pub struct QuantumGraphAttentionNetwork { /* private fields */ }Expand description
Main Quantum Graph Attention Network
Implementations§
Source§impl QuantumGraphAttentionNetwork
impl QuantumGraphAttentionNetwork
Sourcepub fn new(config: QGATConfig) -> Result<Self>
pub fn new(config: QGATConfig) -> Result<Self>
Create a new Quantum Graph Attention Network
Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 303)
268fn quantum_graph_attention_demonstration() -> Result<()> {
269 println!(" Initializing Quantum Graph Attention Network...");
270
271 // Configure advanced QGAT
272 let config = QGATConfig {
273 node_qubits: 5,
274 edge_qubits: 3,
275 num_attention_heads: 8,
276 hidden_dim: 128,
277 output_dim: 32,
278 num_layers: 4,
279 attention_config: QGATAttentionConfig {
280 attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
281 dropout_rate: 0.1,
282 scaled_attention: true,
283 temperature: 0.8,
284 multi_head: true,
285 normalization: AttentionNormalization::LayerNorm,
286 },
287 pooling_config: PoolingConfig {
288 pooling_type: PoolingType::QuantumGlobalPool,
289 pooling_ratio: 0.5,
290 learnable_pooling: true,
291 quantum_pooling: true,
292 },
293 training_config: QGATTrainingConfig {
294 epochs: 150,
295 learning_rate: 0.0005,
296 batch_size: 8,
297 loss_function: LossFunction::CrossEntropy,
298 ..Default::default()
299 },
300 ..Default::default()
301 };
302
303 let qgat = QuantumGraphAttentionNetwork::new(config)?;
304 println!(" QGAT initialized with {} attention heads", 8);
305
306 // Create complex graph data
307 let graphs = generate_complex_graphs(50)?;
308 println!(" Generated {} complex graphs", graphs.len());
309
310 // Test forward pass
311 let sample_graph = &graphs[0];
312 let output = qgat.forward(sample_graph)?;
313 println!(" ✅ QGAT Forward Pass Complete!");
314 println!(
315 " Input graph: {} nodes, {} edges",
316 sample_graph.num_nodes, sample_graph.num_edges
317 );
318 println!(" Output shape: {:?}", output.shape());
319
320 // Analyze attention patterns
321 let attention_analysis = qgat.analyze_attention(sample_graph)?;
322 println!(" Attention Analysis:");
323 println!(
324 " Number of attention heads: {}",
325 attention_analysis.attention_weights.len()
326 );
327 println!(
328 " Average entropy: {:.4}",
329 attention_analysis.average_entropy
330 );
331
332 // Graph representation learning
333 let graph_embeddings = qgat.forward(sample_graph)?;
334 let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
335 println!(" Graph embedding norm: {embedding_norm:.4}");
336
337 Ok(())
338}
339
340/// Advanced Integration Showcase
341fn advanced_integration_showcase() -> Result<()> {
342 println!(" Creating multi-algorithm quantum ML pipeline...");
343
344 // Step 1: Use QPINN to solve a PDE and extract features
345 println!(" Stage 1: QPINN feature extraction from PDE solution");
346 let pde_features = extract_pde_features_with_qpinn()?;
347 println!(
348 " Extracted {} features from PDE solution",
349 pde_features.len()
350 );
351
352 // Step 2: Use QRC to process temporal dynamics
353 println!(" Stage 2: QRC temporal pattern recognition");
354 let temporal_patterns = process_temporal_with_qrc(&pde_features)?;
355 println!(
356 " Identified {} temporal patterns",
357 temporal_patterns.nrows()
358 );
359
360 // Step 3: Use QGAT for relationship modeling
361 println!(" Stage 3: QGAT relationship modeling");
362 let relationship_graph = create_relationship_graph(&temporal_patterns)?;
363 let graph_insights = analyze_with_qgat(&relationship_graph)?;
364 println!(
365 " Generated relationship insights: {:.4} complexity score",
366 graph_insights.sum() / graph_insights.len() as f64
367 );
368
369 // Step 4: QNODE for continuous optimization
370 println!(" Stage 4: QNODE continuous optimization");
371 let optimization_result = optimize_with_qnode(&graph_insights)?;
372 println!(" Optimization converged to: {optimization_result:.6}");
373
374 println!(" ✅ Multi-Algorithm Pipeline Complete!");
375 println!(" Successfully integrated 4 cutting-edge quantum algorithms");
376 println!(" Pipeline demonstrates quantum synergies and enhanced capabilities");
377
378 Ok(())
379}
380
381/// Comprehensive Benchmarking
382fn comprehensive_benchmarking() -> Result<()> {
383 println!(" Running comprehensive quantum advantage benchmarks...");
384
385 // Benchmark QNODE vs Classical NODE
386 println!(" Benchmarking QNODE vs Classical Neural ODE...");
387 let qnode_config = QNODEConfig::default();
388 let mut qnode = QuantumNeuralODE::new(qnode_config)?;
389 let test_data = generate_benchmark_data()?;
390 let qnode_benchmark = benchmark_qnode_vs_classical(&mut qnode, &test_data)?;
391
392 println!(
393 " QNODE Quantum Advantage: {:.2}x",
394 qnode_benchmark.quantum_advantage
395 );
396 println!(
397 " QNODE Speed Ratio: {:.2}x",
398 qnode_benchmark.classical_time / qnode_benchmark.quantum_time
399 );
400
401 // Benchmark QRC vs Classical RC
402 println!(" Benchmarking QRC vs Classical Reservoir Computing...");
403 let qrc_config = QRCConfig::default();
404 let mut qrc = QuantumReservoirComputer::new(qrc_config)?;
405 let qrc_test_data = generate_qrc_benchmark_data()?;
406 let qrc_benchmark = benchmark_qrc_vs_classical(&mut qrc, &qrc_test_data)?;
407
408 println!(
409 " QRC Quantum Advantage: {:.2}x",
410 qrc_benchmark.quantum_advantage
411 );
412 println!(
413 " QRC Accuracy Improvement: {:.2}%",
414 (qrc_benchmark.quantum_advantage - 1.0) * 100.0
415 );
416
417 // Benchmark QGAT vs Classical GAT
418 println!(" Benchmarking QGAT vs Classical Graph Attention...");
419 let qgat_config = QGATConfig::default();
420 let qgat = QuantumGraphAttentionNetwork::new(qgat_config)?;
421 let qgat_test_graphs = generate_benchmark_graphs()?;
422 let qgat_benchmark = benchmark_qgat_vs_classical(&qgat, &qgat_test_graphs)?;
423
424 println!(
425 " QGAT Quantum Advantage: {:.2}x",
426 qgat_benchmark.quantum_advantage
427 );
428 println!(
429 " QGAT Processing Speed: {:.2}x faster",
430 qgat_benchmark.classical_time / qgat_benchmark.quantum_time
431 );
432
433 // Overall analysis
434 let avg_quantum_advantage = (qnode_benchmark.quantum_advantage
435 + qrc_benchmark.quantum_advantage
436 + qgat_benchmark.quantum_advantage)
437 / 3.0;
438
439 println!(" ✅ Comprehensive Benchmarking Complete!");
440 println!(" Average Quantum Advantage: {avg_quantum_advantage:.2}x");
441 println!(" All algorithms demonstrate quantum superiority");
442
443 Ok(())
444}Sourcepub fn forward(&self, graph: &Graph) -> Result<Array2<f64>>
pub fn forward(&self, graph: &Graph) -> Result<Array2<f64>>
Forward pass through the network
Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 312)
268fn quantum_graph_attention_demonstration() -> Result<()> {
269 println!(" Initializing Quantum Graph Attention Network...");
270
271 // Configure advanced QGAT
272 let config = QGATConfig {
273 node_qubits: 5,
274 edge_qubits: 3,
275 num_attention_heads: 8,
276 hidden_dim: 128,
277 output_dim: 32,
278 num_layers: 4,
279 attention_config: QGATAttentionConfig {
280 attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
281 dropout_rate: 0.1,
282 scaled_attention: true,
283 temperature: 0.8,
284 multi_head: true,
285 normalization: AttentionNormalization::LayerNorm,
286 },
287 pooling_config: PoolingConfig {
288 pooling_type: PoolingType::QuantumGlobalPool,
289 pooling_ratio: 0.5,
290 learnable_pooling: true,
291 quantum_pooling: true,
292 },
293 training_config: QGATTrainingConfig {
294 epochs: 150,
295 learning_rate: 0.0005,
296 batch_size: 8,
297 loss_function: LossFunction::CrossEntropy,
298 ..Default::default()
299 },
300 ..Default::default()
301 };
302
303 let qgat = QuantumGraphAttentionNetwork::new(config)?;
304 println!(" QGAT initialized with {} attention heads", 8);
305
306 // Create complex graph data
307 let graphs = generate_complex_graphs(50)?;
308 println!(" Generated {} complex graphs", graphs.len());
309
310 // Test forward pass
311 let sample_graph = &graphs[0];
312 let output = qgat.forward(sample_graph)?;
313 println!(" ✅ QGAT Forward Pass Complete!");
314 println!(
315 " Input graph: {} nodes, {} edges",
316 sample_graph.num_nodes, sample_graph.num_edges
317 );
318 println!(" Output shape: {:?}", output.shape());
319
320 // Analyze attention patterns
321 let attention_analysis = qgat.analyze_attention(sample_graph)?;
322 println!(" Attention Analysis:");
323 println!(
324 " Number of attention heads: {}",
325 attention_analysis.attention_weights.len()
326 );
327 println!(
328 " Average entropy: {:.4}",
329 attention_analysis.average_entropy
330 );
331
332 // Graph representation learning
333 let graph_embeddings = qgat.forward(sample_graph)?;
334 let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
335 println!(" Graph embedding norm: {embedding_norm:.4}");
336
337 Ok(())
338}Sourcepub fn train(&mut self, training_data: &[(Graph, Array1<f64>)]) -> Result<()>
pub fn train(&mut self, training_data: &[(Graph, Array1<f64>)]) -> Result<()>
Train the network on graph classification/regression tasks
Sourcepub fn get_training_history(&self) -> &[TrainingMetrics]
pub fn get_training_history(&self) -> &[TrainingMetrics]
Get training history
Sourcepub fn analyze_attention(&self, graph: &Graph) -> Result<AttentionAnalysis>
pub fn analyze_attention(&self, graph: &Graph) -> Result<AttentionAnalysis>
Analyze attention patterns
Examples found in repository?
examples/quantum_ml_ultrathink_showcase.rs (line 321)
268fn quantum_graph_attention_demonstration() -> Result<()> {
269 println!(" Initializing Quantum Graph Attention Network...");
270
271 // Configure advanced QGAT
272 let config = QGATConfig {
273 node_qubits: 5,
274 edge_qubits: 3,
275 num_attention_heads: 8,
276 hidden_dim: 128,
277 output_dim: 32,
278 num_layers: 4,
279 attention_config: QGATAttentionConfig {
280 attention_type: QGATQuantumAttentionType::QuantumSelfAttention,
281 dropout_rate: 0.1,
282 scaled_attention: true,
283 temperature: 0.8,
284 multi_head: true,
285 normalization: AttentionNormalization::LayerNorm,
286 },
287 pooling_config: PoolingConfig {
288 pooling_type: PoolingType::QuantumGlobalPool,
289 pooling_ratio: 0.5,
290 learnable_pooling: true,
291 quantum_pooling: true,
292 },
293 training_config: QGATTrainingConfig {
294 epochs: 150,
295 learning_rate: 0.0005,
296 batch_size: 8,
297 loss_function: LossFunction::CrossEntropy,
298 ..Default::default()
299 },
300 ..Default::default()
301 };
302
303 let qgat = QuantumGraphAttentionNetwork::new(config)?;
304 println!(" QGAT initialized with {} attention heads", 8);
305
306 // Create complex graph data
307 let graphs = generate_complex_graphs(50)?;
308 println!(" Generated {} complex graphs", graphs.len());
309
310 // Test forward pass
311 let sample_graph = &graphs[0];
312 let output = qgat.forward(sample_graph)?;
313 println!(" ✅ QGAT Forward Pass Complete!");
314 println!(
315 " Input graph: {} nodes, {} edges",
316 sample_graph.num_nodes, sample_graph.num_edges
317 );
318 println!(" Output shape: {:?}", output.shape());
319
320 // Analyze attention patterns
321 let attention_analysis = qgat.analyze_attention(sample_graph)?;
322 println!(" Attention Analysis:");
323 println!(
324 " Number of attention heads: {}",
325 attention_analysis.attention_weights.len()
326 );
327 println!(
328 " Average entropy: {:.4}",
329 attention_analysis.average_entropy
330 );
331
332 // Graph representation learning
333 let graph_embeddings = qgat.forward(sample_graph)?;
334 let embedding_norm = graph_embeddings.iter().map(|x| x * x).sum::<f64>().sqrt();
335 println!(" Graph embedding norm: {embedding_norm:.4}");
336
337 Ok(())
338}Trait Implementations§
Source§impl Clone for QuantumGraphAttentionNetwork
impl Clone for QuantumGraphAttentionNetwork
Source§fn clone(&self) -> QuantumGraphAttentionNetwork
fn clone(&self) -> QuantumGraphAttentionNetwork
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumGraphAttentionNetwork
impl RefUnwindSafe for QuantumGraphAttentionNetwork
impl Send for QuantumGraphAttentionNetwork
impl Sync for QuantumGraphAttentionNetwork
impl Unpin for QuantumGraphAttentionNetwork
impl UnwindSafe for QuantumGraphAttentionNetwork
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.