quantrs2_ml/
reinforcement.rs

1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use quantrs2_circuit::prelude::Circuit;
4use scirs2_core::ndarray::{Array1, Array2};
5use scirs2_core::random::prelude::*;
6use std::collections::HashMap;
7
8/// Environment for reinforcement learning
9pub trait Environment {
10    /// Gets the current state
11    fn state(&self) -> Array1<f64>;
12
13    /// Gets the number of available actions
14    fn num_actions(&self) -> usize;
15
16    /// Takes an action and returns the reward and next state
17    fn step(&mut self, action: usize) -> Result<(Array1<f64>, f64, bool)>;
18
19    /// Resets the environment
20    fn reset(&mut self) -> Array1<f64>;
21}
22
23/// Agent for reinforcement learning
24pub trait QuantumAgent {
25    /// Gets an action for a given state
26    fn get_action(&self, state: &Array1<f64>) -> Result<usize>;
27
28    /// Updates the agent based on a reward
29    fn update(
30        &mut self,
31        state: &Array1<f64>,
32        action: usize,
33        reward: f64,
34        next_state: &Array1<f64>,
35        done: bool,
36    ) -> Result<()>;
37
38    /// Trains the agent on an environment
39    fn train(&mut self, env: &mut dyn Environment, episodes: usize) -> Result<f64>;
40
41    /// Evaluates the agent on an environment
42    fn evaluate(&self, env: &mut dyn Environment, episodes: usize) -> Result<f64>;
43}
44
45/// Reinforcement learning algorithm type
46#[derive(Debug, Clone, Copy)]
47pub enum ReinforcementLearningType {
48    /// Q-learning
49    QLearning,
50
51    /// SARSA
52    SARSA,
53
54    /// Deep Q-Network
55    DQN,
56
57    /// Policy Gradient
58    PolicyGradient,
59
60    /// Quantum Approximate Optimization Algorithm
61    QAOA,
62}
63
64/// Reinforcement learning with quantum circuit
65#[derive(Debug, Clone)]
66pub struct ReinforcementLearning {
67    /// Type of reinforcement learning algorithm
68    rl_type: ReinforcementLearningType,
69
70    /// Quantum neural network
71    qnn: QuantumNeuralNetwork,
72
73    /// Learning rate
74    learning_rate: f64,
75
76    /// Discount factor
77    discount_factor: f64,
78
79    /// Exploration rate
80    exploration_rate: f64,
81
82    /// Number of state dimensions
83    state_dim: usize,
84
85    /// Number of actions
86    action_dim: usize,
87}
88
89impl ReinforcementLearning {
90    /// Creates a new quantum reinforcement learning agent
91    pub fn new() -> Self {
92        // This is a placeholder implementation
93        // In a real system, this would create a proper QNN
94
95        let layers = vec![
96            crate::qnn::QNNLayerType::EncodingLayer { num_features: 4 },
97            crate::qnn::QNNLayerType::VariationalLayer { num_params: 16 },
98            crate::qnn::QNNLayerType::EntanglementLayer {
99                connectivity: "full".to_string(),
100            },
101            crate::qnn::QNNLayerType::VariationalLayer { num_params: 16 },
102            crate::qnn::QNNLayerType::MeasurementLayer {
103                measurement_basis: "computational".to_string(),
104            },
105        ];
106
107        let qnn = QuantumNeuralNetwork::new(
108            layers, 8, // 8 qubits
109            4, // 4 input features
110            2, // 2 output actions
111        )
112        .unwrap();
113
114        ReinforcementLearning {
115            rl_type: ReinforcementLearningType::QLearning,
116            qnn,
117            learning_rate: 0.01,
118            discount_factor: 0.95,
119            exploration_rate: 0.1,
120            state_dim: 4,
121            action_dim: 2,
122        }
123    }
124
125    /// Sets the reinforcement learning algorithm type
126    pub fn with_algorithm(mut self, rl_type: ReinforcementLearningType) -> Self {
127        self.rl_type = rl_type;
128        self
129    }
130
131    /// Sets the state dimension
132    pub fn with_state_dimension(mut self, state_dim: usize) -> Self {
133        self.state_dim = state_dim;
134        self
135    }
136
137    /// Sets the action dimension
138    pub fn with_action_dimension(mut self, action_dim: usize) -> Self {
139        self.action_dim = action_dim;
140        self
141    }
142
143    /// Sets the learning rate
144    pub fn with_learning_rate(mut self, learning_rate: f64) -> Self {
145        self.learning_rate = learning_rate;
146        self
147    }
148
149    /// Sets the discount factor
150    pub fn with_discount_factor(mut self, discount_factor: f64) -> Self {
151        self.discount_factor = discount_factor;
152        self
153    }
154
155    /// Sets the exploration rate
156    pub fn with_exploration_rate(mut self, exploration_rate: f64) -> Self {
157        self.exploration_rate = exploration_rate;
158        self
159    }
160
161    /// Encodes a state into a quantum circuit
162    fn encode_state(&self, state: &Array1<f64>) -> Result<Circuit<8>> {
163        // This is a dummy implementation
164        // In a real system, this would encode the state into a quantum circuit
165
166        let mut circuit = Circuit::<8>::new();
167
168        for i in 0..state.len().min(8) {
169            circuit.ry(i, state[i] * std::f64::consts::PI)?;
170        }
171
172        Ok(circuit)
173    }
174
175    /// Gets the Q-values for a state
176    fn get_q_values(&self, state: &Array1<f64>) -> Result<Array1<f64>> {
177        // This is a dummy implementation
178        // In a real system, this would compute Q-values using the QNN
179
180        let mut q_values = Array1::zeros(self.action_dim);
181
182        for i in 0..self.action_dim {
183            q_values[i] = 0.5 + 0.5 * thread_rng().gen::<f64>();
184        }
185
186        Ok(q_values)
187    }
188}
189
190impl QuantumAgent for ReinforcementLearning {
191    fn get_action(&self, state: &Array1<f64>) -> Result<usize> {
192        // Epsilon-greedy action selection
193        if thread_rng().gen::<f64>() < self.exploration_rate {
194            // Explore: random action
195            Ok(fastrand::usize(0..self.action_dim))
196        } else {
197            // Exploit: best action
198            let q_values = self.get_q_values(state)?;
199            let mut best_action = 0;
200            let mut best_value = q_values[0];
201
202            for i in 1..self.action_dim {
203                if q_values[i] > best_value {
204                    best_value = q_values[i];
205                    best_action = i;
206                }
207            }
208
209            Ok(best_action)
210        }
211    }
212
213    fn update(
214        &mut self,
215        _state: &Array1<f64>,
216        _action: usize,
217        _reward: f64,
218        _next_state: &Array1<f64>,
219        _done: bool,
220    ) -> Result<()> {
221        // This is a dummy implementation
222        // In a real system, this would update the QNN
223
224        Ok(())
225    }
226
227    fn train(&mut self, env: &mut dyn Environment, episodes: usize) -> Result<f64> {
228        let mut total_reward = 0.0;
229
230        for _ in 0..episodes {
231            let mut state = env.reset();
232            let mut episode_reward = 0.0;
233            let mut done = false;
234
235            while !done {
236                let action = self.get_action(&state)?;
237                let (next_state, reward, is_done) = env.step(action)?;
238
239                self.update(&state, action, reward, &next_state, is_done)?;
240
241                state = next_state;
242                episode_reward += reward;
243                done = is_done;
244            }
245
246            total_reward += episode_reward;
247        }
248
249        Ok(total_reward / episodes as f64)
250    }
251
252    fn evaluate(&self, env: &mut dyn Environment, episodes: usize) -> Result<f64> {
253        let mut total_reward = 0.0;
254
255        for _ in 0..episodes {
256            let mut state = env.reset();
257            let mut episode_reward = 0.0;
258            let mut done = false;
259
260            while !done {
261                let action = self.get_action(&state)?;
262                let (next_state, reward, is_done) = env.step(action)?;
263
264                state = next_state;
265                episode_reward += reward;
266                done = is_done;
267            }
268
269            total_reward += episode_reward;
270        }
271
272        Ok(total_reward / episodes as f64)
273    }
274}
275
276/// GridWorld environment for testing reinforcement learning
277pub struct GridWorldEnvironment {
278    /// Width of the grid
279    width: usize,
280
281    /// Height of the grid
282    height: usize,
283
284    /// Current position (x, y)
285    position: (usize, usize),
286
287    /// Goal position (x, y)
288    goal: (usize, usize),
289
290    /// Obstacle positions (x, y)
291    obstacles: Vec<(usize, usize)>,
292}
293
294impl GridWorldEnvironment {
295    /// Creates a new GridWorld environment
296    pub fn new(width: usize, height: usize) -> Self {
297        GridWorldEnvironment {
298            width,
299            height,
300            position: (0, 0),
301            goal: (width - 1, height - 1),
302            obstacles: Vec::new(),
303        }
304    }
305
306    /// Sets the goal position
307    pub fn with_goal(mut self, x: usize, y: usize) -> Self {
308        self.goal = (x.min(self.width - 1), y.min(self.height - 1));
309        self
310    }
311
312    /// Sets the obstacles
313    pub fn with_obstacles(mut self, obstacles: Vec<(usize, usize)>) -> Self {
314        self.obstacles = obstacles;
315        self
316    }
317
318    /// Checks if a position is an obstacle
319    pub fn is_obstacle(&self, x: usize, y: usize) -> bool {
320        self.obstacles.contains(&(x, y))
321    }
322
323    /// Checks if a position is the goal
324    pub fn is_goal(&self, x: usize, y: usize) -> bool {
325        (x, y) == self.goal
326    }
327}
328
329impl Environment for GridWorldEnvironment {
330    fn state(&self) -> Array1<f64> {
331        let mut state = Array1::zeros(4);
332
333        // Normalize position
334        state[0] = self.position.0 as f64 / self.width as f64;
335        state[1] = self.position.1 as f64 / self.height as f64;
336
337        // Normalize goal
338        state[2] = self.goal.0 as f64 / self.width as f64;
339        state[3] = self.goal.1 as f64 / self.height as f64;
340
341        state
342    }
343
344    fn num_actions(&self) -> usize {
345        4 // Up, Right, Down, Left
346    }
347
348    fn step(&mut self, action: usize) -> Result<(Array1<f64>, f64, bool)> {
349        // Calculate new position
350        let (x, y) = self.position;
351        let (new_x, new_y) = match action {
352            0 => (x, y.saturating_sub(1)), // Up
353            1 => (x + 1, y),               // Right
354            2 => (x, y + 1),               // Down
355            3 => (x.saturating_sub(1), y), // Left
356            _ => {
357                return Err(MLError::InvalidParameter(format!(
358                    "Invalid action: {}",
359                    action
360                )))
361            }
362        };
363
364        // Check if new position is valid
365        let new_x = new_x.min(self.width - 1);
366        let new_y = new_y.min(self.height - 1);
367
368        // Check if new position is an obstacle
369        if self.obstacles.contains(&(new_x, new_y)) {
370            // Stay in the same position
371            let reward = -1.0;
372            let done = false;
373            return Ok((self.state(), reward, done));
374        }
375
376        // Update position
377        self.position = (new_x, new_y);
378
379        // Calculate reward
380        let reward = if (new_x, new_y) == self.goal {
381            10.0 // Goal reached
382        } else {
383            -0.1 // Step penalty
384        };
385
386        // Check if done
387        let done = (new_x, new_y) == self.goal;
388
389        Ok((self.state(), reward, done))
390    }
391
392    fn reset(&mut self) -> Array1<f64> {
393        self.position = (0, 0);
394        self.state()
395    }
396}