pub struct QuantumMetaLearner { /* private fields */ }Expand description
Base quantum meta-learner
Implementations§
Source§impl QuantumMetaLearner
impl QuantumMetaLearner
Sourcepub fn new(
algorithm: MetaLearningAlgorithm,
model: QuantumNeuralNetwork,
) -> Self
pub fn new( algorithm: MetaLearningAlgorithm, model: QuantumNeuralNetwork, ) -> Self
Create a new quantum meta-learner
Examples found in repository?
examples/quantum_meta_learning.rs (line 72)
49fn maml_demo() -> Result<()> {
50 // Create quantum model
51 let layers = vec![
52 QNNLayerType::EncodingLayer { num_features: 4 },
53 QNNLayerType::VariationalLayer { num_params: 12 },
54 QNNLayerType::EntanglementLayer {
55 connectivity: "circular".to_string(),
56 },
57 QNNLayerType::VariationalLayer { num_params: 12 },
58 QNNLayerType::MeasurementLayer {
59 measurement_basis: "computational".to_string(),
60 },
61 ];
62
63 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
64
65 // Create MAML learner
66 let algorithm = MetaLearningAlgorithm::MAML {
67 inner_steps: 5,
68 inner_lr: 0.01,
69 first_order: true, // Use first-order approximation for efficiency
70 };
71
72 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
73
74 println!(" Created MAML meta-learner:");
75 println!(" - Inner steps: 5");
76 println!(" - Inner learning rate: 0.01");
77 println!(" - Using first-order approximation");
78
79 // Generate tasks
80 let generator = TaskGenerator::new(4, 3);
81 let tasks: Vec<MetaTask> = (0..20)
82 .map(|_| generator.generate_rotation_task(30))
83 .collect();
84
85 // Meta-train
86 println!("\n Meta-training on 20 rotation tasks...");
87 let mut optimizer = Adam::new(0.001);
88 meta_learner.meta_train(&tasks, &mut optimizer, 50, 5)?;
89
90 // Test adaptation
91 let test_task = generator.generate_rotation_task(20);
92 println!("\n Testing adaptation to new task...");
93
94 let adapted_params = meta_learner.adapt_to_task(&test_task)?;
95 println!(" Successfully adapted to new task");
96 println!(
97 " Parameter adaptation magnitude: {:.4}",
98 (&adapted_params - meta_learner.meta_params())
99 .mapv(f64::abs)
100 .mean()
101 .unwrap()
102 );
103
104 Ok(())
105}
106
107/// Reptile algorithm demonstration
108fn reptile_demo() -> Result<()> {
109 let layers = vec![
110 QNNLayerType::EncodingLayer { num_features: 2 },
111 QNNLayerType::VariationalLayer { num_params: 8 },
112 QNNLayerType::MeasurementLayer {
113 measurement_basis: "Pauli-Z".to_string(),
114 },
115 ];
116
117 let qnn = QuantumNeuralNetwork::new(layers, 4, 2, 2)?;
118
119 let algorithm = MetaLearningAlgorithm::Reptile {
120 inner_steps: 10,
121 inner_lr: 0.1,
122 };
123
124 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
125
126 println!(" Created Reptile meta-learner:");
127 println!(" - Inner steps: 10");
128 println!(" - Inner learning rate: 0.1");
129
130 // Generate sinusoid tasks
131 let generator = TaskGenerator::new(2, 2);
132 let tasks: Vec<MetaTask> = (0..15)
133 .map(|_| generator.generate_sinusoid_task(40))
134 .collect();
135
136 println!("\n Meta-training on 15 sinusoid tasks...");
137 let mut optimizer = Adam::new(0.001);
138 meta_learner.meta_train(&tasks, &mut optimizer, 30, 3)?;
139
140 println!(" Reptile training complete");
141
142 // Analyze task similarities
143 println!("\n Task parameter statistics:");
144 for (i, task) in tasks.iter().take(3).enumerate() {
145 if let Some(amplitude) = task.metadata.get("amplitude") {
146 if let Some(phase) = task.metadata.get("phase") {
147 println!(" Task {i}: amplitude={amplitude:.2}, phase={phase:.2}");
148 }
149 }
150 }
151
152 Ok(())
153}
154
155/// `ProtoMAML` demonstration
156fn protomaml_demo() -> Result<()> {
157 let layers = vec![
158 QNNLayerType::EncodingLayer { num_features: 8 },
159 QNNLayerType::VariationalLayer { num_params: 16 },
160 QNNLayerType::EntanglementLayer {
161 connectivity: "full".to_string(),
162 },
163 QNNLayerType::MeasurementLayer {
164 measurement_basis: "computational".to_string(),
165 },
166 ];
167
168 let qnn = QuantumNeuralNetwork::new(layers, 4, 8, 16)?;
169
170 let algorithm = MetaLearningAlgorithm::ProtoMAML {
171 inner_steps: 5,
172 inner_lr: 0.01,
173 proto_weight: 0.5, // Weight for prototype regularization
174 };
175
176 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
177
178 println!(" Created ProtoMAML meta-learner:");
179 println!(" - Combines MAML with prototypical networks");
180 println!(" - Prototype weight: 0.5");
181
182 // Generate classification tasks
183 let generator = TaskGenerator::new(8, 4);
184 let tasks: Vec<MetaTask> = (0..10)
185 .map(|_| generator.generate_rotation_task(50))
186 .collect();
187
188 println!("\n Meta-training on 4-way classification tasks...");
189 let mut optimizer = Adam::new(0.001);
190 meta_learner.meta_train(&tasks, &mut optimizer, 40, 2)?;
191
192 println!(" ProtoMAML leverages both gradient-based and metric-based learning");
193
194 Ok(())
195}
196
197/// Meta-SGD demonstration
198fn metasgd_demo() -> Result<()> {
199 let layers = vec![
200 QNNLayerType::EncodingLayer { num_features: 4 },
201 QNNLayerType::VariationalLayer { num_params: 12 },
202 QNNLayerType::MeasurementLayer {
203 measurement_basis: "Pauli-XYZ".to_string(),
204 },
205 ];
206
207 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
208
209 let algorithm = MetaLearningAlgorithm::MetaSGD { inner_steps: 3 };
210
211 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
212
213 println!(" Created Meta-SGD learner:");
214 println!(" - Learns per-parameter learning rates");
215 println!(" - Inner steps: 3");
216
217 // Generate diverse tasks
218 let generator = TaskGenerator::new(4, 3);
219 let mut tasks = Vec::new();
220
221 // Mix different task types
222 for i in 0..12 {
223 if i % 2 == 0 {
224 tasks.push(generator.generate_rotation_task(30));
225 } else {
226 tasks.push(generator.generate_sinusoid_task(30));
227 }
228 }
229
230 println!("\n Meta-training on mixed task distribution...");
231 let mut optimizer = Adam::new(0.0005);
232 meta_learner.meta_train(&tasks, &mut optimizer, 50, 4)?;
233
234 if let Some(lr) = meta_learner.per_param_lr() {
235 println!("\n Learned per-parameter learning rates:");
236 println!(
237 " - Min LR: {:.4}",
238 lr.iter().copied().fold(f64::INFINITY, f64::min)
239 );
240 println!(
241 " - Max LR: {:.4}",
242 lr.iter().copied().fold(f64::NEG_INFINITY, f64::max)
243 );
244 println!(" - Mean LR: {:.4}", lr.mean().unwrap());
245 }
246
247 Ok(())
248}
249
250/// ANIL demonstration
251fn anil_demo() -> Result<()> {
252 let layers = vec![
253 QNNLayerType::EncodingLayer { num_features: 6 },
254 QNNLayerType::VariationalLayer { num_params: 12 },
255 QNNLayerType::EntanglementLayer {
256 connectivity: "circular".to_string(),
257 },
258 QNNLayerType::VariationalLayer { num_params: 12 },
259 QNNLayerType::VariationalLayer { num_params: 6 }, // Final layer (adapted)
260 QNNLayerType::MeasurementLayer {
261 measurement_basis: "computational".to_string(),
262 },
263 ];
264
265 let qnn = QuantumNeuralNetwork::new(layers, 4, 6, 2)?;
266
267 let algorithm = MetaLearningAlgorithm::ANIL {
268 inner_steps: 10,
269 inner_lr: 0.1,
270 };
271
272 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
273
274 println!(" Created ANIL (Almost No Inner Loop) learner:");
275 println!(" - Only adapts final layer during inner loop");
276 println!(" - More parameter efficient than MAML");
277 println!(" - Inner steps: 10");
278
279 // Generate binary classification tasks
280 let generator = TaskGenerator::new(6, 2);
281 let tasks: Vec<MetaTask> = (0..15)
282 .map(|_| generator.generate_rotation_task(40))
283 .collect();
284
285 println!("\n Meta-training on binary classification tasks...");
286 let mut optimizer = Adam::new(0.001);
287 meta_learner.meta_train(&tasks, &mut optimizer, 40, 5)?;
288
289 println!(" ANIL reduces computational cost while maintaining performance");
290
291 Ok(())
292}
293
294/// Continual meta-learning demonstration
295fn continual_meta_learning_demo() -> Result<()> {
296 let layers = vec![
297 QNNLayerType::EncodingLayer { num_features: 4 },
298 QNNLayerType::VariationalLayer { num_params: 8 },
299 QNNLayerType::MeasurementLayer {
300 measurement_basis: "computational".to_string(),
301 },
302 ];
303
304 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
305
306 let algorithm = MetaLearningAlgorithm::Reptile {
307 inner_steps: 5,
308 inner_lr: 0.05,
309 };
310
311 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
312 let mut continual_learner = ContinualMetaLearner::new(
313 meta_learner,
314 10, // memory capacity
315 0.3, // replay ratio
316 );
317
318 println!(" Created Continual Meta-Learner:");
319 println!(" - Memory capacity: 10 tasks");
320 println!(" - Replay ratio: 30%");
321
322 // Generate sequence of tasks
323 let generator = TaskGenerator::new(4, 2);
324
325 println!("\n Learning sequence of tasks...");
326 for i in 0..20 {
327 let task = if i < 10 {
328 generator.generate_rotation_task(30)
329 } else {
330 generator.generate_sinusoid_task(30)
331 };
332
333 continual_learner.learn_task(task)?;
334
335 if i % 5 == 4 {
336 println!(
337 " Learned {} tasks, memory contains {} unique tasks",
338 i + 1,
339 continual_learner.memory_buffer_len()
340 );
341 }
342 }
343
344 println!("\n Continual learning prevents catastrophic forgetting");
345
346 Ok(())
347}Sourcepub fn meta_train(
&mut self,
tasks: &[MetaTask],
meta_optimizer: &mut dyn Optimizer,
meta_epochs: usize,
tasks_per_batch: usize,
) -> Result<()>
pub fn meta_train( &mut self, tasks: &[MetaTask], meta_optimizer: &mut dyn Optimizer, meta_epochs: usize, tasks_per_batch: usize, ) -> Result<()>
Meta-train on multiple tasks
Examples found in repository?
examples/quantum_meta_learning.rs (line 88)
49fn maml_demo() -> Result<()> {
50 // Create quantum model
51 let layers = vec![
52 QNNLayerType::EncodingLayer { num_features: 4 },
53 QNNLayerType::VariationalLayer { num_params: 12 },
54 QNNLayerType::EntanglementLayer {
55 connectivity: "circular".to_string(),
56 },
57 QNNLayerType::VariationalLayer { num_params: 12 },
58 QNNLayerType::MeasurementLayer {
59 measurement_basis: "computational".to_string(),
60 },
61 ];
62
63 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
64
65 // Create MAML learner
66 let algorithm = MetaLearningAlgorithm::MAML {
67 inner_steps: 5,
68 inner_lr: 0.01,
69 first_order: true, // Use first-order approximation for efficiency
70 };
71
72 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
73
74 println!(" Created MAML meta-learner:");
75 println!(" - Inner steps: 5");
76 println!(" - Inner learning rate: 0.01");
77 println!(" - Using first-order approximation");
78
79 // Generate tasks
80 let generator = TaskGenerator::new(4, 3);
81 let tasks: Vec<MetaTask> = (0..20)
82 .map(|_| generator.generate_rotation_task(30))
83 .collect();
84
85 // Meta-train
86 println!("\n Meta-training on 20 rotation tasks...");
87 let mut optimizer = Adam::new(0.001);
88 meta_learner.meta_train(&tasks, &mut optimizer, 50, 5)?;
89
90 // Test adaptation
91 let test_task = generator.generate_rotation_task(20);
92 println!("\n Testing adaptation to new task...");
93
94 let adapted_params = meta_learner.adapt_to_task(&test_task)?;
95 println!(" Successfully adapted to new task");
96 println!(
97 " Parameter adaptation magnitude: {:.4}",
98 (&adapted_params - meta_learner.meta_params())
99 .mapv(f64::abs)
100 .mean()
101 .unwrap()
102 );
103
104 Ok(())
105}
106
107/// Reptile algorithm demonstration
108fn reptile_demo() -> Result<()> {
109 let layers = vec![
110 QNNLayerType::EncodingLayer { num_features: 2 },
111 QNNLayerType::VariationalLayer { num_params: 8 },
112 QNNLayerType::MeasurementLayer {
113 measurement_basis: "Pauli-Z".to_string(),
114 },
115 ];
116
117 let qnn = QuantumNeuralNetwork::new(layers, 4, 2, 2)?;
118
119 let algorithm = MetaLearningAlgorithm::Reptile {
120 inner_steps: 10,
121 inner_lr: 0.1,
122 };
123
124 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
125
126 println!(" Created Reptile meta-learner:");
127 println!(" - Inner steps: 10");
128 println!(" - Inner learning rate: 0.1");
129
130 // Generate sinusoid tasks
131 let generator = TaskGenerator::new(2, 2);
132 let tasks: Vec<MetaTask> = (0..15)
133 .map(|_| generator.generate_sinusoid_task(40))
134 .collect();
135
136 println!("\n Meta-training on 15 sinusoid tasks...");
137 let mut optimizer = Adam::new(0.001);
138 meta_learner.meta_train(&tasks, &mut optimizer, 30, 3)?;
139
140 println!(" Reptile training complete");
141
142 // Analyze task similarities
143 println!("\n Task parameter statistics:");
144 for (i, task) in tasks.iter().take(3).enumerate() {
145 if let Some(amplitude) = task.metadata.get("amplitude") {
146 if let Some(phase) = task.metadata.get("phase") {
147 println!(" Task {i}: amplitude={amplitude:.2}, phase={phase:.2}");
148 }
149 }
150 }
151
152 Ok(())
153}
154
155/// `ProtoMAML` demonstration
156fn protomaml_demo() -> Result<()> {
157 let layers = vec![
158 QNNLayerType::EncodingLayer { num_features: 8 },
159 QNNLayerType::VariationalLayer { num_params: 16 },
160 QNNLayerType::EntanglementLayer {
161 connectivity: "full".to_string(),
162 },
163 QNNLayerType::MeasurementLayer {
164 measurement_basis: "computational".to_string(),
165 },
166 ];
167
168 let qnn = QuantumNeuralNetwork::new(layers, 4, 8, 16)?;
169
170 let algorithm = MetaLearningAlgorithm::ProtoMAML {
171 inner_steps: 5,
172 inner_lr: 0.01,
173 proto_weight: 0.5, // Weight for prototype regularization
174 };
175
176 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
177
178 println!(" Created ProtoMAML meta-learner:");
179 println!(" - Combines MAML with prototypical networks");
180 println!(" - Prototype weight: 0.5");
181
182 // Generate classification tasks
183 let generator = TaskGenerator::new(8, 4);
184 let tasks: Vec<MetaTask> = (0..10)
185 .map(|_| generator.generate_rotation_task(50))
186 .collect();
187
188 println!("\n Meta-training on 4-way classification tasks...");
189 let mut optimizer = Adam::new(0.001);
190 meta_learner.meta_train(&tasks, &mut optimizer, 40, 2)?;
191
192 println!(" ProtoMAML leverages both gradient-based and metric-based learning");
193
194 Ok(())
195}
196
197/// Meta-SGD demonstration
198fn metasgd_demo() -> Result<()> {
199 let layers = vec![
200 QNNLayerType::EncodingLayer { num_features: 4 },
201 QNNLayerType::VariationalLayer { num_params: 12 },
202 QNNLayerType::MeasurementLayer {
203 measurement_basis: "Pauli-XYZ".to_string(),
204 },
205 ];
206
207 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
208
209 let algorithm = MetaLearningAlgorithm::MetaSGD { inner_steps: 3 };
210
211 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
212
213 println!(" Created Meta-SGD learner:");
214 println!(" - Learns per-parameter learning rates");
215 println!(" - Inner steps: 3");
216
217 // Generate diverse tasks
218 let generator = TaskGenerator::new(4, 3);
219 let mut tasks = Vec::new();
220
221 // Mix different task types
222 for i in 0..12 {
223 if i % 2 == 0 {
224 tasks.push(generator.generate_rotation_task(30));
225 } else {
226 tasks.push(generator.generate_sinusoid_task(30));
227 }
228 }
229
230 println!("\n Meta-training on mixed task distribution...");
231 let mut optimizer = Adam::new(0.0005);
232 meta_learner.meta_train(&tasks, &mut optimizer, 50, 4)?;
233
234 if let Some(lr) = meta_learner.per_param_lr() {
235 println!("\n Learned per-parameter learning rates:");
236 println!(
237 " - Min LR: {:.4}",
238 lr.iter().copied().fold(f64::INFINITY, f64::min)
239 );
240 println!(
241 " - Max LR: {:.4}",
242 lr.iter().copied().fold(f64::NEG_INFINITY, f64::max)
243 );
244 println!(" - Mean LR: {:.4}", lr.mean().unwrap());
245 }
246
247 Ok(())
248}
249
250/// ANIL demonstration
251fn anil_demo() -> Result<()> {
252 let layers = vec![
253 QNNLayerType::EncodingLayer { num_features: 6 },
254 QNNLayerType::VariationalLayer { num_params: 12 },
255 QNNLayerType::EntanglementLayer {
256 connectivity: "circular".to_string(),
257 },
258 QNNLayerType::VariationalLayer { num_params: 12 },
259 QNNLayerType::VariationalLayer { num_params: 6 }, // Final layer (adapted)
260 QNNLayerType::MeasurementLayer {
261 measurement_basis: "computational".to_string(),
262 },
263 ];
264
265 let qnn = QuantumNeuralNetwork::new(layers, 4, 6, 2)?;
266
267 let algorithm = MetaLearningAlgorithm::ANIL {
268 inner_steps: 10,
269 inner_lr: 0.1,
270 };
271
272 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
273
274 println!(" Created ANIL (Almost No Inner Loop) learner:");
275 println!(" - Only adapts final layer during inner loop");
276 println!(" - More parameter efficient than MAML");
277 println!(" - Inner steps: 10");
278
279 // Generate binary classification tasks
280 let generator = TaskGenerator::new(6, 2);
281 let tasks: Vec<MetaTask> = (0..15)
282 .map(|_| generator.generate_rotation_task(40))
283 .collect();
284
285 println!("\n Meta-training on binary classification tasks...");
286 let mut optimizer = Adam::new(0.001);
287 meta_learner.meta_train(&tasks, &mut optimizer, 40, 5)?;
288
289 println!(" ANIL reduces computational cost while maintaining performance");
290
291 Ok(())
292}Sourcepub fn adapt_to_task(&mut self, task: &MetaTask) -> Result<Array1<f64>>
pub fn adapt_to_task(&mut self, task: &MetaTask) -> Result<Array1<f64>>
Adapt to new task
Examples found in repository?
examples/quantum_meta_learning.rs (line 94)
49fn maml_demo() -> Result<()> {
50 // Create quantum model
51 let layers = vec![
52 QNNLayerType::EncodingLayer { num_features: 4 },
53 QNNLayerType::VariationalLayer { num_params: 12 },
54 QNNLayerType::EntanglementLayer {
55 connectivity: "circular".to_string(),
56 },
57 QNNLayerType::VariationalLayer { num_params: 12 },
58 QNNLayerType::MeasurementLayer {
59 measurement_basis: "computational".to_string(),
60 },
61 ];
62
63 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
64
65 // Create MAML learner
66 let algorithm = MetaLearningAlgorithm::MAML {
67 inner_steps: 5,
68 inner_lr: 0.01,
69 first_order: true, // Use first-order approximation for efficiency
70 };
71
72 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
73
74 println!(" Created MAML meta-learner:");
75 println!(" - Inner steps: 5");
76 println!(" - Inner learning rate: 0.01");
77 println!(" - Using first-order approximation");
78
79 // Generate tasks
80 let generator = TaskGenerator::new(4, 3);
81 let tasks: Vec<MetaTask> = (0..20)
82 .map(|_| generator.generate_rotation_task(30))
83 .collect();
84
85 // Meta-train
86 println!("\n Meta-training on 20 rotation tasks...");
87 let mut optimizer = Adam::new(0.001);
88 meta_learner.meta_train(&tasks, &mut optimizer, 50, 5)?;
89
90 // Test adaptation
91 let test_task = generator.generate_rotation_task(20);
92 println!("\n Testing adaptation to new task...");
93
94 let adapted_params = meta_learner.adapt_to_task(&test_task)?;
95 println!(" Successfully adapted to new task");
96 println!(
97 " Parameter adaptation magnitude: {:.4}",
98 (&adapted_params - meta_learner.meta_params())
99 .mapv(f64::abs)
100 .mean()
101 .unwrap()
102 );
103
104 Ok(())
105}Sourcepub fn meta_params(&self) -> &Array1<f64>
pub fn meta_params(&self) -> &Array1<f64>
Get meta parameters
Examples found in repository?
examples/quantum_meta_learning.rs (line 98)
49fn maml_demo() -> Result<()> {
50 // Create quantum model
51 let layers = vec![
52 QNNLayerType::EncodingLayer { num_features: 4 },
53 QNNLayerType::VariationalLayer { num_params: 12 },
54 QNNLayerType::EntanglementLayer {
55 connectivity: "circular".to_string(),
56 },
57 QNNLayerType::VariationalLayer { num_params: 12 },
58 QNNLayerType::MeasurementLayer {
59 measurement_basis: "computational".to_string(),
60 },
61 ];
62
63 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
64
65 // Create MAML learner
66 let algorithm = MetaLearningAlgorithm::MAML {
67 inner_steps: 5,
68 inner_lr: 0.01,
69 first_order: true, // Use first-order approximation for efficiency
70 };
71
72 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
73
74 println!(" Created MAML meta-learner:");
75 println!(" - Inner steps: 5");
76 println!(" - Inner learning rate: 0.01");
77 println!(" - Using first-order approximation");
78
79 // Generate tasks
80 let generator = TaskGenerator::new(4, 3);
81 let tasks: Vec<MetaTask> = (0..20)
82 .map(|_| generator.generate_rotation_task(30))
83 .collect();
84
85 // Meta-train
86 println!("\n Meta-training on 20 rotation tasks...");
87 let mut optimizer = Adam::new(0.001);
88 meta_learner.meta_train(&tasks, &mut optimizer, 50, 5)?;
89
90 // Test adaptation
91 let test_task = generator.generate_rotation_task(20);
92 println!("\n Testing adaptation to new task...");
93
94 let adapted_params = meta_learner.adapt_to_task(&test_task)?;
95 println!(" Successfully adapted to new task");
96 println!(
97 " Parameter adaptation magnitude: {:.4}",
98 (&adapted_params - meta_learner.meta_params())
99 .mapv(f64::abs)
100 .mean()
101 .unwrap()
102 );
103
104 Ok(())
105}Sourcepub fn per_param_lr(&self) -> Option<&Array1<f64>>
pub fn per_param_lr(&self) -> Option<&Array1<f64>>
Get per-parameter learning rates
Examples found in repository?
examples/quantum_meta_learning.rs (line 234)
198fn metasgd_demo() -> Result<()> {
199 let layers = vec![
200 QNNLayerType::EncodingLayer { num_features: 4 },
201 QNNLayerType::VariationalLayer { num_params: 12 },
202 QNNLayerType::MeasurementLayer {
203 measurement_basis: "Pauli-XYZ".to_string(),
204 },
205 ];
206
207 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 3)?;
208
209 let algorithm = MetaLearningAlgorithm::MetaSGD { inner_steps: 3 };
210
211 let mut meta_learner = QuantumMetaLearner::new(algorithm, qnn);
212
213 println!(" Created Meta-SGD learner:");
214 println!(" - Learns per-parameter learning rates");
215 println!(" - Inner steps: 3");
216
217 // Generate diverse tasks
218 let generator = TaskGenerator::new(4, 3);
219 let mut tasks = Vec::new();
220
221 // Mix different task types
222 for i in 0..12 {
223 if i % 2 == 0 {
224 tasks.push(generator.generate_rotation_task(30));
225 } else {
226 tasks.push(generator.generate_sinusoid_task(30));
227 }
228 }
229
230 println!("\n Meta-training on mixed task distribution...");
231 let mut optimizer = Adam::new(0.0005);
232 meta_learner.meta_train(&tasks, &mut optimizer, 50, 4)?;
233
234 if let Some(lr) = meta_learner.per_param_lr() {
235 println!("\n Learned per-parameter learning rates:");
236 println!(
237 " - Min LR: {:.4}",
238 lr.iter().copied().fold(f64::INFINITY, f64::min)
239 );
240 println!(
241 " - Max LR: {:.4}",
242 lr.iter().copied().fold(f64::NEG_INFINITY, f64::max)
243 );
244 println!(" - Mean LR: {:.4}", lr.mean().unwrap());
245 }
246
247 Ok(())
248}Auto Trait Implementations§
impl Freeze for QuantumMetaLearner
impl RefUnwindSafe for QuantumMetaLearner
impl Send for QuantumMetaLearner
impl Sync for QuantumMetaLearner
impl Unpin for QuantumMetaLearner
impl UnwindSafe for QuantumMetaLearner
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.