pub struct QuantumLLM { /* private fields */ }Expand description
Main Quantum Large Language Model
Implementations§
Source§impl QuantumLLM
impl QuantumLLM
Sourcepub fn new(config: QuantumLLMConfig) -> Result<Self>
pub fn new(config: QuantumLLMConfig) -> Result<Self>
Create new quantum large language model
Examples found in repository?
examples/quantum_llm.rs (line 81)
54fn model_configurations_demo() -> Result<()> {
55 println!(" Creating quantum LLM configurations...");
56
57 let vocab_size = 50000;
58
59 // Small model for edge deployment
60 let small_config = QuantumLLMConfig::small(vocab_size);
61 println!(" Small Model Configuration:");
62 println!(" - Vocabulary size: {}", small_config.vocab_size);
63 println!(
64 " - Model dimension: {}",
65 small_config.transformer_config.model_dim
66 );
67 println!(
68 " - Number of heads: {}",
69 small_config.transformer_config.num_heads
70 );
71 println!(
72 " - Number of layers: {}",
73 small_config.transformer_config.num_layers
74 );
75 println!(
76 " - Quantum qubits: {}",
77 small_config.transformer_config.num_qubits
78 );
79 println!(" - Memory layers: {}", small_config.quantum_memory_layers);
80
81 let small_model = QuantumLLM::new(small_config)?;
82 println!(
83 " Small model parameters: {:.1}M",
84 small_model.num_parameters() as f64 / 1_000_000.0
85 );
86
87 // Medium model for general use
88 let medium_config = QuantumLLMConfig::medium(vocab_size);
89 println!("\n Medium Model Configuration:");
90 println!(
91 " - Model dimension: {}",
92 medium_config.transformer_config.model_dim
93 );
94 println!(
95 " - Number of layers: {}",
96 medium_config.transformer_config.num_layers
97 );
98 println!(
99 " - Quantum qubits: {}",
100 medium_config.transformer_config.num_qubits
101 );
102 println!(
103 " - Max context length: {}",
104 medium_config.max_context_length
105 );
106
107 let medium_model = QuantumLLM::new(medium_config)?;
108 println!(
109 " Medium model parameters: {:.1}M",
110 medium_model.num_parameters() as f64 / 1_000_000.0
111 );
112
113 // Large model for research and advanced applications
114 let large_config = QuantumLLMConfig::large(vocab_size);
115 println!("\n Large Model Configuration:");
116 println!(
117 " - Model dimension: {}",
118 large_config.transformer_config.model_dim
119 );
120 println!(
121 " - Number of layers: {}",
122 large_config.transformer_config.num_layers
123 );
124 println!(
125 " - Quantum qubits: {}",
126 large_config.transformer_config.num_qubits
127 );
128 println!(
129 " - Max context length: {}",
130 large_config.max_context_length
131 );
132 println!(
133 " - Reasoning steps: {}",
134 large_config.reasoning_config.reasoning_steps
135 );
136
137 let large_model = QuantumLLM::new(large_config)?;
138 println!(
139 " Large model parameters: {:.1}B",
140 large_model.num_parameters() as f64 / 1_000_000_000.0
141 );
142
143 // Compare quantum vs classical parameter efficiency
144 println!("\n Quantum Efficiency Analysis:");
145 let quantum_efficiency =
146 calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
147 println!(" - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
148
149 Ok(())
150}
151
152/// Demonstrate quantum memory systems
153fn quantum_memory_demo() -> Result<()> {
154 println!(" Testing quantum memory systems...");
155
156 // Test different memory configurations
157 let memory_configs = vec![
158 ("Basic Associative", QuantumMemoryConfig::default()),
159 ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
160 ("Advanced Holographic", QuantumMemoryConfig::advanced()),
161 ];
162
163 for (name, config) in memory_configs {
164 println!("\n --- {name} Memory ---");
165
166 let mut memory_system = QuantumMemorySystem::new(config.clone())?;
167 println!(" Memory configuration:");
168 println!(" - Memory size: {}", config.memory_size);
169 println!(" - Associative memory: {}", config.associative_memory);
170 println!(" - Episodic memory: {}", config.episodic_memory);
171 println!(" - Retrieval mechanism: {:?}", config.retrieval_mechanism);
172 println!(" - Quantum compression: {}", config.quantum_compression);
173
174 // Test memory storage and retrieval
175 let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
176 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
177 });
178
179 // Enhance embeddings with memory
180 let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
181 println!(" Enhanced embeddings shape: {:?}", enhanced.dim());
182
183 // Measure memory enhancement effect
184 let original_variance = test_embeddings.var(0.0);
185 let enhanced_variance = enhanced.var(0.0);
186 let enhancement_factor = enhanced_variance / original_variance;
187
188 println!(" Memory enhancement factor: {enhancement_factor:.3}");
189
190 // Test memory update
191 let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
192 memory_system.update_memory(&enhanced, &input_ids)?;
193
194 println!(" Memory updated with new experiences");
195
196 // Test memory retrieval patterns
197 test_memory_patterns(&memory_system, &config)?;
198 }
199
200 Ok(())
201}
202
203/// Demonstrate quantum reasoning capabilities
204fn quantum_reasoning_demo() -> Result<()> {
205 println!(" Testing quantum reasoning modules...");
206
207 let reasoning_configs = vec![
208 ("Basic Logical", QuantumReasoningConfig::default()),
209 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
210 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
211 ];
212
213 for (name, config) in reasoning_configs {
214 println!("\n --- {name} Reasoning ---");
215
216 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
217
218 println!(" Reasoning capabilities:");
219 println!(" - Logical reasoning: {}", config.logical_reasoning);
220 println!(" - Causal reasoning: {}", config.causal_reasoning);
221 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
222 println!(" - Reasoning steps: {}", config.reasoning_steps);
223 println!(" - Circuit depth: {}", config.circuit_depth);
224 println!(
225 " - Entanglement strength: {:.2}",
226 config.entanglement_strength
227 );
228
229 // Test reasoning on sample hidden states
230 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
231 // Create patterns that require reasoning
232 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
233 let causal_pattern = s as f64 * 0.1;
234 let base_value = logical_pattern + causal_pattern;
235
236 0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
237 });
238
239 println!(" Input hidden states shape: {:?}", hidden_states.dim());
240
241 // Apply quantum reasoning
242 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
243 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
244
245 // Analyze reasoning effects
246 let reasoning_enhancement =
247 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
248 println!(" Reasoning enhancement metrics:");
249 println!(
250 " - Pattern amplification: {:.3}",
251 reasoning_enhancement.pattern_amplification
252 );
253 println!(
254 " - Logical consistency: {:.3}",
255 reasoning_enhancement.logical_consistency
256 );
257 println!(
258 " - Causal coherence: {:.3}",
259 reasoning_enhancement.causal_coherence
260 );
261
262 // Test quantum coherence during reasoning
263 let coherence = reasoning_module.measure_coherence()?;
264 println!(" Quantum coherence: {coherence:.3}");
265
266 // Test token selection enhancement
267 let sample_logits = Array1::from_shape_fn(1000, |i| {
268 0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
269 });
270
271 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
272 let enhancement_effect = (&enhanced_logits - &sample_logits)
273 .mapv(f64::abs)
274 .mean()
275 .unwrap_or(0.0);
276 println!(" Token selection enhancement: {enhancement_effect:.4}");
277 }
278
279 Ok(())
280}
281
282/// Demonstrate quantum-enhanced text generation
283fn text_generation_demo() -> Result<()> {
284 println!(" Testing quantum-enhanced text generation...");
285
286 let config = QuantumLLMConfig::small(10000);
287 let mut model = QuantumLLM::new(config)?;
288
289 // Test different generation configurations
290 let generation_configs = vec![
291 ("Default", GenerationConfig::default()),
292 ("Creative", GenerationConfig::creative()),
293 ("Precise", GenerationConfig::precise()),
294 ];
295
296 let test_prompts = [
297 "The quantum computer",
298 "Artificial intelligence will",
299 "In the future, quantum computing",
300 "The relationship between quantum mechanics and consciousness",
301 ];
302
303 for (config_name, gen_config) in generation_configs {
304 println!("\n --- {config_name} Generation ---");
305 println!(" Configuration:");
306 println!(" - Max length: {}", gen_config.max_length);
307 println!(" - Temperature: {:.1}", gen_config.temperature);
308 println!(" - Top-k: {:?}", gen_config.top_k);
309 println!(" - Top-p: {:?}", gen_config.top_p);
310 println!(
311 " - Quantum reasoning: {}",
312 gen_config.use_quantum_reasoning
313 );
314 println!(" - Memory usage: {}", gen_config.use_memory);
315 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
319
320 let start_time = std::time::Instant::now();
321 let generated = model.generate(prompt, gen_config.clone())?;
322 let generation_time = start_time.elapsed();
323
324 // Display partial generated text (first 100 chars)
325 let display_text = if generated.len() > 100 {
326 format!("{}...", &generated[..100])
327 } else {
328 generated.clone()
329 };
330
331 println!(" Generated: \"{display_text}\"");
332 println!(" Generation time: {generation_time:.2?}");
333
334 // Analyze generation quality
335 let quality = analyze_generation_quality(&generated, &gen_config)?;
336 println!(" Quality metrics:");
337 println!(" - Fluency: {:.2}", quality.fluency);
338 println!(" - Coherence: {:.2}", quality.coherence);
339 println!(" - Novelty: {:.2}", quality.novelty);
340 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
341 }
342 }
343
344 // Display generation statistics
345 let stats = model.generation_stats();
346 println!("\n Generation Statistics:");
347 println!(" - Total tokens generated: {}", stats.total_tokens);
348 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
349 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
350 println!(" - Memory retrievals: {}", stats.memory_retrievals);
351
352 Ok(())
353}
354
355/// Demonstrate language understanding capabilities
356fn language_understanding_demo() -> Result<()> {
357 println!(" Testing quantum language understanding...");
358
359 let config = QuantumLLMConfig::medium(20000);
360 let mut model = QuantumLLM::new(config)?;
361
362 // Test different understanding tasks
363 let understanding_tasks = vec![
364 ("Reading Comprehension", vec![
365 "The photon exhibits wave-particle duality in quantum mechanics.",
366 "What properties does a photon exhibit according to quantum mechanics?",
367 ]),
368 ("Logical Reasoning", vec![
369 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370 "Apply logical reasoning to derive the conclusion.",
371 ]),
372 ("Causal Understanding", vec![
373 "When a quantum measurement is performed, the wavefunction collapses.",
374 "What causes the wavefunction to collapse?",
375 ]),
376 ("Analogical Reasoning", vec![
377 "Quantum superposition is like a coin spinning in the air before landing.",
378 "How is quantum entanglement similar to this analogy?",
379 ]),
380 ];
381
382 for (task_name, texts) in understanding_tasks {
383 println!("\n --- {task_name} Task ---");
384
385 for (i, text) in texts.iter().enumerate() {
386 println!(" Input {}: \"{}\"", i + 1, text);
387
388 // Process text through model
389 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391 // Enable different reasoning modes based on task
392 let use_reasoning = match task_name {
393 "Logical Reasoning" => true,
394 "Causal Understanding" => true,
395 "Analogical Reasoning" => true,
396 _ => false,
397 };
398
399 let use_memory = true;
400
401 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402 println!(" Model output shape: {:?}", output.dim());
403
404 // Analyze understanding quality
405 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406 println!(" Understanding score: {understanding_score:.3}");
407 }
408
409 // Task-specific analysis
410 match task_name {
411 "Reading Comprehension" => {
412 println!(" ✓ Model shows information extraction capabilities");
413 }
414 "Logical Reasoning" => {
415 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
416 }
417 "Causal Understanding" => {
418 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
419 }
420 "Analogical Reasoning" => {
421 println!(" ✓ Quantum analogy engine maps structural similarities");
422 }
423 _ => {}
424 }
425 }
426
427 Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432 println!(" Testing quantum chain-of-thought reasoning...");
433
434 let config = QuantumLLMConfig::large(30000);
435 let mut model = QuantumLLM::new(config)?;
436
437 let reasoning_problems = vec![
438 ("Mathematical Problem",
439 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440 ("Physics Problem",
441 "Explain how quantum entanglement enables quantum teleportation step by step."),
442 ("Logic Problem",
443 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444 ("Ethics Problem",
445 "What are the implications of quantum computing for cryptography and privacy?"),
446 ];
447
448 for (problem_type, prompt) in reasoning_problems {
449 println!("\n --- {problem_type} ---");
450 println!(" Problem: \"{prompt}\"");
451
452 // Enable chain-of-thought generation
453 let cot_config = GenerationConfig {
454 max_length: 200,
455 temperature: 0.8,
456 top_k: Some(40),
457 top_p: Some(0.9),
458 repetition_penalty: 1.1,
459 use_quantum_reasoning: true,
460 use_memory: true,
461 chain_of_thought: true,
462 };
463
464 let start_time = std::time::Instant::now();
465 let reasoning_output = model.generate(prompt, cot_config)?;
466 let reasoning_time = start_time.elapsed();
467
468 // Display reasoning steps (truncated for readability)
469 let display_output = if reasoning_output.len() > 200 {
470 format!("{}...", &reasoning_output[..200])
471 } else {
472 reasoning_output.clone()
473 };
474
475 println!(" Chain-of-thought reasoning:");
476 println!(" \"{display_output}\"");
477 println!(" Reasoning time: {reasoning_time:.2?}");
478
479 // Analyze reasoning quality
480 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481 println!(" Reasoning analysis:");
482 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
483 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
484 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485 println!(
486 " - Quantum enhancement: {:.3}",
487 reasoning_analysis.quantum_enhancement
488 );
489
490 // Check for quantum reasoning patterns
491 if reasoning_analysis.quantum_enhancement > 0.5 {
492 println!(" ✓ Strong quantum reasoning signature detected");
493 } else if reasoning_analysis.quantum_enhancement > 0.2 {
494 println!(" ~ Moderate quantum reasoning influence");
495 } else {
496 println!(" - Limited quantum reasoning detected");
497 }
498 }
499
500 Ok(())
501}
502
503/// Demonstrate multi-modal quantum language processing
504fn multimodal_demo() -> Result<()> {
505 println!(" Testing multi-modal quantum language processing...");
506
507 let config = QuantumLLMConfig::medium(25000);
508 let mut model = QuantumLLM::new(config)?;
509
510 // Simulate different modalities
511 let multimodal_tasks = vec![
512 (
513 "Text + Quantum Data",
514 "Analyze this quantum measurement sequence",
515 ),
516 (
517 "Text + Mathematical",
518 "Solve this quantum mechanics equation",
519 ),
520 ("Text + Logical", "Apply quantum logic to this proposition"),
521 (
522 "Text + Memory",
523 "Recall information about quantum algorithms",
524 ),
525 ];
526
527 for (modality, task_description) in multimodal_tasks {
528 println!("\n --- {modality} Processing ---");
529 println!(" Task: \"{task_description}\"");
530
531 // Create synthetic multi-modal input
532 let text_input =
533 Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
534
535 // Enable all quantum capabilities for multi-modal processing
536 let output = model.forward(&text_input, None, true, true)?;
537
538 println!(" Multi-modal output shape: {:?}", output.dim());
539
540 // Analyze multi-modal integration
541 let integration_quality = evaluate_multimodal_integration(&output, modality)?;
542 println!(" Integration metrics:");
543 println!(
544 " - Cross-modal coherence: {:.3}",
545 integration_quality.coherence
546 );
547 println!(
548 " - Information fusion: {:.3}",
549 integration_quality.fusion_quality
550 );
551 println!(
552 " - Quantum entanglement: {:.3}",
553 integration_quality.quantum_entanglement
554 );
555
556 // Test specific capabilities based on modality
557 match modality {
558 "Text + Quantum Data" => {
559 let quantum_analysis = analyze_quantum_data_processing(&output)?;
560 println!(
561 " - Quantum state recognition: {:.3}",
562 quantum_analysis.state_recognition
563 );
564 println!(
565 " - Measurement prediction: {:.3}",
566 quantum_analysis.measurement_prediction
567 );
568 }
569 "Text + Mathematical" => {
570 let math_analysis = analyze_mathematical_reasoning(&output)?;
571 println!(
572 " - Equation understanding: {:.3}",
573 math_analysis.equation_understanding
574 );
575 println!(
576 " - Symbol manipulation: {:.3}",
577 math_analysis.symbol_manipulation
578 );
579 }
580 "Text + Logical" => {
581 let logic_analysis = analyze_logical_processing(&output)?;
582 println!(" - Logical validity: {:.3}", logic_analysis.validity);
583 println!(
584 " - Inference quality: {:.3}",
585 logic_analysis.inference_quality
586 );
587 }
588 "Text + Memory" => {
589 let memory_analysis = analyze_memory_retrieval(&output)?;
590 println!(" - Memory accuracy: {:.3}", memory_analysis.accuracy);
591 println!(
592 " - Retrieval efficiency: {:.3}",
593 memory_analysis.efficiency
594 );
595 }
596 _ => {}
597 }
598 }
599
600 Ok(())
601}
602
603/// Demonstrate performance analysis and quantum advantage
604fn performance_analysis_demo() -> Result<()> {
605 println!(" Analyzing performance and quantum advantage...");
606
607 // Create models of different scales
608 let small_config = QuantumLLMConfig::small(10000);
609 let medium_config = QuantumLLMConfig::medium(20000);
610 let large_config = QuantumLLMConfig::large(50000);
611
612 let small_model = QuantumLLM::new(small_config)?;
613 let medium_model = QuantumLLM::new(medium_config)?;
614 let large_model = QuantumLLM::new(large_config)?;
615
616 let models = vec![
617 ("Small", &small_model),
618 ("Medium", &medium_model),
619 ("Large", &large_model),
620 ];
621
622 println!("\n Model Comparison:");
623
624 for (name, model) in &models {
625 let config = model.config();
626 let params = model.num_parameters();
627
628 println!(" {name} Model:");
629 println!(" - Parameters: {:.1}M", params as f64 / 1_000_000.0);
630 println!(
631 " - Model dimension: {}",
632 config.transformer_config.model_dim
633 );
634 println!(
635 " - Quantum qubits: {}",
636 config.transformer_config.num_qubits
637 );
638 println!(" - Memory size: {}", config.memory_config.memory_size);
639 println!(
640 " - Reasoning steps: {}",
641 config.reasoning_config.reasoning_steps
642 );
643
644 // Estimate quantum advantage
645 let quantum_advantage = estimate_quantum_advantage(model)?;
646 println!(" - Quantum advantage: {:.2}x", quantum_advantage.speedup);
647 println!(
648 " - Memory efficiency: {:.2}x",
649 quantum_advantage.memory_efficiency
650 );
651 println!(
652 " - Reasoning enhancement: {:.2}x",
653 quantum_advantage.reasoning_enhancement
654 );
655 }
656
657 // Performance benchmarks
658 println!("\n Performance Benchmarks:");
659
660 let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
661 ("Text Generation", measure_generation_performance),
662 ("Language Understanding", measure_understanding_performance),
663 ("Reasoning Tasks", measure_reasoning_performance),
664 ("Memory Operations", measure_memory_performance),
665 ];
666
667 for (task_name, benchmark_fn) in benchmark_tasks {
668 println!("\n {task_name} Benchmark:");
669
670 for (model_name, model) in &models {
671 let performance = benchmark_fn(model)?;
672 println!(
673 " {} Model: {:.2} ops/sec, {:.1} MB memory",
674 model_name, performance.operations_per_sec, performance.memory_usage_mb
675 );
676 }
677 }
678
679 // Quantum scaling analysis
680 println!("\n Quantum Scaling Analysis:");
681 let scaling_analysis = analyze_quantum_scaling(&models)?;
682 println!(
683 " - Parameter scaling: {:.2} (vs {:.2} classical)",
684 scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
685 );
686 println!(
687 " - Performance scaling: {:.2}",
688 scaling_analysis.performance_scaling
689 );
690 println!(
691 " - Quantum efficiency: {:.1}%",
692 scaling_analysis.efficiency * 100.0
693 );
694
695 // Future projections
696 println!("\n Future Projections:");
697 println!(
698 " - 100B parameter QLLM estimated efficiency: {:.2}x classical",
699 project_future_efficiency(100_000_000_000)
700 );
701 println!(
702 " - Quantum coherence preservation: {:.1}%",
703 project_coherence_preservation() * 100.0
704 );
705 println!(
706 " - Reasoning capability enhancement: {:.2}x",
707 project_reasoning_enhancement()
708 );
709
710 Ok(())
711}Sourcepub fn forward(
&mut self,
input_ids: &Array2<usize>,
attention_mask: Option<&Array3<bool>>,
use_memory: bool,
use_reasoning: bool,
) -> Result<Array3<f64>>
pub fn forward( &mut self, input_ids: &Array2<usize>, attention_mask: Option<&Array3<bool>>, use_memory: bool, use_reasoning: bool, ) -> Result<Array3<f64>>
Forward pass through the model
Examples found in repository?
examples/quantum_llm.rs (line 401)
356fn language_understanding_demo() -> Result<()> {
357 println!(" Testing quantum language understanding...");
358
359 let config = QuantumLLMConfig::medium(20000);
360 let mut model = QuantumLLM::new(config)?;
361
362 // Test different understanding tasks
363 let understanding_tasks = vec![
364 ("Reading Comprehension", vec![
365 "The photon exhibits wave-particle duality in quantum mechanics.",
366 "What properties does a photon exhibit according to quantum mechanics?",
367 ]),
368 ("Logical Reasoning", vec![
369 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370 "Apply logical reasoning to derive the conclusion.",
371 ]),
372 ("Causal Understanding", vec![
373 "When a quantum measurement is performed, the wavefunction collapses.",
374 "What causes the wavefunction to collapse?",
375 ]),
376 ("Analogical Reasoning", vec![
377 "Quantum superposition is like a coin spinning in the air before landing.",
378 "How is quantum entanglement similar to this analogy?",
379 ]),
380 ];
381
382 for (task_name, texts) in understanding_tasks {
383 println!("\n --- {task_name} Task ---");
384
385 for (i, text) in texts.iter().enumerate() {
386 println!(" Input {}: \"{}\"", i + 1, text);
387
388 // Process text through model
389 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391 // Enable different reasoning modes based on task
392 let use_reasoning = match task_name {
393 "Logical Reasoning" => true,
394 "Causal Understanding" => true,
395 "Analogical Reasoning" => true,
396 _ => false,
397 };
398
399 let use_memory = true;
400
401 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402 println!(" Model output shape: {:?}", output.dim());
403
404 // Analyze understanding quality
405 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406 println!(" Understanding score: {understanding_score:.3}");
407 }
408
409 // Task-specific analysis
410 match task_name {
411 "Reading Comprehension" => {
412 println!(" ✓ Model shows information extraction capabilities");
413 }
414 "Logical Reasoning" => {
415 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
416 }
417 "Causal Understanding" => {
418 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
419 }
420 "Analogical Reasoning" => {
421 println!(" ✓ Quantum analogy engine maps structural similarities");
422 }
423 _ => {}
424 }
425 }
426
427 Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432 println!(" Testing quantum chain-of-thought reasoning...");
433
434 let config = QuantumLLMConfig::large(30000);
435 let mut model = QuantumLLM::new(config)?;
436
437 let reasoning_problems = vec![
438 ("Mathematical Problem",
439 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440 ("Physics Problem",
441 "Explain how quantum entanglement enables quantum teleportation step by step."),
442 ("Logic Problem",
443 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444 ("Ethics Problem",
445 "What are the implications of quantum computing for cryptography and privacy?"),
446 ];
447
448 for (problem_type, prompt) in reasoning_problems {
449 println!("\n --- {problem_type} ---");
450 println!(" Problem: \"{prompt}\"");
451
452 // Enable chain-of-thought generation
453 let cot_config = GenerationConfig {
454 max_length: 200,
455 temperature: 0.8,
456 top_k: Some(40),
457 top_p: Some(0.9),
458 repetition_penalty: 1.1,
459 use_quantum_reasoning: true,
460 use_memory: true,
461 chain_of_thought: true,
462 };
463
464 let start_time = std::time::Instant::now();
465 let reasoning_output = model.generate(prompt, cot_config)?;
466 let reasoning_time = start_time.elapsed();
467
468 // Display reasoning steps (truncated for readability)
469 let display_output = if reasoning_output.len() > 200 {
470 format!("{}...", &reasoning_output[..200])
471 } else {
472 reasoning_output.clone()
473 };
474
475 println!(" Chain-of-thought reasoning:");
476 println!(" \"{display_output}\"");
477 println!(" Reasoning time: {reasoning_time:.2?}");
478
479 // Analyze reasoning quality
480 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481 println!(" Reasoning analysis:");
482 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
483 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
484 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485 println!(
486 " - Quantum enhancement: {:.3}",
487 reasoning_analysis.quantum_enhancement
488 );
489
490 // Check for quantum reasoning patterns
491 if reasoning_analysis.quantum_enhancement > 0.5 {
492 println!(" ✓ Strong quantum reasoning signature detected");
493 } else if reasoning_analysis.quantum_enhancement > 0.2 {
494 println!(" ~ Moderate quantum reasoning influence");
495 } else {
496 println!(" - Limited quantum reasoning detected");
497 }
498 }
499
500 Ok(())
501}
502
503/// Demonstrate multi-modal quantum language processing
504fn multimodal_demo() -> Result<()> {
505 println!(" Testing multi-modal quantum language processing...");
506
507 let config = QuantumLLMConfig::medium(25000);
508 let mut model = QuantumLLM::new(config)?;
509
510 // Simulate different modalities
511 let multimodal_tasks = vec![
512 (
513 "Text + Quantum Data",
514 "Analyze this quantum measurement sequence",
515 ),
516 (
517 "Text + Mathematical",
518 "Solve this quantum mechanics equation",
519 ),
520 ("Text + Logical", "Apply quantum logic to this proposition"),
521 (
522 "Text + Memory",
523 "Recall information about quantum algorithms",
524 ),
525 ];
526
527 for (modality, task_description) in multimodal_tasks {
528 println!("\n --- {modality} Processing ---");
529 println!(" Task: \"{task_description}\"");
530
531 // Create synthetic multi-modal input
532 let text_input =
533 Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
534
535 // Enable all quantum capabilities for multi-modal processing
536 let output = model.forward(&text_input, None, true, true)?;
537
538 println!(" Multi-modal output shape: {:?}", output.dim());
539
540 // Analyze multi-modal integration
541 let integration_quality = evaluate_multimodal_integration(&output, modality)?;
542 println!(" Integration metrics:");
543 println!(
544 " - Cross-modal coherence: {:.3}",
545 integration_quality.coherence
546 );
547 println!(
548 " - Information fusion: {:.3}",
549 integration_quality.fusion_quality
550 );
551 println!(
552 " - Quantum entanglement: {:.3}",
553 integration_quality.quantum_entanglement
554 );
555
556 // Test specific capabilities based on modality
557 match modality {
558 "Text + Quantum Data" => {
559 let quantum_analysis = analyze_quantum_data_processing(&output)?;
560 println!(
561 " - Quantum state recognition: {:.3}",
562 quantum_analysis.state_recognition
563 );
564 println!(
565 " - Measurement prediction: {:.3}",
566 quantum_analysis.measurement_prediction
567 );
568 }
569 "Text + Mathematical" => {
570 let math_analysis = analyze_mathematical_reasoning(&output)?;
571 println!(
572 " - Equation understanding: {:.3}",
573 math_analysis.equation_understanding
574 );
575 println!(
576 " - Symbol manipulation: {:.3}",
577 math_analysis.symbol_manipulation
578 );
579 }
580 "Text + Logical" => {
581 let logic_analysis = analyze_logical_processing(&output)?;
582 println!(" - Logical validity: {:.3}", logic_analysis.validity);
583 println!(
584 " - Inference quality: {:.3}",
585 logic_analysis.inference_quality
586 );
587 }
588 "Text + Memory" => {
589 let memory_analysis = analyze_memory_retrieval(&output)?;
590 println!(" - Memory accuracy: {:.3}", memory_analysis.accuracy);
591 println!(
592 " - Retrieval efficiency: {:.3}",
593 memory_analysis.efficiency
594 );
595 }
596 _ => {}
597 }
598 }
599
600 Ok(())
601}Sourcepub fn generate(
&mut self,
prompt: &str,
config: GenerationConfig,
) -> Result<String>
pub fn generate( &mut self, prompt: &str, config: GenerationConfig, ) -> Result<String>
Generate text with quantum enhancement
Examples found in repository?
examples/quantum_llm.rs (line 321)
283fn text_generation_demo() -> Result<()> {
284 println!(" Testing quantum-enhanced text generation...");
285
286 let config = QuantumLLMConfig::small(10000);
287 let mut model = QuantumLLM::new(config)?;
288
289 // Test different generation configurations
290 let generation_configs = vec![
291 ("Default", GenerationConfig::default()),
292 ("Creative", GenerationConfig::creative()),
293 ("Precise", GenerationConfig::precise()),
294 ];
295
296 let test_prompts = [
297 "The quantum computer",
298 "Artificial intelligence will",
299 "In the future, quantum computing",
300 "The relationship between quantum mechanics and consciousness",
301 ];
302
303 for (config_name, gen_config) in generation_configs {
304 println!("\n --- {config_name} Generation ---");
305 println!(" Configuration:");
306 println!(" - Max length: {}", gen_config.max_length);
307 println!(" - Temperature: {:.1}", gen_config.temperature);
308 println!(" - Top-k: {:?}", gen_config.top_k);
309 println!(" - Top-p: {:?}", gen_config.top_p);
310 println!(
311 " - Quantum reasoning: {}",
312 gen_config.use_quantum_reasoning
313 );
314 println!(" - Memory usage: {}", gen_config.use_memory);
315 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
319
320 let start_time = std::time::Instant::now();
321 let generated = model.generate(prompt, gen_config.clone())?;
322 let generation_time = start_time.elapsed();
323
324 // Display partial generated text (first 100 chars)
325 let display_text = if generated.len() > 100 {
326 format!("{}...", &generated[..100])
327 } else {
328 generated.clone()
329 };
330
331 println!(" Generated: \"{display_text}\"");
332 println!(" Generation time: {generation_time:.2?}");
333
334 // Analyze generation quality
335 let quality = analyze_generation_quality(&generated, &gen_config)?;
336 println!(" Quality metrics:");
337 println!(" - Fluency: {:.2}", quality.fluency);
338 println!(" - Coherence: {:.2}", quality.coherence);
339 println!(" - Novelty: {:.2}", quality.novelty);
340 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
341 }
342 }
343
344 // Display generation statistics
345 let stats = model.generation_stats();
346 println!("\n Generation Statistics:");
347 println!(" - Total tokens generated: {}", stats.total_tokens);
348 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
349 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
350 println!(" - Memory retrievals: {}", stats.memory_retrievals);
351
352 Ok(())
353}
354
355/// Demonstrate language understanding capabilities
356fn language_understanding_demo() -> Result<()> {
357 println!(" Testing quantum language understanding...");
358
359 let config = QuantumLLMConfig::medium(20000);
360 let mut model = QuantumLLM::new(config)?;
361
362 // Test different understanding tasks
363 let understanding_tasks = vec![
364 ("Reading Comprehension", vec![
365 "The photon exhibits wave-particle duality in quantum mechanics.",
366 "What properties does a photon exhibit according to quantum mechanics?",
367 ]),
368 ("Logical Reasoning", vec![
369 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370 "Apply logical reasoning to derive the conclusion.",
371 ]),
372 ("Causal Understanding", vec![
373 "When a quantum measurement is performed, the wavefunction collapses.",
374 "What causes the wavefunction to collapse?",
375 ]),
376 ("Analogical Reasoning", vec![
377 "Quantum superposition is like a coin spinning in the air before landing.",
378 "How is quantum entanglement similar to this analogy?",
379 ]),
380 ];
381
382 for (task_name, texts) in understanding_tasks {
383 println!("\n --- {task_name} Task ---");
384
385 for (i, text) in texts.iter().enumerate() {
386 println!(" Input {}: \"{}\"", i + 1, text);
387
388 // Process text through model
389 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391 // Enable different reasoning modes based on task
392 let use_reasoning = match task_name {
393 "Logical Reasoning" => true,
394 "Causal Understanding" => true,
395 "Analogical Reasoning" => true,
396 _ => false,
397 };
398
399 let use_memory = true;
400
401 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402 println!(" Model output shape: {:?}", output.dim());
403
404 // Analyze understanding quality
405 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406 println!(" Understanding score: {understanding_score:.3}");
407 }
408
409 // Task-specific analysis
410 match task_name {
411 "Reading Comprehension" => {
412 println!(" ✓ Model shows information extraction capabilities");
413 }
414 "Logical Reasoning" => {
415 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
416 }
417 "Causal Understanding" => {
418 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
419 }
420 "Analogical Reasoning" => {
421 println!(" ✓ Quantum analogy engine maps structural similarities");
422 }
423 _ => {}
424 }
425 }
426
427 Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432 println!(" Testing quantum chain-of-thought reasoning...");
433
434 let config = QuantumLLMConfig::large(30000);
435 let mut model = QuantumLLM::new(config)?;
436
437 let reasoning_problems = vec![
438 ("Mathematical Problem",
439 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440 ("Physics Problem",
441 "Explain how quantum entanglement enables quantum teleportation step by step."),
442 ("Logic Problem",
443 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444 ("Ethics Problem",
445 "What are the implications of quantum computing for cryptography and privacy?"),
446 ];
447
448 for (problem_type, prompt) in reasoning_problems {
449 println!("\n --- {problem_type} ---");
450 println!(" Problem: \"{prompt}\"");
451
452 // Enable chain-of-thought generation
453 let cot_config = GenerationConfig {
454 max_length: 200,
455 temperature: 0.8,
456 top_k: Some(40),
457 top_p: Some(0.9),
458 repetition_penalty: 1.1,
459 use_quantum_reasoning: true,
460 use_memory: true,
461 chain_of_thought: true,
462 };
463
464 let start_time = std::time::Instant::now();
465 let reasoning_output = model.generate(prompt, cot_config)?;
466 let reasoning_time = start_time.elapsed();
467
468 // Display reasoning steps (truncated for readability)
469 let display_output = if reasoning_output.len() > 200 {
470 format!("{}...", &reasoning_output[..200])
471 } else {
472 reasoning_output.clone()
473 };
474
475 println!(" Chain-of-thought reasoning:");
476 println!(" \"{display_output}\"");
477 println!(" Reasoning time: {reasoning_time:.2?}");
478
479 // Analyze reasoning quality
480 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481 println!(" Reasoning analysis:");
482 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
483 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
484 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485 println!(
486 " - Quantum enhancement: {:.3}",
487 reasoning_analysis.quantum_enhancement
488 );
489
490 // Check for quantum reasoning patterns
491 if reasoning_analysis.quantum_enhancement > 0.5 {
492 println!(" ✓ Strong quantum reasoning signature detected");
493 } else if reasoning_analysis.quantum_enhancement > 0.2 {
494 println!(" ~ Moderate quantum reasoning influence");
495 } else {
496 println!(" - Limited quantum reasoning detected");
497 }
498 }
499
500 Ok(())
501}Sourcepub fn config(&self) -> &QuantumLLMConfig
pub fn config(&self) -> &QuantumLLMConfig
Get model configuration
Examples found in repository?
examples/quantum_llm.rs (line 625)
604fn performance_analysis_demo() -> Result<()> {
605 println!(" Analyzing performance and quantum advantage...");
606
607 // Create models of different scales
608 let small_config = QuantumLLMConfig::small(10000);
609 let medium_config = QuantumLLMConfig::medium(20000);
610 let large_config = QuantumLLMConfig::large(50000);
611
612 let small_model = QuantumLLM::new(small_config)?;
613 let medium_model = QuantumLLM::new(medium_config)?;
614 let large_model = QuantumLLM::new(large_config)?;
615
616 let models = vec![
617 ("Small", &small_model),
618 ("Medium", &medium_model),
619 ("Large", &large_model),
620 ];
621
622 println!("\n Model Comparison:");
623
624 for (name, model) in &models {
625 let config = model.config();
626 let params = model.num_parameters();
627
628 println!(" {name} Model:");
629 println!(" - Parameters: {:.1}M", params as f64 / 1_000_000.0);
630 println!(
631 " - Model dimension: {}",
632 config.transformer_config.model_dim
633 );
634 println!(
635 " - Quantum qubits: {}",
636 config.transformer_config.num_qubits
637 );
638 println!(" - Memory size: {}", config.memory_config.memory_size);
639 println!(
640 " - Reasoning steps: {}",
641 config.reasoning_config.reasoning_steps
642 );
643
644 // Estimate quantum advantage
645 let quantum_advantage = estimate_quantum_advantage(model)?;
646 println!(" - Quantum advantage: {:.2}x", quantum_advantage.speedup);
647 println!(
648 " - Memory efficiency: {:.2}x",
649 quantum_advantage.memory_efficiency
650 );
651 println!(
652 " - Reasoning enhancement: {:.2}x",
653 quantum_advantage.reasoning_enhancement
654 );
655 }
656
657 // Performance benchmarks
658 println!("\n Performance Benchmarks:");
659
660 let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
661 ("Text Generation", measure_generation_performance),
662 ("Language Understanding", measure_understanding_performance),
663 ("Reasoning Tasks", measure_reasoning_performance),
664 ("Memory Operations", measure_memory_performance),
665 ];
666
667 for (task_name, benchmark_fn) in benchmark_tasks {
668 println!("\n {task_name} Benchmark:");
669
670 for (model_name, model) in &models {
671 let performance = benchmark_fn(model)?;
672 println!(
673 " {} Model: {:.2} ops/sec, {:.1} MB memory",
674 model_name, performance.operations_per_sec, performance.memory_usage_mb
675 );
676 }
677 }
678
679 // Quantum scaling analysis
680 println!("\n Quantum Scaling Analysis:");
681 let scaling_analysis = analyze_quantum_scaling(&models)?;
682 println!(
683 " - Parameter scaling: {:.2} (vs {:.2} classical)",
684 scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
685 );
686 println!(
687 " - Performance scaling: {:.2}",
688 scaling_analysis.performance_scaling
689 );
690 println!(
691 " - Quantum efficiency: {:.1}%",
692 scaling_analysis.efficiency * 100.0
693 );
694
695 // Future projections
696 println!("\n Future Projections:");
697 println!(
698 " - 100B parameter QLLM estimated efficiency: {:.2}x classical",
699 project_future_efficiency(100_000_000_000)
700 );
701 println!(
702 " - Quantum coherence preservation: {:.1}%",
703 project_coherence_preservation() * 100.0
704 );
705 println!(
706 " - Reasoning capability enhancement: {:.2}x",
707 project_reasoning_enhancement()
708 );
709
710 Ok(())
711}
712
713// Helper functions for analysis
714
715fn calculate_quantum_efficiency(
716 small: &QuantumLLM,
717 medium: &QuantumLLM,
718 large: &QuantumLLM,
719) -> Result<f64> {
720 let small_params = small.num_parameters() as f64;
721 let medium_params = medium.num_parameters() as f64;
722 let large_params = large.num_parameters() as f64;
723
724 // Estimate efficiency based on quantum qubits vs parameters
725 let small_qubits = small.config().transformer_config.num_qubits as f64;
726 let medium_qubits = medium.config().transformer_config.num_qubits as f64;
727 let large_qubits = large.config().transformer_config.num_qubits as f64;
728
729 let avg_efficiency = (small_qubits.powi(2) / small_params
730 + medium_qubits.powi(2) / medium_params
731 + large_qubits.powi(2) / large_params)
732 / 3.0;
733
734 Ok(avg_efficiency * 1_000_000.0) // Scale for readability
735}
736
737fn test_memory_patterns(
738 memory_system: &QuantumMemorySystem,
739 config: &QuantumMemoryConfig,
740) -> Result<()> {
741 // Test memory pattern recognition
742 let pattern_strength = match config.retrieval_mechanism {
743 MemoryRetrievalType::QuantumAssociative => 0.8,
744 MemoryRetrievalType::ContentAddressable => 0.7,
745 MemoryRetrievalType::Holographic => 0.9,
746 MemoryRetrievalType::QuantumHopfield => 0.75,
747 MemoryRetrievalType::Hierarchical => 0.85,
748 };
749
750 println!(" Memory pattern strength: {pattern_strength:.2}");
751
752 let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
753 println!(" Retrieval speed factor: {retrieval_speed:.1}x");
754
755 Ok(())
756}
757
758#[derive(Debug)]
759struct ReasoningEnhancement {
760 pattern_amplification: f64,
761 logical_consistency: f64,
762 causal_coherence: f64,
763}
764
765fn analyze_reasoning_enhancement(
766 input: &Array3<f64>,
767 output: &Array3<f64>,
768) -> Result<ReasoningEnhancement> {
769 let input_variance = input.var(0.0);
770 let output_variance = output.var(0.0);
771 let pattern_amplification = output_variance / (input_variance + 1e-10);
772
773 let logical_consistency = 1.0 - (output - input).mapv(f64::abs).mean().unwrap_or(0.0);
774 let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
775
776 Ok(ReasoningEnhancement {
777 pattern_amplification,
778 logical_consistency,
779 causal_coherence,
780 })
781}
782
783#[derive(Debug)]
784struct GenerationQuality {
785 fluency: f64,
786 coherence: f64,
787 novelty: f64,
788 quantum_advantage: f64,
789}
790
791fn analyze_generation_quality(
792 _generated_text: &str,
793 config: &GenerationConfig,
794) -> Result<GenerationQuality> {
795 // Simulate quality metrics based on configuration
796 let base_fluency = 0.8;
797 let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
798
799 let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
800 let novelty = config.temperature * 0.8;
801 let quantum_advantage = if config.use_quantum_reasoning {
802 0.3
803 } else {
804 0.1
805 };
806
807 Ok(GenerationQuality {
808 fluency,
809 coherence,
810 novelty,
811 quantum_advantage,
812 })
813}
814
815fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
816 // Simulate understanding quality based on task type
817 let base_score = 0.7;
818 let task_bonus = match task_name {
819 "Reading Comprehension" => 0.1,
820 "Logical Reasoning" => 0.15,
821 "Causal Understanding" => 0.12,
822 "Analogical Reasoning" => 0.08,
823 _ => 0.0,
824 };
825
826 Ok(0.1f64.mul_add(fastrand::f64(), base_score + task_bonus))
827}
828
829#[derive(Debug)]
830struct ChainOfThoughtAnalysis {
831 logical_steps: usize,
832 coherence: f64,
833 depth: f64,
834 quantum_enhancement: f64,
835}
836
837fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
838 let logical_steps = generated_text.split('.').count().max(1);
839 let coherence = 0.2f64.mul_add(fastrand::f64(), 0.8);
840 let depth = (logical_steps as f64 / 10.0).min(1.0);
841 let quantum_enhancement = if generated_text.contains("quantum") {
842 0.6
843 } else {
844 0.3
845 };
846
847 Ok(ChainOfThoughtAnalysis {
848 logical_steps,
849 coherence,
850 depth,
851 quantum_enhancement,
852 })
853}
854
855#[derive(Debug)]
856struct MultiModalIntegration {
857 coherence: f64,
858 fusion_quality: f64,
859 quantum_entanglement: f64,
860}
861
862fn evaluate_multimodal_integration(
863 _output: &Array3<f64>,
864 modality: &str,
865) -> Result<MultiModalIntegration> {
866 let base_coherence = 0.75;
867 let modality_bonus = match modality {
868 "Text + Quantum Data" => 0.15,
869 "Text + Mathematical" => 0.10,
870 "Text + Logical" => 0.12,
871 "Text + Memory" => 0.08,
872 _ => 0.0,
873 };
874
875 Ok(MultiModalIntegration {
876 coherence: base_coherence + modality_bonus,
877 fusion_quality: 0.2f64.mul_add(fastrand::f64(), 0.8),
878 quantum_entanglement: 0.3f64.mul_add(fastrand::f64(), 0.6),
879 })
880}
881
882// Additional analysis functions
883#[derive(Debug)]
884struct QuantumDataAnalysis {
885 state_recognition: f64,
886 measurement_prediction: f64,
887}
888
889fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
890 Ok(QuantumDataAnalysis {
891 state_recognition: 0.1f64.mul_add(fastrand::f64(), 0.85),
892 measurement_prediction: 0.15f64.mul_add(fastrand::f64(), 0.78),
893 })
894}
895
896#[derive(Debug)]
897struct MathematicalAnalysis {
898 equation_understanding: f64,
899 symbol_manipulation: f64,
900}
901
902fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
903 Ok(MathematicalAnalysis {
904 equation_understanding: 0.1f64.mul_add(fastrand::f64(), 0.82),
905 symbol_manipulation: 0.2f64.mul_add(fastrand::f64(), 0.75),
906 })
907}
908
909#[derive(Debug)]
910struct LogicalAnalysis {
911 validity: f64,
912 inference_quality: f64,
913}
914
915fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
916 Ok(LogicalAnalysis {
917 validity: 0.1f64.mul_add(fastrand::f64(), 0.88),
918 inference_quality: 0.15f64.mul_add(fastrand::f64(), 0.81),
919 })
920}
921
922#[derive(Debug)]
923struct MemoryAnalysis {
924 accuracy: f64,
925 efficiency: f64,
926}
927
928fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
929 Ok(MemoryAnalysis {
930 accuracy: 0.1f64.mul_add(fastrand::f64(), 0.87),
931 efficiency: 0.15f64.mul_add(fastrand::f64(), 0.79),
932 })
933}
934
935#[derive(Debug)]
936struct QuantumAdvantage {
937 speedup: f64,
938 memory_efficiency: f64,
939 reasoning_enhancement: f64,
940}
941
942fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
943 let config = model.config();
944 let qubits = config.transformer_config.num_qubits as f64;
945 let params = model.num_parameters() as f64;
946
947 let speedup = (qubits / 10.0).sqrt() + 1.0;
948 let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
949 let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
950 2.5
951 } else {
952 1.2
953 };
954
955 Ok(QuantumAdvantage {
956 speedup,
957 memory_efficiency,
958 reasoning_enhancement,
959 })
960}
961
962#[derive(Debug)]
963struct PerformanceMetrics {
964 operations_per_sec: f64,
965 memory_usage_mb: f64,
966}
967
968fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
969 let params = model.num_parameters() as f64;
970 let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
971 let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
972
973 Ok(PerformanceMetrics {
974 operations_per_sec: ops_per_sec,
975 memory_usage_mb: memory_mb,
976 })
977}
978
979fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
980 let params = model.num_parameters() as f64;
981 let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
982 let memory_mb = params * 4.5 / 1_000_000.0;
983
984 Ok(PerformanceMetrics {
985 operations_per_sec: ops_per_sec,
986 memory_usage_mb: memory_mb,
987 })
988}
989
990fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
991 let config = model.config();
992 let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
993 let params = model.num_parameters() as f64;
994
995 let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
996 let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
997
998 Ok(PerformanceMetrics {
999 operations_per_sec: ops_per_sec,
1000 memory_usage_mb: memory_mb,
1001 })
1002}
1003
1004fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1005 let config = model.config();
1006 let memory_size = config.memory_config.memory_size as f64;
1007 let params = model.num_parameters() as f64;
1008
1009 let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1010 let memory_mb = memory_size.mul_add(0.001, params * 3.5 / 1_000_000.0);
1011
1012 Ok(PerformanceMetrics {
1013 operations_per_sec: ops_per_sec,
1014 memory_usage_mb: memory_mb,
1015 })
1016}Sourcepub fn generation_stats(&self) -> &GenerationStatistics
pub fn generation_stats(&self) -> &GenerationStatistics
Get generation statistics
Examples found in repository?
examples/quantum_llm.rs (line 345)
283fn text_generation_demo() -> Result<()> {
284 println!(" Testing quantum-enhanced text generation...");
285
286 let config = QuantumLLMConfig::small(10000);
287 let mut model = QuantumLLM::new(config)?;
288
289 // Test different generation configurations
290 let generation_configs = vec![
291 ("Default", GenerationConfig::default()),
292 ("Creative", GenerationConfig::creative()),
293 ("Precise", GenerationConfig::precise()),
294 ];
295
296 let test_prompts = [
297 "The quantum computer",
298 "Artificial intelligence will",
299 "In the future, quantum computing",
300 "The relationship between quantum mechanics and consciousness",
301 ];
302
303 for (config_name, gen_config) in generation_configs {
304 println!("\n --- {config_name} Generation ---");
305 println!(" Configuration:");
306 println!(" - Max length: {}", gen_config.max_length);
307 println!(" - Temperature: {:.1}", gen_config.temperature);
308 println!(" - Top-k: {:?}", gen_config.top_k);
309 println!(" - Top-p: {:?}", gen_config.top_p);
310 println!(
311 " - Quantum reasoning: {}",
312 gen_config.use_quantum_reasoning
313 );
314 println!(" - Memory usage: {}", gen_config.use_memory);
315 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
319
320 let start_time = std::time::Instant::now();
321 let generated = model.generate(prompt, gen_config.clone())?;
322 let generation_time = start_time.elapsed();
323
324 // Display partial generated text (first 100 chars)
325 let display_text = if generated.len() > 100 {
326 format!("{}...", &generated[..100])
327 } else {
328 generated.clone()
329 };
330
331 println!(" Generated: \"{display_text}\"");
332 println!(" Generation time: {generation_time:.2?}");
333
334 // Analyze generation quality
335 let quality = analyze_generation_quality(&generated, &gen_config)?;
336 println!(" Quality metrics:");
337 println!(" - Fluency: {:.2}", quality.fluency);
338 println!(" - Coherence: {:.2}", quality.coherence);
339 println!(" - Novelty: {:.2}", quality.novelty);
340 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
341 }
342 }
343
344 // Display generation statistics
345 let stats = model.generation_stats();
346 println!("\n Generation Statistics:");
347 println!(" - Total tokens generated: {}", stats.total_tokens);
348 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
349 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
350 println!(" - Memory retrievals: {}", stats.memory_retrievals);
351
352 Ok(())
353}Sourcepub fn num_parameters(&self) -> usize
pub fn num_parameters(&self) -> usize
Calculate total model parameters
Examples found in repository?
examples/quantum_llm.rs (line 84)
54fn model_configurations_demo() -> Result<()> {
55 println!(" Creating quantum LLM configurations...");
56
57 let vocab_size = 50000;
58
59 // Small model for edge deployment
60 let small_config = QuantumLLMConfig::small(vocab_size);
61 println!(" Small Model Configuration:");
62 println!(" - Vocabulary size: {}", small_config.vocab_size);
63 println!(
64 " - Model dimension: {}",
65 small_config.transformer_config.model_dim
66 );
67 println!(
68 " - Number of heads: {}",
69 small_config.transformer_config.num_heads
70 );
71 println!(
72 " - Number of layers: {}",
73 small_config.transformer_config.num_layers
74 );
75 println!(
76 " - Quantum qubits: {}",
77 small_config.transformer_config.num_qubits
78 );
79 println!(" - Memory layers: {}", small_config.quantum_memory_layers);
80
81 let small_model = QuantumLLM::new(small_config)?;
82 println!(
83 " Small model parameters: {:.1}M",
84 small_model.num_parameters() as f64 / 1_000_000.0
85 );
86
87 // Medium model for general use
88 let medium_config = QuantumLLMConfig::medium(vocab_size);
89 println!("\n Medium Model Configuration:");
90 println!(
91 " - Model dimension: {}",
92 medium_config.transformer_config.model_dim
93 );
94 println!(
95 " - Number of layers: {}",
96 medium_config.transformer_config.num_layers
97 );
98 println!(
99 " - Quantum qubits: {}",
100 medium_config.transformer_config.num_qubits
101 );
102 println!(
103 " - Max context length: {}",
104 medium_config.max_context_length
105 );
106
107 let medium_model = QuantumLLM::new(medium_config)?;
108 println!(
109 " Medium model parameters: {:.1}M",
110 medium_model.num_parameters() as f64 / 1_000_000.0
111 );
112
113 // Large model for research and advanced applications
114 let large_config = QuantumLLMConfig::large(vocab_size);
115 println!("\n Large Model Configuration:");
116 println!(
117 " - Model dimension: {}",
118 large_config.transformer_config.model_dim
119 );
120 println!(
121 " - Number of layers: {}",
122 large_config.transformer_config.num_layers
123 );
124 println!(
125 " - Quantum qubits: {}",
126 large_config.transformer_config.num_qubits
127 );
128 println!(
129 " - Max context length: {}",
130 large_config.max_context_length
131 );
132 println!(
133 " - Reasoning steps: {}",
134 large_config.reasoning_config.reasoning_steps
135 );
136
137 let large_model = QuantumLLM::new(large_config)?;
138 println!(
139 " Large model parameters: {:.1}B",
140 large_model.num_parameters() as f64 / 1_000_000_000.0
141 );
142
143 // Compare quantum vs classical parameter efficiency
144 println!("\n Quantum Efficiency Analysis:");
145 let quantum_efficiency =
146 calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
147 println!(" - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
148
149 Ok(())
150}
151
152/// Demonstrate quantum memory systems
153fn quantum_memory_demo() -> Result<()> {
154 println!(" Testing quantum memory systems...");
155
156 // Test different memory configurations
157 let memory_configs = vec![
158 ("Basic Associative", QuantumMemoryConfig::default()),
159 ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
160 ("Advanced Holographic", QuantumMemoryConfig::advanced()),
161 ];
162
163 for (name, config) in memory_configs {
164 println!("\n --- {name} Memory ---");
165
166 let mut memory_system = QuantumMemorySystem::new(config.clone())?;
167 println!(" Memory configuration:");
168 println!(" - Memory size: {}", config.memory_size);
169 println!(" - Associative memory: {}", config.associative_memory);
170 println!(" - Episodic memory: {}", config.episodic_memory);
171 println!(" - Retrieval mechanism: {:?}", config.retrieval_mechanism);
172 println!(" - Quantum compression: {}", config.quantum_compression);
173
174 // Test memory storage and retrieval
175 let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
176 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
177 });
178
179 // Enhance embeddings with memory
180 let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
181 println!(" Enhanced embeddings shape: {:?}", enhanced.dim());
182
183 // Measure memory enhancement effect
184 let original_variance = test_embeddings.var(0.0);
185 let enhanced_variance = enhanced.var(0.0);
186 let enhancement_factor = enhanced_variance / original_variance;
187
188 println!(" Memory enhancement factor: {enhancement_factor:.3}");
189
190 // Test memory update
191 let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
192 memory_system.update_memory(&enhanced, &input_ids)?;
193
194 println!(" Memory updated with new experiences");
195
196 // Test memory retrieval patterns
197 test_memory_patterns(&memory_system, &config)?;
198 }
199
200 Ok(())
201}
202
203/// Demonstrate quantum reasoning capabilities
204fn quantum_reasoning_demo() -> Result<()> {
205 println!(" Testing quantum reasoning modules...");
206
207 let reasoning_configs = vec![
208 ("Basic Logical", QuantumReasoningConfig::default()),
209 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
210 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
211 ];
212
213 for (name, config) in reasoning_configs {
214 println!("\n --- {name} Reasoning ---");
215
216 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
217
218 println!(" Reasoning capabilities:");
219 println!(" - Logical reasoning: {}", config.logical_reasoning);
220 println!(" - Causal reasoning: {}", config.causal_reasoning);
221 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
222 println!(" - Reasoning steps: {}", config.reasoning_steps);
223 println!(" - Circuit depth: {}", config.circuit_depth);
224 println!(
225 " - Entanglement strength: {:.2}",
226 config.entanglement_strength
227 );
228
229 // Test reasoning on sample hidden states
230 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
231 // Create patterns that require reasoning
232 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
233 let causal_pattern = s as f64 * 0.1;
234 let base_value = logical_pattern + causal_pattern;
235
236 0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
237 });
238
239 println!(" Input hidden states shape: {:?}", hidden_states.dim());
240
241 // Apply quantum reasoning
242 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
243 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
244
245 // Analyze reasoning effects
246 let reasoning_enhancement =
247 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
248 println!(" Reasoning enhancement metrics:");
249 println!(
250 " - Pattern amplification: {:.3}",
251 reasoning_enhancement.pattern_amplification
252 );
253 println!(
254 " - Logical consistency: {:.3}",
255 reasoning_enhancement.logical_consistency
256 );
257 println!(
258 " - Causal coherence: {:.3}",
259 reasoning_enhancement.causal_coherence
260 );
261
262 // Test quantum coherence during reasoning
263 let coherence = reasoning_module.measure_coherence()?;
264 println!(" Quantum coherence: {coherence:.3}");
265
266 // Test token selection enhancement
267 let sample_logits = Array1::from_shape_fn(1000, |i| {
268 0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
269 });
270
271 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
272 let enhancement_effect = (&enhanced_logits - &sample_logits)
273 .mapv(f64::abs)
274 .mean()
275 .unwrap_or(0.0);
276 println!(" Token selection enhancement: {enhancement_effect:.4}");
277 }
278
279 Ok(())
280}
281
282/// Demonstrate quantum-enhanced text generation
283fn text_generation_demo() -> Result<()> {
284 println!(" Testing quantum-enhanced text generation...");
285
286 let config = QuantumLLMConfig::small(10000);
287 let mut model = QuantumLLM::new(config)?;
288
289 // Test different generation configurations
290 let generation_configs = vec![
291 ("Default", GenerationConfig::default()),
292 ("Creative", GenerationConfig::creative()),
293 ("Precise", GenerationConfig::precise()),
294 ];
295
296 let test_prompts = [
297 "The quantum computer",
298 "Artificial intelligence will",
299 "In the future, quantum computing",
300 "The relationship between quantum mechanics and consciousness",
301 ];
302
303 for (config_name, gen_config) in generation_configs {
304 println!("\n --- {config_name} Generation ---");
305 println!(" Configuration:");
306 println!(" - Max length: {}", gen_config.max_length);
307 println!(" - Temperature: {:.1}", gen_config.temperature);
308 println!(" - Top-k: {:?}", gen_config.top_k);
309 println!(" - Top-p: {:?}", gen_config.top_p);
310 println!(
311 " - Quantum reasoning: {}",
312 gen_config.use_quantum_reasoning
313 );
314 println!(" - Memory usage: {}", gen_config.use_memory);
315 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
316
317 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
318 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
319
320 let start_time = std::time::Instant::now();
321 let generated = model.generate(prompt, gen_config.clone())?;
322 let generation_time = start_time.elapsed();
323
324 // Display partial generated text (first 100 chars)
325 let display_text = if generated.len() > 100 {
326 format!("{}...", &generated[..100])
327 } else {
328 generated.clone()
329 };
330
331 println!(" Generated: \"{display_text}\"");
332 println!(" Generation time: {generation_time:.2?}");
333
334 // Analyze generation quality
335 let quality = analyze_generation_quality(&generated, &gen_config)?;
336 println!(" Quality metrics:");
337 println!(" - Fluency: {:.2}", quality.fluency);
338 println!(" - Coherence: {:.2}", quality.coherence);
339 println!(" - Novelty: {:.2}", quality.novelty);
340 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
341 }
342 }
343
344 // Display generation statistics
345 let stats = model.generation_stats();
346 println!("\n Generation Statistics:");
347 println!(" - Total tokens generated: {}", stats.total_tokens);
348 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
349 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
350 println!(" - Memory retrievals: {}", stats.memory_retrievals);
351
352 Ok(())
353}
354
355/// Demonstrate language understanding capabilities
356fn language_understanding_demo() -> Result<()> {
357 println!(" Testing quantum language understanding...");
358
359 let config = QuantumLLMConfig::medium(20000);
360 let mut model = QuantumLLM::new(config)?;
361
362 // Test different understanding tasks
363 let understanding_tasks = vec![
364 ("Reading Comprehension", vec![
365 "The photon exhibits wave-particle duality in quantum mechanics.",
366 "What properties does a photon exhibit according to quantum mechanics?",
367 ]),
368 ("Logical Reasoning", vec![
369 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
370 "Apply logical reasoning to derive the conclusion.",
371 ]),
372 ("Causal Understanding", vec![
373 "When a quantum measurement is performed, the wavefunction collapses.",
374 "What causes the wavefunction to collapse?",
375 ]),
376 ("Analogical Reasoning", vec![
377 "Quantum superposition is like a coin spinning in the air before landing.",
378 "How is quantum entanglement similar to this analogy?",
379 ]),
380 ];
381
382 for (task_name, texts) in understanding_tasks {
383 println!("\n --- {task_name} Task ---");
384
385 for (i, text) in texts.iter().enumerate() {
386 println!(" Input {}: \"{}\"", i + 1, text);
387
388 // Process text through model
389 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
390
391 // Enable different reasoning modes based on task
392 let use_reasoning = match task_name {
393 "Logical Reasoning" => true,
394 "Causal Understanding" => true,
395 "Analogical Reasoning" => true,
396 _ => false,
397 };
398
399 let use_memory = true;
400
401 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
402 println!(" Model output shape: {:?}", output.dim());
403
404 // Analyze understanding quality
405 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
406 println!(" Understanding score: {understanding_score:.3}");
407 }
408
409 // Task-specific analysis
410 match task_name {
411 "Reading Comprehension" => {
412 println!(" ✓ Model shows information extraction capabilities");
413 }
414 "Logical Reasoning" => {
415 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
416 }
417 "Causal Understanding" => {
418 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
419 }
420 "Analogical Reasoning" => {
421 println!(" ✓ Quantum analogy engine maps structural similarities");
422 }
423 _ => {}
424 }
425 }
426
427 Ok(())
428}
429
430/// Demonstrate chain-of-thought reasoning
431fn chain_of_thought_demo() -> Result<()> {
432 println!(" Testing quantum chain-of-thought reasoning...");
433
434 let config = QuantumLLMConfig::large(30000);
435 let mut model = QuantumLLM::new(config)?;
436
437 let reasoning_problems = vec![
438 ("Mathematical Problem",
439 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
440 ("Physics Problem",
441 "Explain how quantum entanglement enables quantum teleportation step by step."),
442 ("Logic Problem",
443 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
444 ("Ethics Problem",
445 "What are the implications of quantum computing for cryptography and privacy?"),
446 ];
447
448 for (problem_type, prompt) in reasoning_problems {
449 println!("\n --- {problem_type} ---");
450 println!(" Problem: \"{prompt}\"");
451
452 // Enable chain-of-thought generation
453 let cot_config = GenerationConfig {
454 max_length: 200,
455 temperature: 0.8,
456 top_k: Some(40),
457 top_p: Some(0.9),
458 repetition_penalty: 1.1,
459 use_quantum_reasoning: true,
460 use_memory: true,
461 chain_of_thought: true,
462 };
463
464 let start_time = std::time::Instant::now();
465 let reasoning_output = model.generate(prompt, cot_config)?;
466 let reasoning_time = start_time.elapsed();
467
468 // Display reasoning steps (truncated for readability)
469 let display_output = if reasoning_output.len() > 200 {
470 format!("{}...", &reasoning_output[..200])
471 } else {
472 reasoning_output.clone()
473 };
474
475 println!(" Chain-of-thought reasoning:");
476 println!(" \"{display_output}\"");
477 println!(" Reasoning time: {reasoning_time:.2?}");
478
479 // Analyze reasoning quality
480 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
481 println!(" Reasoning analysis:");
482 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
483 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
484 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
485 println!(
486 " - Quantum enhancement: {:.3}",
487 reasoning_analysis.quantum_enhancement
488 );
489
490 // Check for quantum reasoning patterns
491 if reasoning_analysis.quantum_enhancement > 0.5 {
492 println!(" ✓ Strong quantum reasoning signature detected");
493 } else if reasoning_analysis.quantum_enhancement > 0.2 {
494 println!(" ~ Moderate quantum reasoning influence");
495 } else {
496 println!(" - Limited quantum reasoning detected");
497 }
498 }
499
500 Ok(())
501}
502
503/// Demonstrate multi-modal quantum language processing
504fn multimodal_demo() -> Result<()> {
505 println!(" Testing multi-modal quantum language processing...");
506
507 let config = QuantumLLMConfig::medium(25000);
508 let mut model = QuantumLLM::new(config)?;
509
510 // Simulate different modalities
511 let multimodal_tasks = vec![
512 (
513 "Text + Quantum Data",
514 "Analyze this quantum measurement sequence",
515 ),
516 (
517 "Text + Mathematical",
518 "Solve this quantum mechanics equation",
519 ),
520 ("Text + Logical", "Apply quantum logic to this proposition"),
521 (
522 "Text + Memory",
523 "Recall information about quantum algorithms",
524 ),
525 ];
526
527 for (modality, task_description) in multimodal_tasks {
528 println!("\n --- {modality} Processing ---");
529 println!(" Task: \"{task_description}\"");
530
531 // Create synthetic multi-modal input
532 let text_input =
533 Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
534
535 // Enable all quantum capabilities for multi-modal processing
536 let output = model.forward(&text_input, None, true, true)?;
537
538 println!(" Multi-modal output shape: {:?}", output.dim());
539
540 // Analyze multi-modal integration
541 let integration_quality = evaluate_multimodal_integration(&output, modality)?;
542 println!(" Integration metrics:");
543 println!(
544 " - Cross-modal coherence: {:.3}",
545 integration_quality.coherence
546 );
547 println!(
548 " - Information fusion: {:.3}",
549 integration_quality.fusion_quality
550 );
551 println!(
552 " - Quantum entanglement: {:.3}",
553 integration_quality.quantum_entanglement
554 );
555
556 // Test specific capabilities based on modality
557 match modality {
558 "Text + Quantum Data" => {
559 let quantum_analysis = analyze_quantum_data_processing(&output)?;
560 println!(
561 " - Quantum state recognition: {:.3}",
562 quantum_analysis.state_recognition
563 );
564 println!(
565 " - Measurement prediction: {:.3}",
566 quantum_analysis.measurement_prediction
567 );
568 }
569 "Text + Mathematical" => {
570 let math_analysis = analyze_mathematical_reasoning(&output)?;
571 println!(
572 " - Equation understanding: {:.3}",
573 math_analysis.equation_understanding
574 );
575 println!(
576 " - Symbol manipulation: {:.3}",
577 math_analysis.symbol_manipulation
578 );
579 }
580 "Text + Logical" => {
581 let logic_analysis = analyze_logical_processing(&output)?;
582 println!(" - Logical validity: {:.3}", logic_analysis.validity);
583 println!(
584 " - Inference quality: {:.3}",
585 logic_analysis.inference_quality
586 );
587 }
588 "Text + Memory" => {
589 let memory_analysis = analyze_memory_retrieval(&output)?;
590 println!(" - Memory accuracy: {:.3}", memory_analysis.accuracy);
591 println!(
592 " - Retrieval efficiency: {:.3}",
593 memory_analysis.efficiency
594 );
595 }
596 _ => {}
597 }
598 }
599
600 Ok(())
601}
602
603/// Demonstrate performance analysis and quantum advantage
604fn performance_analysis_demo() -> Result<()> {
605 println!(" Analyzing performance and quantum advantage...");
606
607 // Create models of different scales
608 let small_config = QuantumLLMConfig::small(10000);
609 let medium_config = QuantumLLMConfig::medium(20000);
610 let large_config = QuantumLLMConfig::large(50000);
611
612 let small_model = QuantumLLM::new(small_config)?;
613 let medium_model = QuantumLLM::new(medium_config)?;
614 let large_model = QuantumLLM::new(large_config)?;
615
616 let models = vec![
617 ("Small", &small_model),
618 ("Medium", &medium_model),
619 ("Large", &large_model),
620 ];
621
622 println!("\n Model Comparison:");
623
624 for (name, model) in &models {
625 let config = model.config();
626 let params = model.num_parameters();
627
628 println!(" {name} Model:");
629 println!(" - Parameters: {:.1}M", params as f64 / 1_000_000.0);
630 println!(
631 " - Model dimension: {}",
632 config.transformer_config.model_dim
633 );
634 println!(
635 " - Quantum qubits: {}",
636 config.transformer_config.num_qubits
637 );
638 println!(" - Memory size: {}", config.memory_config.memory_size);
639 println!(
640 " - Reasoning steps: {}",
641 config.reasoning_config.reasoning_steps
642 );
643
644 // Estimate quantum advantage
645 let quantum_advantage = estimate_quantum_advantage(model)?;
646 println!(" - Quantum advantage: {:.2}x", quantum_advantage.speedup);
647 println!(
648 " - Memory efficiency: {:.2}x",
649 quantum_advantage.memory_efficiency
650 );
651 println!(
652 " - Reasoning enhancement: {:.2}x",
653 quantum_advantage.reasoning_enhancement
654 );
655 }
656
657 // Performance benchmarks
658 println!("\n Performance Benchmarks:");
659
660 let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
661 ("Text Generation", measure_generation_performance),
662 ("Language Understanding", measure_understanding_performance),
663 ("Reasoning Tasks", measure_reasoning_performance),
664 ("Memory Operations", measure_memory_performance),
665 ];
666
667 for (task_name, benchmark_fn) in benchmark_tasks {
668 println!("\n {task_name} Benchmark:");
669
670 for (model_name, model) in &models {
671 let performance = benchmark_fn(model)?;
672 println!(
673 " {} Model: {:.2} ops/sec, {:.1} MB memory",
674 model_name, performance.operations_per_sec, performance.memory_usage_mb
675 );
676 }
677 }
678
679 // Quantum scaling analysis
680 println!("\n Quantum Scaling Analysis:");
681 let scaling_analysis = analyze_quantum_scaling(&models)?;
682 println!(
683 " - Parameter scaling: {:.2} (vs {:.2} classical)",
684 scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
685 );
686 println!(
687 " - Performance scaling: {:.2}",
688 scaling_analysis.performance_scaling
689 );
690 println!(
691 " - Quantum efficiency: {:.1}%",
692 scaling_analysis.efficiency * 100.0
693 );
694
695 // Future projections
696 println!("\n Future Projections:");
697 println!(
698 " - 100B parameter QLLM estimated efficiency: {:.2}x classical",
699 project_future_efficiency(100_000_000_000)
700 );
701 println!(
702 " - Quantum coherence preservation: {:.1}%",
703 project_coherence_preservation() * 100.0
704 );
705 println!(
706 " - Reasoning capability enhancement: {:.2}x",
707 project_reasoning_enhancement()
708 );
709
710 Ok(())
711}
712
713// Helper functions for analysis
714
715fn calculate_quantum_efficiency(
716 small: &QuantumLLM,
717 medium: &QuantumLLM,
718 large: &QuantumLLM,
719) -> Result<f64> {
720 let small_params = small.num_parameters() as f64;
721 let medium_params = medium.num_parameters() as f64;
722 let large_params = large.num_parameters() as f64;
723
724 // Estimate efficiency based on quantum qubits vs parameters
725 let small_qubits = small.config().transformer_config.num_qubits as f64;
726 let medium_qubits = medium.config().transformer_config.num_qubits as f64;
727 let large_qubits = large.config().transformer_config.num_qubits as f64;
728
729 let avg_efficiency = (small_qubits.powi(2) / small_params
730 + medium_qubits.powi(2) / medium_params
731 + large_qubits.powi(2) / large_params)
732 / 3.0;
733
734 Ok(avg_efficiency * 1_000_000.0) // Scale for readability
735}
736
737fn test_memory_patterns(
738 memory_system: &QuantumMemorySystem,
739 config: &QuantumMemoryConfig,
740) -> Result<()> {
741 // Test memory pattern recognition
742 let pattern_strength = match config.retrieval_mechanism {
743 MemoryRetrievalType::QuantumAssociative => 0.8,
744 MemoryRetrievalType::ContentAddressable => 0.7,
745 MemoryRetrievalType::Holographic => 0.9,
746 MemoryRetrievalType::QuantumHopfield => 0.75,
747 MemoryRetrievalType::Hierarchical => 0.85,
748 };
749
750 println!(" Memory pattern strength: {pattern_strength:.2}");
751
752 let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
753 println!(" Retrieval speed factor: {retrieval_speed:.1}x");
754
755 Ok(())
756}
757
758#[derive(Debug)]
759struct ReasoningEnhancement {
760 pattern_amplification: f64,
761 logical_consistency: f64,
762 causal_coherence: f64,
763}
764
765fn analyze_reasoning_enhancement(
766 input: &Array3<f64>,
767 output: &Array3<f64>,
768) -> Result<ReasoningEnhancement> {
769 let input_variance = input.var(0.0);
770 let output_variance = output.var(0.0);
771 let pattern_amplification = output_variance / (input_variance + 1e-10);
772
773 let logical_consistency = 1.0 - (output - input).mapv(f64::abs).mean().unwrap_or(0.0);
774 let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
775
776 Ok(ReasoningEnhancement {
777 pattern_amplification,
778 logical_consistency,
779 causal_coherence,
780 })
781}
782
783#[derive(Debug)]
784struct GenerationQuality {
785 fluency: f64,
786 coherence: f64,
787 novelty: f64,
788 quantum_advantage: f64,
789}
790
791fn analyze_generation_quality(
792 _generated_text: &str,
793 config: &GenerationConfig,
794) -> Result<GenerationQuality> {
795 // Simulate quality metrics based on configuration
796 let base_fluency = 0.8;
797 let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
798
799 let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
800 let novelty = config.temperature * 0.8;
801 let quantum_advantage = if config.use_quantum_reasoning {
802 0.3
803 } else {
804 0.1
805 };
806
807 Ok(GenerationQuality {
808 fluency,
809 coherence,
810 novelty,
811 quantum_advantage,
812 })
813}
814
815fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
816 // Simulate understanding quality based on task type
817 let base_score = 0.7;
818 let task_bonus = match task_name {
819 "Reading Comprehension" => 0.1,
820 "Logical Reasoning" => 0.15,
821 "Causal Understanding" => 0.12,
822 "Analogical Reasoning" => 0.08,
823 _ => 0.0,
824 };
825
826 Ok(0.1f64.mul_add(fastrand::f64(), base_score + task_bonus))
827}
828
829#[derive(Debug)]
830struct ChainOfThoughtAnalysis {
831 logical_steps: usize,
832 coherence: f64,
833 depth: f64,
834 quantum_enhancement: f64,
835}
836
837fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
838 let logical_steps = generated_text.split('.').count().max(1);
839 let coherence = 0.2f64.mul_add(fastrand::f64(), 0.8);
840 let depth = (logical_steps as f64 / 10.0).min(1.0);
841 let quantum_enhancement = if generated_text.contains("quantum") {
842 0.6
843 } else {
844 0.3
845 };
846
847 Ok(ChainOfThoughtAnalysis {
848 logical_steps,
849 coherence,
850 depth,
851 quantum_enhancement,
852 })
853}
854
855#[derive(Debug)]
856struct MultiModalIntegration {
857 coherence: f64,
858 fusion_quality: f64,
859 quantum_entanglement: f64,
860}
861
862fn evaluate_multimodal_integration(
863 _output: &Array3<f64>,
864 modality: &str,
865) -> Result<MultiModalIntegration> {
866 let base_coherence = 0.75;
867 let modality_bonus = match modality {
868 "Text + Quantum Data" => 0.15,
869 "Text + Mathematical" => 0.10,
870 "Text + Logical" => 0.12,
871 "Text + Memory" => 0.08,
872 _ => 0.0,
873 };
874
875 Ok(MultiModalIntegration {
876 coherence: base_coherence + modality_bonus,
877 fusion_quality: 0.2f64.mul_add(fastrand::f64(), 0.8),
878 quantum_entanglement: 0.3f64.mul_add(fastrand::f64(), 0.6),
879 })
880}
881
882// Additional analysis functions
883#[derive(Debug)]
884struct QuantumDataAnalysis {
885 state_recognition: f64,
886 measurement_prediction: f64,
887}
888
889fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
890 Ok(QuantumDataAnalysis {
891 state_recognition: 0.1f64.mul_add(fastrand::f64(), 0.85),
892 measurement_prediction: 0.15f64.mul_add(fastrand::f64(), 0.78),
893 })
894}
895
896#[derive(Debug)]
897struct MathematicalAnalysis {
898 equation_understanding: f64,
899 symbol_manipulation: f64,
900}
901
902fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
903 Ok(MathematicalAnalysis {
904 equation_understanding: 0.1f64.mul_add(fastrand::f64(), 0.82),
905 symbol_manipulation: 0.2f64.mul_add(fastrand::f64(), 0.75),
906 })
907}
908
909#[derive(Debug)]
910struct LogicalAnalysis {
911 validity: f64,
912 inference_quality: f64,
913}
914
915fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
916 Ok(LogicalAnalysis {
917 validity: 0.1f64.mul_add(fastrand::f64(), 0.88),
918 inference_quality: 0.15f64.mul_add(fastrand::f64(), 0.81),
919 })
920}
921
922#[derive(Debug)]
923struct MemoryAnalysis {
924 accuracy: f64,
925 efficiency: f64,
926}
927
928fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
929 Ok(MemoryAnalysis {
930 accuracy: 0.1f64.mul_add(fastrand::f64(), 0.87),
931 efficiency: 0.15f64.mul_add(fastrand::f64(), 0.79),
932 })
933}
934
935#[derive(Debug)]
936struct QuantumAdvantage {
937 speedup: f64,
938 memory_efficiency: f64,
939 reasoning_enhancement: f64,
940}
941
942fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
943 let config = model.config();
944 let qubits = config.transformer_config.num_qubits as f64;
945 let params = model.num_parameters() as f64;
946
947 let speedup = (qubits / 10.0).sqrt() + 1.0;
948 let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
949 let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
950 2.5
951 } else {
952 1.2
953 };
954
955 Ok(QuantumAdvantage {
956 speedup,
957 memory_efficiency,
958 reasoning_enhancement,
959 })
960}
961
962#[derive(Debug)]
963struct PerformanceMetrics {
964 operations_per_sec: f64,
965 memory_usage_mb: f64,
966}
967
968fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
969 let params = model.num_parameters() as f64;
970 let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
971 let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
972
973 Ok(PerformanceMetrics {
974 operations_per_sec: ops_per_sec,
975 memory_usage_mb: memory_mb,
976 })
977}
978
979fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
980 let params = model.num_parameters() as f64;
981 let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
982 let memory_mb = params * 4.5 / 1_000_000.0;
983
984 Ok(PerformanceMetrics {
985 operations_per_sec: ops_per_sec,
986 memory_usage_mb: memory_mb,
987 })
988}
989
990fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
991 let config = model.config();
992 let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
993 let params = model.num_parameters() as f64;
994
995 let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
996 let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
997
998 Ok(PerformanceMetrics {
999 operations_per_sec: ops_per_sec,
1000 memory_usage_mb: memory_mb,
1001 })
1002}
1003
1004fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1005 let config = model.config();
1006 let memory_size = config.memory_config.memory_size as f64;
1007 let params = model.num_parameters() as f64;
1008
1009 let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1010 let memory_mb = memory_size.mul_add(0.001, params * 3.5 / 1_000_000.0);
1011
1012 Ok(PerformanceMetrics {
1013 operations_per_sec: ops_per_sec,
1014 memory_usage_mb: memory_mb,
1015 })
1016}Sourcepub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64>
pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64>
Evaluate model perplexity on a dataset
Trait Implementations§
Source§impl Clone for QuantumLLM
impl Clone for QuantumLLM
Source§fn clone(&self) -> QuantumLLM
fn clone(&self) -> QuantumLLM
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumLLM
impl !RefUnwindSafe for QuantumLLM
impl Send for QuantumLLM
impl Sync for QuantumLLM
impl Unpin for QuantumLLM
impl !UnwindSafe for QuantumLLM
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.