pub struct DomainTemplateManager { /* private fields */ }Expand description
Domain-specific template manager
Implementations§
Source§impl DomainTemplateManager
impl DomainTemplateManager
Sourcepub fn get_domain_templates(
&self,
domain: &Domain,
) -> Option<&Vec<TemplateMetadata>>
pub fn get_domain_templates( &self, domain: &Domain, ) -> Option<&Vec<TemplateMetadata>>
Get templates for a specific domain
Sourcepub fn get_available_domains(&self) -> Vec<Domain>
pub fn get_available_domains(&self) -> Vec<Domain>
Get all available domains
Sourcepub fn get_template(&self, template_name: &str) -> Result<&TemplateMetadata>
pub fn get_template(&self, template_name: &str) -> Result<&TemplateMetadata>
Get a specific template by name
Examples found in repository?
examples/complete_integration_showcase.rs (line 42)
12fn main() -> Result<()> {
13 println!("=== QuantRS2-ML Complete Integration Showcase ===\n");
14
15 // Step 1: Initialize the complete ecosystem
16 println!("1. Initializing QuantRS2-ML ecosystem...");
17
18 let ecosystem = QuantumMLEcosystem::new(EcosystemConfig {
19 enable_distributed_training: true,
20 enable_gpu_acceleration: true,
21 enable_framework_integrations: true,
22 enable_benchmarking: true,
23 enable_model_zoo: true,
24 enable_domain_templates: true,
25 log_level: "INFO",
26 })?;
27
28 println!(" ✓ Ecosystem initialized with all integrations");
29 println!(
30 " ✓ Available backends: {}",
31 ecosystem.available_backends().join(", ")
32 );
33 println!(
34 " ✓ Framework integrations: {}",
35 ecosystem.framework_integrations().join(", ")
36 );
37
38 // Step 2: Load problem from domain template
39 println!("\n2. Loading problem from domain template...");
40
41 let template_manager = ecosystem.domain_templates();
42 let finance_template = template_manager.get_template("Portfolio Optimization")?;
43
44 println!(" - Domain: {:?}", finance_template.domain);
45 println!(" - Problem type: {:?}", finance_template.problem_type);
46 println!(" - Required qubits: {}", finance_template.required_qubits);
47
48 // Create model from template
49 let config = TemplateConfig {
50 num_qubits: 10,
51 input_dim: 20,
52 output_dim: 20,
53 parameters: HashMap::new(),
54 };
55
56 let mut portfolio_model =
57 template_manager.create_model_from_template("Portfolio Optimization", config)?;
58
59 // Step 3: Prepare data using classical ML pipeline
60 println!("\n3. Preparing data with hybrid pipeline...");
61
62 let pipeline_manager = ecosystem.classical_ml_integration();
63 let preprocessing_pipeline =
64 pipeline_manager.create_pipeline("hybrid_classification", PipelineConfig::default())?;
65
66 // Generate financial data
67 let (raw_returns, expected_returns) = generate_financial_data(252, 20)?;
68 println!(
69 " - Generated {} trading days for {} assets",
70 raw_returns.nrows(),
71 raw_returns.ncols()
72 );
73
74 // Preprocess data - convert to dynamic dimensions first
75 let raw_returns_dyn = raw_returns.into_dyn();
76 let processed_data_dyn = preprocessing_pipeline.transform(&raw_returns_dyn)?;
77 let processed_data = processed_data_dyn.into_dimensionality::<scirs2_core::ndarray::Ix2>()?;
78 println!(" - Data preprocessed with hybrid pipeline");
79
80 // Step 4: Train using multiple framework APIs
81 println!("\n4. Training across multiple framework APIs...");
82
83 // PyTorch-style training
84 println!(" a) PyTorch-style training...");
85 let pytorch_model = train_pytorch_style(&processed_data, &expected_returns)?;
86 let pytorch_accuracy =
87 evaluate_pytorch_model(&pytorch_model, &processed_data, &expected_returns)?;
88 println!(" PyTorch API accuracy: {pytorch_accuracy:.3}");
89
90 // TensorFlow Quantum style training
91 println!(" b) TensorFlow Quantum training...");
92 let tfq_model = train_tensorflow_style(&processed_data, &expected_returns)?;
93 let tfq_accuracy = evaluate_tfq_model(&tfq_model, &processed_data, &expected_returns)?;
94 println!(" TFQ API accuracy: {tfq_accuracy:.3}");
95
96 // Scikit-learn style training
97 println!(" c) Scikit-learn pipeline training...");
98 let sklearn_model = train_sklearn_style(&processed_data, &expected_returns)?;
99 let sklearn_accuracy =
100 evaluate_sklearn_model(&sklearn_model, &processed_data, &expected_returns)?;
101 println!(" Sklearn API accuracy: {sklearn_accuracy:.3}");
102
103 // Step 5: Model comparison and selection
104 println!("\n5. Model comparison and selection...");
105
106 let model_comparison = ModelComparison {
107 pytorch_accuracy,
108 tfq_accuracy,
109 sklearn_accuracy,
110 };
111
112 let best_model = select_best_model(&model_comparison)?;
113 println!(" - Best performing API: {best_model}");
114
115 // Step 6: Distributed training with SciRS2
116 println!("\n6. Distributed training with SciRS2...");
117
118 if ecosystem.distributed_training_available() {
119 let distributed_trainer = ecosystem
120 .scirs2_integration()
121 .create_distributed_trainer(2, "cpu")?;
122
123 let distributed_model = distributed_trainer.wrap_model(pytorch_model)?;
124 let distributed_results = train_distributed_model(
125 Box::new(distributed_model),
126 &processed_data,
127 &expected_returns,
128 &distributed_trainer,
129 )?;
130
131 println!(" - Distributed training completed");
132 println!(
133 " - Final distributed accuracy: {:.3}",
134 distributed_results.accuracy
135 );
136 println!(
137 " - Scaling efficiency: {:.2}%",
138 distributed_results.scaling_efficiency * 100.0
139 );
140 } else {
141 println!(" - Distributed training not available in this environment");
142 }
143
144 // Step 7: Comprehensive benchmarking
145 println!("\n7. Running comprehensive benchmarks...");
146
147 let benchmark_framework = ecosystem.benchmarking();
148 let benchmark_config = BenchmarkConfig {
149 output_directory: "showcase_benchmarks/".to_string(),
150 repetitions: 5,
151 warmup_runs: 2,
152 max_time_per_benchmark: 60.0,
153 profile_memory: true,
154 analyze_convergence: true,
155 confidence_level: 0.95,
156 };
157
158 // Mock comprehensive benchmark results since the actual method is different
159 let benchmark_results = ComprehensiveBenchmarkResults {
160 algorithms_tested: 3,
161 best_algorithm: "QAOA".to_string(),
162 quantum_advantage_detected: true,
163 average_speedup: 2.3,
164 };
165
166 print_benchmark_summary(&benchmark_results);
167
168 // Step 8: Model zoo integration
169 println!("\n8. Model zoo integration...");
170
171 let mut model_zoo = ecosystem.model_zoo();
172
173 // Register our trained model to the zoo
174 model_zoo.register_model(
175 "Portfolio_Optimization_Showcase".to_string(),
176 ModelMetadata {
177 name: "Portfolio_Optimization_Showcase".to_string(),
178 category: ModelCategory::Classification,
179 description: "Portfolio optimization model trained in integration showcase".to_string(),
180 input_shape: vec![20],
181 output_shape: vec![20],
182 num_qubits: 10,
183 num_parameters: 40,
184 dataset: "Financial Returns".to_string(),
185 accuracy: Some(model_comparison.pytorch_accuracy),
186 size_bytes: 2048,
187 created_date: "2024-06-17".to_string(),
188 version: "1.0".to_string(),
189 requirements: ModelRequirements {
190 min_qubits: 10,
191 coherence_time: 100.0,
192 gate_fidelity: 0.99,
193 backends: vec!["statevector".to_string()],
194 },
195 },
196 );
197
198 println!(" - Model saved to zoo");
199 println!(
200 " - Available models in zoo: {}",
201 model_zoo.list_models().len()
202 );
203
204 // Load a pre-existing model for comparison
205 match model_zoo.load_model("portfolio_qaoa") {
206 Ok(existing_model) => {
207 println!(" - Loaded existing QAOA model for comparison");
208 let qaoa_accuracy =
209 evaluate_generic_model(existing_model, &processed_data, &expected_returns)?;
210 println!(" - QAOA model accuracy: {qaoa_accuracy:.3}");
211 }
212 Err(_) => {
213 println!(" - QAOA model not found in zoo");
214 }
215 }
216
217 // Step 9: Export models in multiple formats
218 println!("\n9. Exporting models in multiple formats...");
219
220 // ONNX export (mocked for demo purposes)
221 let onnx_exporter = ecosystem.onnx_export();
222 // onnx_exporter.export_pytorch_model() would be the actual method
223 println!(" - Model exported to ONNX format");
224
225 // Framework-specific exports
226 ecosystem
227 .pytorch_api()
228 .save_model(&best_model, "portfolio_model_pytorch.pth")?;
229 ecosystem
230 .tensorflow_compatibility()
231 .export_savedmodel(&best_model, "portfolio_model_tf/")?;
232 ecosystem
233 .sklearn_compatibility()
234 .save_model(&best_model, "portfolio_model_sklearn.joblib")?;
235
236 println!(" - Models exported to all framework formats");
237
238 // Step 10: Tutorial generation
239 println!("\n10. Generating interactive tutorials...");
240
241 let tutorial_manager = ecosystem.tutorials();
242 let tutorial_session =
243 tutorial_manager.run_interactive_session("portfolio_optimization_demo")?;
244
245 println!(" - Interactive tutorial session created");
246 println!(
247 " - Tutorial sections: {}",
248 tutorial_session.total_sections()
249 );
250 println!(
251 " - Estimated completion time: {} minutes",
252 tutorial_session.estimated_duration()
253 );
254
255 // Step 11: Industry use case demonstration
256 println!("\n11. Industry use case analysis...");
257
258 let industry_examples = ecosystem.industry_examples();
259 let use_case = industry_examples.get_use_case(Industry::Finance, "Portfolio Optimization")?;
260
261 // Create ROI analysis based on use case ROI estimate
262 let roi_analysis = ROIAnalysis {
263 annual_savings: use_case.roi_estimate.annual_benefit,
264 implementation_cost: use_case.roi_estimate.implementation_cost,
265 payback_months: use_case.roi_estimate.payback_months,
266 risk_adjusted_return: use_case.roi_estimate.npv / use_case.roi_estimate.implementation_cost,
267 };
268 println!(" - ROI Analysis:");
269 println!(
270 " * Expected annual savings: ${:.0}K",
271 roi_analysis.annual_savings / 1000.0
272 );
273 println!(
274 " * Implementation cost: ${:.0}K",
275 roi_analysis.implementation_cost / 1000.0
276 );
277 println!(
278 " * Payback period: {:.1} months",
279 roi_analysis.payback_months
280 );
281 println!(
282 " * Risk-adjusted return: {:.1}%",
283 roi_analysis.risk_adjusted_return * 100.0
284 );
285
286 // Step 12: Performance analytics dashboard
287 println!("\n12. Performance analytics dashboard...");
288
289 let analytics = PerformanceAnalytics::new();
290 analytics.track_model_performance(&best_model, &benchmark_results)?;
291 analytics.track_framework_comparison(&model_comparison)?;
292 analytics.track_resource_utilization(&ecosystem)?;
293
294 let dashboard_url = analytics.generate_dashboard("showcase_dashboard.html")?;
295 println!(" - Performance dashboard generated: {dashboard_url}");
296
297 // Step 13: Integration health check
298 println!("\n13. Integration health check...");
299
300 let health_check = ecosystem.run_health_check()?;
301 print_health_check_results(&health_check);
302
303 // Step 14: Generate comprehensive report
304 println!("\n14. Generating comprehensive showcase report...");
305
306 let showcase_report = generate_showcase_report(ShowcaseData {
307 ecosystem: &ecosystem,
308 model_comparison: &model_comparison,
309 benchmark_results: &benchmark_results,
310 roi_analysis: &roi_analysis,
311 health_check: &health_check,
312 })?;
313
314 save_report("showcase_report.html", &showcase_report)?;
315 println!(" - Comprehensive report saved: showcase_report.html");
316
317 // Step 15: Future roadmap suggestions
318 println!("\n15. Future integration roadmap...");
319
320 let roadmap = ecosystem.generate_integration_roadmap(&showcase_report)?;
321 print_integration_roadmap(&roadmap);
322
323 println!("\n=== Complete Integration Showcase Finished ===");
324 println!("🚀 QuantRS2-ML ecosystem demonstration complete!");
325 println!("📊 Check the generated reports and dashboards for detailed analysis");
326 println!("🔬 All integration capabilities have been successfully demonstrated");
327
328 Ok(())
329}Sourcepub fn search_by_problem_type(
&self,
problem_type: &ProblemType,
) -> Vec<&TemplateMetadata>
pub fn search_by_problem_type( &self, problem_type: &ProblemType, ) -> Vec<&TemplateMetadata>
Search templates by problem type
Sourcepub fn search_by_complexity(
&self,
complexity: &ModelComplexity,
) -> Vec<&TemplateMetadata>
pub fn search_by_complexity( &self, complexity: &ModelComplexity, ) -> Vec<&TemplateMetadata>
Search templates by complexity
Sourcepub fn search_by_qubits(&self, max_qubits: usize) -> Vec<&TemplateMetadata>
pub fn search_by_qubits(&self, max_qubits: usize) -> Vec<&TemplateMetadata>
Search templates by qubit requirements
Sourcepub fn recommend_templates(
&self,
domain: Option<&Domain>,
problem_type: Option<&ProblemType>,
max_qubits: Option<usize>,
complexity: Option<&ModelComplexity>,
) -> Vec<&TemplateMetadata>
pub fn recommend_templates( &self, domain: Option<&Domain>, problem_type: Option<&ProblemType>, max_qubits: Option<usize>, complexity: Option<&ModelComplexity>, ) -> Vec<&TemplateMetadata>
Get template recommendations
Sourcepub fn create_model_from_template(
&self,
template_name: &str,
config: TemplateConfig,
) -> Result<Box<dyn DomainModel>>
pub fn create_model_from_template( &self, template_name: &str, config: TemplateConfig, ) -> Result<Box<dyn DomainModel>>
Create a model from a template
Examples found in repository?
examples/complete_integration_showcase.rs (line 57)
12fn main() -> Result<()> {
13 println!("=== QuantRS2-ML Complete Integration Showcase ===\n");
14
15 // Step 1: Initialize the complete ecosystem
16 println!("1. Initializing QuantRS2-ML ecosystem...");
17
18 let ecosystem = QuantumMLEcosystem::new(EcosystemConfig {
19 enable_distributed_training: true,
20 enable_gpu_acceleration: true,
21 enable_framework_integrations: true,
22 enable_benchmarking: true,
23 enable_model_zoo: true,
24 enable_domain_templates: true,
25 log_level: "INFO",
26 })?;
27
28 println!(" ✓ Ecosystem initialized with all integrations");
29 println!(
30 " ✓ Available backends: {}",
31 ecosystem.available_backends().join(", ")
32 );
33 println!(
34 " ✓ Framework integrations: {}",
35 ecosystem.framework_integrations().join(", ")
36 );
37
38 // Step 2: Load problem from domain template
39 println!("\n2. Loading problem from domain template...");
40
41 let template_manager = ecosystem.domain_templates();
42 let finance_template = template_manager.get_template("Portfolio Optimization")?;
43
44 println!(" - Domain: {:?}", finance_template.domain);
45 println!(" - Problem type: {:?}", finance_template.problem_type);
46 println!(" - Required qubits: {}", finance_template.required_qubits);
47
48 // Create model from template
49 let config = TemplateConfig {
50 num_qubits: 10,
51 input_dim: 20,
52 output_dim: 20,
53 parameters: HashMap::new(),
54 };
55
56 let mut portfolio_model =
57 template_manager.create_model_from_template("Portfolio Optimization", config)?;
58
59 // Step 3: Prepare data using classical ML pipeline
60 println!("\n3. Preparing data with hybrid pipeline...");
61
62 let pipeline_manager = ecosystem.classical_ml_integration();
63 let preprocessing_pipeline =
64 pipeline_manager.create_pipeline("hybrid_classification", PipelineConfig::default())?;
65
66 // Generate financial data
67 let (raw_returns, expected_returns) = generate_financial_data(252, 20)?;
68 println!(
69 " - Generated {} trading days for {} assets",
70 raw_returns.nrows(),
71 raw_returns.ncols()
72 );
73
74 // Preprocess data - convert to dynamic dimensions first
75 let raw_returns_dyn = raw_returns.into_dyn();
76 let processed_data_dyn = preprocessing_pipeline.transform(&raw_returns_dyn)?;
77 let processed_data = processed_data_dyn.into_dimensionality::<scirs2_core::ndarray::Ix2>()?;
78 println!(" - Data preprocessed with hybrid pipeline");
79
80 // Step 4: Train using multiple framework APIs
81 println!("\n4. Training across multiple framework APIs...");
82
83 // PyTorch-style training
84 println!(" a) PyTorch-style training...");
85 let pytorch_model = train_pytorch_style(&processed_data, &expected_returns)?;
86 let pytorch_accuracy =
87 evaluate_pytorch_model(&pytorch_model, &processed_data, &expected_returns)?;
88 println!(" PyTorch API accuracy: {pytorch_accuracy:.3}");
89
90 // TensorFlow Quantum style training
91 println!(" b) TensorFlow Quantum training...");
92 let tfq_model = train_tensorflow_style(&processed_data, &expected_returns)?;
93 let tfq_accuracy = evaluate_tfq_model(&tfq_model, &processed_data, &expected_returns)?;
94 println!(" TFQ API accuracy: {tfq_accuracy:.3}");
95
96 // Scikit-learn style training
97 println!(" c) Scikit-learn pipeline training...");
98 let sklearn_model = train_sklearn_style(&processed_data, &expected_returns)?;
99 let sklearn_accuracy =
100 evaluate_sklearn_model(&sklearn_model, &processed_data, &expected_returns)?;
101 println!(" Sklearn API accuracy: {sklearn_accuracy:.3}");
102
103 // Step 5: Model comparison and selection
104 println!("\n5. Model comparison and selection...");
105
106 let model_comparison = ModelComparison {
107 pytorch_accuracy,
108 tfq_accuracy,
109 sklearn_accuracy,
110 };
111
112 let best_model = select_best_model(&model_comparison)?;
113 println!(" - Best performing API: {best_model}");
114
115 // Step 6: Distributed training with SciRS2
116 println!("\n6. Distributed training with SciRS2...");
117
118 if ecosystem.distributed_training_available() {
119 let distributed_trainer = ecosystem
120 .scirs2_integration()
121 .create_distributed_trainer(2, "cpu")?;
122
123 let distributed_model = distributed_trainer.wrap_model(pytorch_model)?;
124 let distributed_results = train_distributed_model(
125 Box::new(distributed_model),
126 &processed_data,
127 &expected_returns,
128 &distributed_trainer,
129 )?;
130
131 println!(" - Distributed training completed");
132 println!(
133 " - Final distributed accuracy: {:.3}",
134 distributed_results.accuracy
135 );
136 println!(
137 " - Scaling efficiency: {:.2}%",
138 distributed_results.scaling_efficiency * 100.0
139 );
140 } else {
141 println!(" - Distributed training not available in this environment");
142 }
143
144 // Step 7: Comprehensive benchmarking
145 println!("\n7. Running comprehensive benchmarks...");
146
147 let benchmark_framework = ecosystem.benchmarking();
148 let benchmark_config = BenchmarkConfig {
149 output_directory: "showcase_benchmarks/".to_string(),
150 repetitions: 5,
151 warmup_runs: 2,
152 max_time_per_benchmark: 60.0,
153 profile_memory: true,
154 analyze_convergence: true,
155 confidence_level: 0.95,
156 };
157
158 // Mock comprehensive benchmark results since the actual method is different
159 let benchmark_results = ComprehensiveBenchmarkResults {
160 algorithms_tested: 3,
161 best_algorithm: "QAOA".to_string(),
162 quantum_advantage_detected: true,
163 average_speedup: 2.3,
164 };
165
166 print_benchmark_summary(&benchmark_results);
167
168 // Step 8: Model zoo integration
169 println!("\n8. Model zoo integration...");
170
171 let mut model_zoo = ecosystem.model_zoo();
172
173 // Register our trained model to the zoo
174 model_zoo.register_model(
175 "Portfolio_Optimization_Showcase".to_string(),
176 ModelMetadata {
177 name: "Portfolio_Optimization_Showcase".to_string(),
178 category: ModelCategory::Classification,
179 description: "Portfolio optimization model trained in integration showcase".to_string(),
180 input_shape: vec![20],
181 output_shape: vec![20],
182 num_qubits: 10,
183 num_parameters: 40,
184 dataset: "Financial Returns".to_string(),
185 accuracy: Some(model_comparison.pytorch_accuracy),
186 size_bytes: 2048,
187 created_date: "2024-06-17".to_string(),
188 version: "1.0".to_string(),
189 requirements: ModelRequirements {
190 min_qubits: 10,
191 coherence_time: 100.0,
192 gate_fidelity: 0.99,
193 backends: vec!["statevector".to_string()],
194 },
195 },
196 );
197
198 println!(" - Model saved to zoo");
199 println!(
200 " - Available models in zoo: {}",
201 model_zoo.list_models().len()
202 );
203
204 // Load a pre-existing model for comparison
205 match model_zoo.load_model("portfolio_qaoa") {
206 Ok(existing_model) => {
207 println!(" - Loaded existing QAOA model for comparison");
208 let qaoa_accuracy =
209 evaluate_generic_model(existing_model, &processed_data, &expected_returns)?;
210 println!(" - QAOA model accuracy: {qaoa_accuracy:.3}");
211 }
212 Err(_) => {
213 println!(" - QAOA model not found in zoo");
214 }
215 }
216
217 // Step 9: Export models in multiple formats
218 println!("\n9. Exporting models in multiple formats...");
219
220 // ONNX export (mocked for demo purposes)
221 let onnx_exporter = ecosystem.onnx_export();
222 // onnx_exporter.export_pytorch_model() would be the actual method
223 println!(" - Model exported to ONNX format");
224
225 // Framework-specific exports
226 ecosystem
227 .pytorch_api()
228 .save_model(&best_model, "portfolio_model_pytorch.pth")?;
229 ecosystem
230 .tensorflow_compatibility()
231 .export_savedmodel(&best_model, "portfolio_model_tf/")?;
232 ecosystem
233 .sklearn_compatibility()
234 .save_model(&best_model, "portfolio_model_sklearn.joblib")?;
235
236 println!(" - Models exported to all framework formats");
237
238 // Step 10: Tutorial generation
239 println!("\n10. Generating interactive tutorials...");
240
241 let tutorial_manager = ecosystem.tutorials();
242 let tutorial_session =
243 tutorial_manager.run_interactive_session("portfolio_optimization_demo")?;
244
245 println!(" - Interactive tutorial session created");
246 println!(
247 " - Tutorial sections: {}",
248 tutorial_session.total_sections()
249 );
250 println!(
251 " - Estimated completion time: {} minutes",
252 tutorial_session.estimated_duration()
253 );
254
255 // Step 11: Industry use case demonstration
256 println!("\n11. Industry use case analysis...");
257
258 let industry_examples = ecosystem.industry_examples();
259 let use_case = industry_examples.get_use_case(Industry::Finance, "Portfolio Optimization")?;
260
261 // Create ROI analysis based on use case ROI estimate
262 let roi_analysis = ROIAnalysis {
263 annual_savings: use_case.roi_estimate.annual_benefit,
264 implementation_cost: use_case.roi_estimate.implementation_cost,
265 payback_months: use_case.roi_estimate.payback_months,
266 risk_adjusted_return: use_case.roi_estimate.npv / use_case.roi_estimate.implementation_cost,
267 };
268 println!(" - ROI Analysis:");
269 println!(
270 " * Expected annual savings: ${:.0}K",
271 roi_analysis.annual_savings / 1000.0
272 );
273 println!(
274 " * Implementation cost: ${:.0}K",
275 roi_analysis.implementation_cost / 1000.0
276 );
277 println!(
278 " * Payback period: {:.1} months",
279 roi_analysis.payback_months
280 );
281 println!(
282 " * Risk-adjusted return: {:.1}%",
283 roi_analysis.risk_adjusted_return * 100.0
284 );
285
286 // Step 12: Performance analytics dashboard
287 println!("\n12. Performance analytics dashboard...");
288
289 let analytics = PerformanceAnalytics::new();
290 analytics.track_model_performance(&best_model, &benchmark_results)?;
291 analytics.track_framework_comparison(&model_comparison)?;
292 analytics.track_resource_utilization(&ecosystem)?;
293
294 let dashboard_url = analytics.generate_dashboard("showcase_dashboard.html")?;
295 println!(" - Performance dashboard generated: {dashboard_url}");
296
297 // Step 13: Integration health check
298 println!("\n13. Integration health check...");
299
300 let health_check = ecosystem.run_health_check()?;
301 print_health_check_results(&health_check);
302
303 // Step 14: Generate comprehensive report
304 println!("\n14. Generating comprehensive showcase report...");
305
306 let showcase_report = generate_showcase_report(ShowcaseData {
307 ecosystem: &ecosystem,
308 model_comparison: &model_comparison,
309 benchmark_results: &benchmark_results,
310 roi_analysis: &roi_analysis,
311 health_check: &health_check,
312 })?;
313
314 save_report("showcase_report.html", &showcase_report)?;
315 println!(" - Comprehensive report saved: showcase_report.html");
316
317 // Step 15: Future roadmap suggestions
318 println!("\n15. Future integration roadmap...");
319
320 let roadmap = ecosystem.generate_integration_roadmap(&showcase_report)?;
321 print_integration_roadmap(&roadmap);
322
323 println!("\n=== Complete Integration Showcase Finished ===");
324 println!("🚀 QuantRS2-ML ecosystem demonstration complete!");
325 println!("📊 Check the generated reports and dashboards for detailed analysis");
326 println!("🔬 All integration capabilities have been successfully demonstrated");
327
328 Ok(())
329}Auto Trait Implementations§
impl Freeze for DomainTemplateManager
impl RefUnwindSafe for DomainTemplateManager
impl Send for DomainTemplateManager
impl Sync for DomainTemplateManager
impl Unpin for DomainTemplateManager
impl UnwindSafe for DomainTemplateManager
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.