pub struct QuantumBoltzmannMachine { /* private fields */ }Expand description
Quantum Boltzmann Machine
Implementations§
Source§impl QuantumBoltzmannMachine
impl QuantumBoltzmannMachine
Sourcepub fn new(
num_visible: usize,
num_hidden: usize,
temperature: f64,
learning_rate: f64,
) -> Result<Self>
pub fn new( num_visible: usize, num_hidden: usize, temperature: f64, learning_rate: f64, ) -> Result<Self>
Create a new Quantum Boltzmann Machine
Examples found in repository?
examples/quantum_boltzmann.rs (lines 42-47)
40fn basic_qbm_demo() -> Result<()> {
41 // Create a small QBM
42 let mut qbm = QuantumBoltzmannMachine::new(
43 4, // visible units
44 2, // hidden units
45 1.0, // temperature
46 0.01, // learning rate
47 )?;
48
49 println!(" Created QBM with 4 visible and 2 hidden units");
50
51 // Generate synthetic binary data
52 let data = generate_binary_patterns(100, 4);
53
54 // Train the QBM
55 println!(" Training on binary patterns...");
56 let losses = qbm.train(&data, 50, 10)?;
57
58 println!(" Training complete:");
59 println!(" - Initial loss: {:.4}", losses[0]);
60 println!(" - Final loss: {:.4}", losses.last().unwrap());
61
62 // Sample from trained model
63 let samples = qbm.sample(5)?;
64 println!("\n Generated samples:");
65 for (i, sample) in samples.outer_iter().enumerate() {
66 print!(" Sample {}: [", i + 1);
67 for val in sample {
68 print!("{val:.0} ");
69 }
70 println!("]");
71 }
72
73 Ok(())
74}
75
76/// RBM demonstration with persistent contrastive divergence
77fn rbm_demo() -> Result<()> {
78 // Create RBM with annealing
79 let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
80
81 let mut rbm = QuantumRBM::new(
82 6, // visible units
83 3, // hidden units
84 2.0, // initial temperature
85 0.01, // learning rate
86 )?
87 .with_annealing(annealing);
88
89 println!(" Created Quantum RBM with annealing schedule");
90
91 // Generate correlated binary data
92 let data = generate_correlated_data(200, 6);
93
94 // Train with PCD
95 println!(" Training with Persistent Contrastive Divergence...");
96 let losses = rbm.train_pcd(
97 &data, 100, // epochs
98 20, // batch size
99 50, // persistent chains
100 )?;
101
102 // Analyze training
103 let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
104 println!(" Training statistics:");
105 println!(" - Loss reduction: {improvement:.1}%");
106 println!(" - Final temperature: 0.5");
107
108 // Test reconstruction
109 let test_data = data.slice(s![0..5, ..]).to_owned();
110 let reconstructed = rbm.qbm().reconstruct(&test_data)?;
111
112 println!("\n Reconstruction quality:");
113 for i in 0..3 {
114 print!(" Original: [");
115 for val in test_data.row(i) {
116 print!("{val:.0} ");
117 }
118 print!("] → Reconstructed: [");
119 for val in reconstructed.row(i) {
120 print!("{val:.0} ");
121 }
122 println!("]");
123 }
124
125 Ok(())
126}
127
128/// Deep Boltzmann Machine demonstration
129fn deep_boltzmann_demo() -> Result<()> {
130 // Create a 3-layer DBM
131 let layer_sizes = vec![8, 4, 2];
132 let mut dbm = DeepBoltzmannMachine::new(
133 layer_sizes.clone(),
134 1.0, // temperature
135 0.01, // learning rate
136 )?;
137
138 println!(" Created Deep Boltzmann Machine:");
139 println!(" - Architecture: {layer_sizes:?}");
140 println!(" - Total layers: {}", dbm.rbms().len());
141
142 // Generate hierarchical data
143 let data = generate_hierarchical_data(300, 8);
144
145 // Layer-wise pretraining
146 println!("\n Performing layer-wise pretraining...");
147 dbm.pretrain(
148 &data, 50, // epochs per layer
149 30, // batch size
150 )?;
151
152 println!("\n Pretraining complete!");
153 println!(" Each layer learned increasingly abstract features");
154
155 Ok(())
156}
157
158/// Energy landscape visualization
159fn energy_landscape_demo() -> Result<()> {
160 // Create small QBM for visualization
161 let qbm = QuantumBoltzmannMachine::new(
162 2, // visible units (for 2D visualization)
163 1, // hidden unit
164 0.5, // temperature
165 0.01, // learning rate
166 )?;
167
168 println!(" Analyzing energy landscape of 2-unit system");
169
170 // Compute energy for all 4 possible states
171 let states = [
172 Array1::from_vec(vec![0.0, 0.0]),
173 Array1::from_vec(vec![0.0, 1.0]),
174 Array1::from_vec(vec![1.0, 0.0]),
175 Array1::from_vec(vec![1.0, 1.0]),
176 ];
177
178 println!("\n State energies:");
179 for (i, state) in states.iter().enumerate() {
180 let energy = qbm.energy(state);
181 let prob = (-energy / qbm.temperature()).exp();
182 println!(
183 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
184 state[0], state[1], energy, prob
185 );
186 }
187
188 // Show coupling matrix
189 println!("\n Coupling matrix:");
190 for i in 0..3 {
191 print!(" [");
192 for j in 0..3 {
193 print!("{:6.3} ", qbm.couplings()[[i, j]]);
194 }
195 println!("]");
196 }
197
198 Ok(())
199}Sourcepub fn energy(&self, state: &Array1<f64>) -> f64
pub fn energy(&self, state: &Array1<f64>) -> f64
Compute energy of a configuration
Examples found in repository?
examples/quantum_boltzmann.rs (line 180)
159fn energy_landscape_demo() -> Result<()> {
160 // Create small QBM for visualization
161 let qbm = QuantumBoltzmannMachine::new(
162 2, // visible units (for 2D visualization)
163 1, // hidden unit
164 0.5, // temperature
165 0.01, // learning rate
166 )?;
167
168 println!(" Analyzing energy landscape of 2-unit system");
169
170 // Compute energy for all 4 possible states
171 let states = [
172 Array1::from_vec(vec![0.0, 0.0]),
173 Array1::from_vec(vec![0.0, 1.0]),
174 Array1::from_vec(vec![1.0, 0.0]),
175 Array1::from_vec(vec![1.0, 1.0]),
176 ];
177
178 println!("\n State energies:");
179 for (i, state) in states.iter().enumerate() {
180 let energy = qbm.energy(state);
181 let prob = (-energy / qbm.temperature()).exp();
182 println!(
183 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
184 state[0], state[1], energy, prob
185 );
186 }
187
188 // Show coupling matrix
189 println!("\n Coupling matrix:");
190 for i in 0..3 {
191 print!(" [");
192 for j in 0..3 {
193 print!("{:6.3} ", qbm.couplings()[[i, j]]);
194 }
195 println!("]");
196 }
197
198 Ok(())
199}Sourcepub fn create_gibbs_circuit(&self) -> Result<()>
pub fn create_gibbs_circuit(&self) -> Result<()>
Create quantum circuit for Gibbs state preparation
Sourcepub fn sample(&self, num_samples: usize) -> Result<Array2<f64>>
pub fn sample(&self, num_samples: usize) -> Result<Array2<f64>>
Sample from the Boltzmann distribution
Examples found in repository?
examples/quantum_boltzmann.rs (line 63)
40fn basic_qbm_demo() -> Result<()> {
41 // Create a small QBM
42 let mut qbm = QuantumBoltzmannMachine::new(
43 4, // visible units
44 2, // hidden units
45 1.0, // temperature
46 0.01, // learning rate
47 )?;
48
49 println!(" Created QBM with 4 visible and 2 hidden units");
50
51 // Generate synthetic binary data
52 let data = generate_binary_patterns(100, 4);
53
54 // Train the QBM
55 println!(" Training on binary patterns...");
56 let losses = qbm.train(&data, 50, 10)?;
57
58 println!(" Training complete:");
59 println!(" - Initial loss: {:.4}", losses[0]);
60 println!(" - Final loss: {:.4}", losses.last().unwrap());
61
62 // Sample from trained model
63 let samples = qbm.sample(5)?;
64 println!("\n Generated samples:");
65 for (i, sample) in samples.outer_iter().enumerate() {
66 print!(" Sample {}: [", i + 1);
67 for val in sample {
68 print!("{val:.0} ");
69 }
70 println!("]");
71 }
72
73 Ok(())
74}Sourcepub fn compute_gradients(
&self,
data: &Array2<f64>,
) -> Result<(Array2<f64>, Array1<f64>)>
pub fn compute_gradients( &self, data: &Array2<f64>, ) -> Result<(Array2<f64>, Array1<f64>)>
Compute gradients using contrastive divergence
Sourcepub fn train(
&mut self,
data: &Array2<f64>,
epochs: usize,
batch_size: usize,
) -> Result<Vec<f64>>
pub fn train( &mut self, data: &Array2<f64>, epochs: usize, batch_size: usize, ) -> Result<Vec<f64>>
Train the Boltzmann machine
Examples found in repository?
examples/quantum_boltzmann.rs (line 56)
40fn basic_qbm_demo() -> Result<()> {
41 // Create a small QBM
42 let mut qbm = QuantumBoltzmannMachine::new(
43 4, // visible units
44 2, // hidden units
45 1.0, // temperature
46 0.01, // learning rate
47 )?;
48
49 println!(" Created QBM with 4 visible and 2 hidden units");
50
51 // Generate synthetic binary data
52 let data = generate_binary_patterns(100, 4);
53
54 // Train the QBM
55 println!(" Training on binary patterns...");
56 let losses = qbm.train(&data, 50, 10)?;
57
58 println!(" Training complete:");
59 println!(" - Initial loss: {:.4}", losses[0]);
60 println!(" - Final loss: {:.4}", losses.last().unwrap());
61
62 // Sample from trained model
63 let samples = qbm.sample(5)?;
64 println!("\n Generated samples:");
65 for (i, sample) in samples.outer_iter().enumerate() {
66 print!(" Sample {}: [", i + 1);
67 for val in sample {
68 print!("{val:.0} ");
69 }
70 println!("]");
71 }
72
73 Ok(())
74}Sourcepub fn reconstruct(&self, visible: &Array2<f64>) -> Result<Array2<f64>>
pub fn reconstruct(&self, visible: &Array2<f64>) -> Result<Array2<f64>>
Reconstruct visible units
Examples found in repository?
examples/quantum_boltzmann.rs (line 110)
77fn rbm_demo() -> Result<()> {
78 // Create RBM with annealing
79 let annealing = AnnealingSchedule::new(2.0, 0.5, 100);
80
81 let mut rbm = QuantumRBM::new(
82 6, // visible units
83 3, // hidden units
84 2.0, // initial temperature
85 0.01, // learning rate
86 )?
87 .with_annealing(annealing);
88
89 println!(" Created Quantum RBM with annealing schedule");
90
91 // Generate correlated binary data
92 let data = generate_correlated_data(200, 6);
93
94 // Train with PCD
95 println!(" Training with Persistent Contrastive Divergence...");
96 let losses = rbm.train_pcd(
97 &data, 100, // epochs
98 20, // batch size
99 50, // persistent chains
100 )?;
101
102 // Analyze training
103 let improvement = (losses[0] - losses.last().unwrap()) / losses[0] * 100.0;
104 println!(" Training statistics:");
105 println!(" - Loss reduction: {improvement:.1}%");
106 println!(" - Final temperature: 0.5");
107
108 // Test reconstruction
109 let test_data = data.slice(s![0..5, ..]).to_owned();
110 let reconstructed = rbm.qbm().reconstruct(&test_data)?;
111
112 println!("\n Reconstruction quality:");
113 for i in 0..3 {
114 print!(" Original: [");
115 for val in test_data.row(i) {
116 print!("{val:.0} ");
117 }
118 print!("] → Reconstructed: [");
119 for val in reconstructed.row(i) {
120 print!("{val:.0} ");
121 }
122 println!("]");
123 }
124
125 Ok(())
126}Sourcepub fn temperature(&self) -> f64
pub fn temperature(&self) -> f64
Get temperature
Examples found in repository?
examples/quantum_boltzmann.rs (line 181)
159fn energy_landscape_demo() -> Result<()> {
160 // Create small QBM for visualization
161 let qbm = QuantumBoltzmannMachine::new(
162 2, // visible units (for 2D visualization)
163 1, // hidden unit
164 0.5, // temperature
165 0.01, // learning rate
166 )?;
167
168 println!(" Analyzing energy landscape of 2-unit system");
169
170 // Compute energy for all 4 possible states
171 let states = [
172 Array1::from_vec(vec![0.0, 0.0]),
173 Array1::from_vec(vec![0.0, 1.0]),
174 Array1::from_vec(vec![1.0, 0.0]),
175 Array1::from_vec(vec![1.0, 1.0]),
176 ];
177
178 println!("\n State energies:");
179 for (i, state) in states.iter().enumerate() {
180 let energy = qbm.energy(state);
181 let prob = (-energy / qbm.temperature()).exp();
182 println!(
183 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
184 state[0], state[1], energy, prob
185 );
186 }
187
188 // Show coupling matrix
189 println!("\n Coupling matrix:");
190 for i in 0..3 {
191 print!(" [");
192 for j in 0..3 {
193 print!("{:6.3} ", qbm.couplings()[[i, j]]);
194 }
195 println!("]");
196 }
197
198 Ok(())
199}Sourcepub fn couplings(&self) -> &Array2<f64>
pub fn couplings(&self) -> &Array2<f64>
Get couplings matrix
Examples found in repository?
examples/quantum_boltzmann.rs (line 193)
159fn energy_landscape_demo() -> Result<()> {
160 // Create small QBM for visualization
161 let qbm = QuantumBoltzmannMachine::new(
162 2, // visible units (for 2D visualization)
163 1, // hidden unit
164 0.5, // temperature
165 0.01, // learning rate
166 )?;
167
168 println!(" Analyzing energy landscape of 2-unit system");
169
170 // Compute energy for all 4 possible states
171 let states = [
172 Array1::from_vec(vec![0.0, 0.0]),
173 Array1::from_vec(vec![0.0, 1.0]),
174 Array1::from_vec(vec![1.0, 0.0]),
175 Array1::from_vec(vec![1.0, 1.0]),
176 ];
177
178 println!("\n State energies:");
179 for (i, state) in states.iter().enumerate() {
180 let energy = qbm.energy(state);
181 let prob = (-energy / qbm.temperature()).exp();
182 println!(
183 " State [{:.0}, {:.0}]: E = {:.3}, P ∝ {:.3}",
184 state[0], state[1], energy, prob
185 );
186 }
187
188 // Show coupling matrix
189 println!("\n Coupling matrix:");
190 for i in 0..3 {
191 print!(" [");
192 for j in 0..3 {
193 print!("{:6.3} ", qbm.couplings()[[i, j]]);
194 }
195 println!("]");
196 }
197
198 Ok(())
199}Auto Trait Implementations§
impl Freeze for QuantumBoltzmannMachine
impl RefUnwindSafe for QuantumBoltzmannMachine
impl Send for QuantumBoltzmannMachine
impl Sync for QuantumBoltzmannMachine
impl Unpin for QuantumBoltzmannMachine
impl UnwindSafe for QuantumBoltzmannMachine
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.