PendulumEnvironment

Struct PendulumEnvironment 

Source
pub struct PendulumEnvironment { /* private fields */ }
Expand description

Pendulum environment for continuous control

Implementations§

Source§

impl PendulumEnvironment

Source

pub fn new() -> Self

Create new pendulum environment

Examples found in repository?
examples/continuous_rl.rs (line 38)
37fn test_pendulum_dynamics() -> Result<()> {
38    let mut env = PendulumEnvironment::new();
39
40    println!("   Initial state: {:?}", env.state());
41    println!("   Action bounds: {:?}", env.action_bounds());
42
43    // Run a few steps with different actions
44    let actions = vec![
45        Array1::from_vec(vec![0.0]),  // No torque
46        Array1::from_vec(vec![2.0]),  // Max positive torque
47        Array1::from_vec(vec![-2.0]), // Max negative torque
48    ];
49
50    for (i, action) in actions.iter().enumerate() {
51        let state = env.reset();
52        let (next_state, reward, done) = env.step(action.clone())?;
53
54        println!("\n   Step {} with action {:.1}:", i + 1, action[0]);
55        println!(
56            "     State: [θ_cos={:.3}, θ_sin={:.3}, θ_dot={:.3}]",
57            state[0], state[1], state[2]
58        );
59        println!(
60            "     Next: [θ_cos={:.3}, θ_sin={:.3}, θ_dot={:.3}]",
61            next_state[0], next_state[1], next_state[2]
62        );
63        println!("     Reward: {reward:.3}, Done: {done}");
64    }
65
66    Ok(())
67}
68
69/// Train QDDPG on pendulum control
70fn train_qddpg_pendulum() -> Result<()> {
71    let state_dim = 3;
72    let action_dim = 1;
73    let action_bounds = vec![(-2.0, 2.0)];
74    let num_qubits = 4;
75    let buffer_capacity = 10000;
76
77    // Create QDDPG agent
78    let mut agent = QuantumDDPG::new(
79        state_dim,
80        action_dim,
81        action_bounds,
82        num_qubits,
83        buffer_capacity,
84    )?;
85
86    // Create environment
87    let mut env = PendulumEnvironment::new();
88
89    // Create optimizers
90    let mut actor_optimizer = Adam::new(0.001);
91    let mut critic_optimizer = Adam::new(0.001);
92
93    // Train for a few episodes (reduced for demo)
94    let episodes = 50;
95    println!("   Training QDDPG for {episodes} episodes...");
96
97    let rewards = agent.train(
98        &mut env,
99        episodes,
100        &mut actor_optimizer,
101        &mut critic_optimizer,
102    )?;
103
104    // Print training statistics
105    let avg_initial = rewards[..10].iter().sum::<f64>() / 10.0;
106    let avg_final = rewards[rewards.len() - 10..].iter().sum::<f64>() / 10.0;
107
108    println!("\n   Training Statistics:");
109    println!("   - Average initial reward: {avg_initial:.2}");
110    println!("   - Average final reward: {avg_final:.2}");
111    println!("   - Improvement: {:.2}", avg_final - avg_initial);
112
113    // Test trained agent
114    println!("\n   Testing trained agent...");
115    test_trained_agent(&agent, &mut env)?;
116
117    Ok(())
118}
119
120/// Test a trained agent
121fn test_trained_agent(agent: &QuantumDDPG, env: &mut dyn ContinuousEnvironment) -> Result<()> {
122    let test_episodes = 5;
123    let mut test_rewards = Vec::new();
124
125    for episode in 0..test_episodes {
126        let mut state = env.reset();
127        let mut episode_reward = 0.0;
128        let mut done = false;
129        let mut steps = 0;
130
131        while !done && steps < 200 {
132            let action = agent.get_action(&state, false)?; // No exploration
133            let (next_state, reward, is_done) = env.step(action.clone())?;
134
135            state = next_state;
136            episode_reward += reward;
137            done = is_done;
138            steps += 1;
139        }
140
141        test_rewards.push(episode_reward);
142        println!(
143            "   Test episode {}: Reward = {:.2}, Steps = {}",
144            episode + 1,
145            episode_reward,
146            steps
147        );
148    }
149
150    let avg_test = test_rewards.iter().sum::<f64>() / f64::from(test_episodes);
151    println!("   Average test reward: {avg_test:.2}");
152
153    Ok(())
154}
155
156/// Compare trained policy with random policy
157fn compare_policies() -> Result<()> {
158    let mut env = PendulumEnvironment::new();
159    let episodes = 10;
160
161    // Random policy performance
162    println!("   Random Policy Performance:");
163    let mut random_rewards = Vec::new();
164
165    for _ in 0..episodes {
166        let mut state = env.reset();
167        let mut episode_reward = 0.0;
168        let mut done = false;
169
170        while !done {
171            // Random action in bounds
172            let action = Array1::from_vec(vec![4.0f64.mul_add(thread_rng().gen::<f64>(), -2.0)]);
173
174            let (next_state, reward, is_done) = env.step(action)?;
175            state = next_state;
176            episode_reward += reward;
177            done = is_done;
178        }
179
180        random_rewards.push(episode_reward);
181    }
182
183    let avg_random = random_rewards.iter().sum::<f64>() / f64::from(episodes);
184    println!("   Average random policy reward: {avg_random:.2}");
185
186    // Simple control policy (proportional control)
187    println!("\n   Simple Control Policy Performance:");
188    let mut control_rewards = Vec::new();
189
190    for _ in 0..episodes {
191        let mut state = env.reset();
192        let mut episode_reward = 0.0;
193        let mut done = false;
194
195        while !done {
196            // Proportional control: torque = -k * theta
197            let theta = state[1].atan2(state[0]); // Reconstruct angle
198            let action = Array1::from_vec(vec![(-2.0 * theta).clamp(-2.0, 2.0)]);
199
200            let (next_state, reward, is_done) = env.step(action)?;
201            state = next_state;
202            episode_reward += reward;
203            done = is_done;
204        }
205
206        control_rewards.push(episode_reward);
207    }
208
209    let avg_control = control_rewards.iter().sum::<f64>() / f64::from(episodes);
210    println!("   Average control policy reward: {avg_control:.2}");
211
212    println!("\n   Performance Summary:");
213    println!("   - Random policy: {avg_random:.2}");
214    println!("   - Simple control: {avg_control:.2}");
215    println!("   - Improvement: {:.2}", avg_control - avg_random);
216
217    Ok(())
218}

Trait Implementations§

Source§

impl ContinuousEnvironment for PendulumEnvironment

Source§

fn state(&self) -> Array1<f64>

Gets the current state
Source§

fn action_bounds(&self) -> Vec<(f64, f64)>

Gets the action space bounds (min, max) for each dimension
Source§

fn step(&mut self, action: Array1<f64>) -> Result<(Array1<f64>, f64, bool)>

Takes a continuous action and returns reward and next state
Source§

fn reset(&mut self) -> Array1<f64>

Resets the environment
Source§

fn state_dim(&self) -> usize

Get state dimension
Source§

fn action_dim(&self) -> usize

Get action dimension

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V