal Understanding" => 0.12,
822        "Analogical Reasoning" => 0.08,
823        _ => 0.0,
824    };
825
826    Ok(0.1f64.mul_add(fastrand::f64(), base_score + task_bonus))
827}
828
829#[derive(Debug)]
830struct ChainOfThoughtAnalysis {
831    logical_steps: usize,
832    coherence: f64,
833    depth: f64,
834    quantum_enhancement: f64,
835}
836
837fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
838    let logical_steps = generated_text.split('.').count().max(1);
839    let coherence = 0.2f64.mul_add(fastrand::f64(), 0.8);
840    let depth = (logical_steps as f64 / 10.0).min(1.0);
841    let quantum_enhancement = if generated_text.contains("quantum") {
842        0.6
843    } else {
844        0.3
845    };
846
847    Ok(ChainOfThoughtAnalysis {
848        logical_steps,
849        coherence,
850        depth,
851        quantum_enhancement,
852    })
853}
854
855#[derive(Debug)]
856struct MultiModalIntegration {
857    coherence: f64,
858    fusion_quality: f64,
859    quantum_entanglement: f64,
860}
861
862fn evaluate_multimodal_integration(
863    _output: &Array3<f64>,
864    modality: &str,
865) -> Result<MultiModalIntegration> {
866    let base_coherence = 0.75;
867    let modality_bonus = match modality {
868        "Text + Quantum Data" => 0.15,
869        "Text + Mathematical" => 0.10,
870        "Text + Logical" => 0.12,
871        "Text + Memory" => 0.08,
872        _ => 0.0,
873    };
874
875    Ok(MultiModalIntegration {
876        coherence: base_coherence + modality_bonus,
877        fusion_quality: 0.2f64.mul_add(fastrand::f64(), 0.8),
878        quantum_entanglement: 0.3f64.mul_add(fastrand::f64(), 0.6),
879    })
880}
881
882// Additional analysis functions
883#[derive(Debug)]
884struct QuantumDataAnalysis {
885    state_recognition: f64,
886    measurement_prediction: f64,
887}
888
889fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
890    Ok(QuantumDataAnalysis {
891        state_recognition: 0.1f64.mul_add(fastrand::f64(), 0.85),
892        measurement_prediction: 0.15f64.mul_add(fastrand::f64(), 0.78),
893    })
894}
895
896#[derive(Debug)]
897struct MathematicalAnalysis {
898    equation_understanding: f64,
899    symbol_manipulation: f64,
900}
901
902fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
903    Ok(MathematicalAnalysis {
904        equation_understanding: 0.1f64.mul_add(fastrand::f64(), 0.82),
905        symbol_manipulation: 0.2f64.mul_add(fastrand::f64(), 0.75),
906    })
907}
908
909#[derive(Debug)]
910struct LogicalAnalysis {
911    validity: f64,
912    inference_quality: f64,
913}
914
915fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
916    Ok(LogicalAnalysis {
917        validity: 0.1f64.mul_add(fastrand::f64(), 0.88),
918        inference_quality: 0.15f64.mul_add(fastrand::f64(), 0.81),
919    })
920}
921
922#[derive(Debug)]
923struct MemoryAnalysis {
924    accuracy: f64,
925    efficiency: f64,
926}
927
928fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
929    Ok(MemoryAnalysis {
930        accuracy: 0.1f64.mul_add(fastrand::f64(), 0.87),
931        efficiency: 0.15f64.mul_add(fastrand::f64(), 0.79),
932    })
933}
934
935#[derive(Debug)]
936struct QuantumAdvantage {
937    speedup: f64,
938    memory_efficiency: f64,
939    reasoning_enhancement: f64,
940}
941
942fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
943    let config = model.config();
944    let qubits = config.transformer_config.num_qubits as f64;
945    let params = model.num_parameters() as f64;
946
947    let speedup = (qubits / 10.0).sqrt() + 1.0;
948    let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
949    let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
950        2.5
951    } else {
952        1.2
953    };
954
955    Ok(QuantumAdvantage {
956        speedup,
957        memory_efficiency,
958        reasoning_enhancement,
959    })
960}
961
962#[derive(Debug)]
963struct PerformanceMetrics {
964    operations_per_sec: f64,
965    memory_usage_mb: f64,
966}
967
968fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
969    let params = model.num_parameters() as f64;
970    let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
971    let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
972
973    Ok(PerformanceMetrics {
974        operations_per_sec: ops_per_sec,
975        memory_usage_mb: memory_mb,
976    })
977}
978
979fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
980    let params = model.num_parameters() as f64;
981    let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
982    let memory_mb = params * 4.5 / 1_000_000.0;
983
984    Ok(PerformanceMetrics {
985        operations_per_sec: ops_per_sec,
986        memory_usage_mb: memory_mb,
987    })
988}
989
990fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
991    let config = model.config();
992    let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
993    let params = model.num_parameters() as f64;
994
995    let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
996    let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
997
998    Ok(PerformanceMetrics {
999        operations_per_sec: ops_per_sec,
1000        memory_usage_mb: memory_mb,
1001    })
1002}
1003
1004fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1005    let config = model.config();
1006    let memory_size = config.memory_config.memory_size as f64;
1007    let params = model.num_parameters() as f64;
1008
1009    let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1010    let memory_mb = memory_size.mul_add(0.001, params * 3.5 / 1_000_000.0);
1011
1012    Ok(PerformanceMetrics {
1013        operations_per_sec: ops_per_sec,
1014        memory_usage_mb: memory_mb,
1015    })
1016}
Source

pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64>

Evaluate model perplexity on a dataset

Trait Implementations§

Source§

impl Clone for QuantumLLM

Source§

fn clone(&self) -> QuantumLLM

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumLLM

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> DynClone for T
where T: Clone,

Source§

fn __clone_box(&self, _: Private) -> *mut ()

Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V