pub struct QuantumLLMConfig {
pub transformer_config: QuantumTransformerConfig,
pub vocab_size: usize,
pub max_context_length: usize,
pub quantum_memory_layers: usize,
pub reasoning_config: QuantumReasoningConfig,
pub memory_config: QuantumMemoryConfig,
pub model_scale: ModelScale,
pub training_config: QLLMTrainingConfig,
}Expand description
Quantum Large Language Model configuration
Fields§
§transformer_config: QuantumTransformerConfigBase transformer configuration
vocab_size: usizeVocabulary size
max_context_length: usizeMaximum context length
quantum_memory_layers: usizeNumber of quantum memory layers
reasoning_config: QuantumReasoningConfigQuantum reasoning module configuration
memory_config: QuantumMemoryConfigQuantum memory configuration
model_scale: ModelScaleModel scale
training_config: QLLMTrainingConfigTraining configuration
Implementations§
Source§impl QuantumLLMConfig
impl QuantumLLMConfig
Sourcepub fn small(vocab_size: usize) -> Self
pub fn small(vocab_size: usize) -> Self
Create small model configuration
Examples found in repository?
examples/quantum_llm.rs (line 59)
53fn model_configurations_demo() -> Result<()> {
54 println!(" Creating quantum LLM configurations...");
55
56 let vocab_size = 50000;
57
58 // Small model for edge deployment
59 let small_config = QuantumLLMConfig::small(vocab_size);
60 println!(" Small Model Configuration:");
61 println!(" - Vocabulary size: {}", small_config.vocab_size);
62 println!(
63 " - Model dimension: {}",
64 small_config.transformer_config.model_dim
65 );
66 println!(
67 " - Number of heads: {}",
68 small_config.transformer_config.num_heads
69 );
70 println!(
71 " - Number of layers: {}",
72 small_config.transformer_config.num_layers
73 );
74 println!(
75 " - Quantum qubits: {}",
76 small_config.transformer_config.num_qubits
77 );
78 println!(" - Memory layers: {}", small_config.quantum_memory_layers);
79
80 let small_model = QuantumLLM::new(small_config)?;
81 println!(
82 " Small model parameters: {:.1}M",
83 small_model.num_parameters() as f64 / 1_000_000.0
84 );
85
86 // Medium model for general use
87 let medium_config = QuantumLLMConfig::medium(vocab_size);
88 println!("\n Medium Model Configuration:");
89 println!(
90 " - Model dimension: {}",
91 medium_config.transformer_config.model_dim
92 );
93 println!(
94 " - Number of layers: {}",
95 medium_config.transformer_config.num_layers
96 );
97 println!(
98 " - Quantum qubits: {}",
99 medium_config.transformer_config.num_qubits
100 );
101 println!(
102 " - Max context length: {}",
103 medium_config.max_context_length
104 );
105
106 let medium_model = QuantumLLM::new(medium_config)?;
107 println!(
108 " Medium model parameters: {:.1}M",
109 medium_model.num_parameters() as f64 / 1_000_000.0
110 );
111
112 // Large model for research and advanced applications
113 let large_config = QuantumLLMConfig::large(vocab_size);
114 println!("\n Large Model Configuration:");
115 println!(
116 " - Model dimension: {}",
117 large_config.transformer_config.model_dim
118 );
119 println!(
120 " - Number of layers: {}",
121 large_config.transformer_config.num_layers
122 );
123 println!(
124 " - Quantum qubits: {}",
125 large_config.transformer_config.num_qubits
126 );
127 println!(
128 " - Max context length: {}",
129 large_config.max_context_length
130 );
131 println!(
132 " - Reasoning steps: {}",
133 large_config.reasoning_config.reasoning_steps
134 );
135
136 let large_model = QuantumLLM::new(large_config)?;
137 println!(
138 " Large model parameters: {:.1}B",
139 large_model.num_parameters() as f64 / 1_000_000_000.0
140 );
141
142 // Compare quantum vs classical parameter efficiency
143 println!("\n Quantum Efficiency Analysis:");
144 let quantum_efficiency =
145 calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
146 println!(" - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
147
148 Ok(())
149}
150
151/// Demonstrate quantum memory systems
152fn quantum_memory_demo() -> Result<()> {
153 println!(" Testing quantum memory systems...");
154
155 // Test different memory configurations
156 let memory_configs = vec![
157 ("Basic Associative", QuantumMemoryConfig::default()),
158 ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
159 ("Advanced Holographic", QuantumMemoryConfig::advanced()),
160 ];
161
162 for (name, config) in memory_configs {
163 println!("\n --- {name} Memory ---");
164
165 let mut memory_system = QuantumMemorySystem::new(config.clone())?;
166 println!(" Memory configuration:");
167 println!(" - Memory size: {}", config.memory_size);
168 println!(" - Associative memory: {}", config.associative_memory);
169 println!(" - Episodic memory: {}", config.episodic_memory);
170 println!(" - Retrieval mechanism: {:?}", config.retrieval_mechanism);
171 println!(" - Quantum compression: {}", config.quantum_compression);
172
173 // Test memory storage and retrieval
174 let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
175 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
176 });
177
178 // Enhance embeddings with memory
179 let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
180 println!(" Enhanced embeddings shape: {:?}", enhanced.dim());
181
182 // Measure memory enhancement effect
183 let original_variance = test_embeddings.var(0.0);
184 let enhanced_variance = enhanced.var(0.0);
185 let enhancement_factor = enhanced_variance / original_variance;
186
187 println!(" Memory enhancement factor: {enhancement_factor:.3}");
188
189 // Test memory update
190 let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
191 memory_system.update_memory(&enhanced, &input_ids)?;
192
193 println!(" Memory updated with new experiences");
194
195 // Test memory retrieval patterns
196 test_memory_patterns(&memory_system, &config)?;
197 }
198
199 Ok(())
200}
201
202/// Demonstrate quantum reasoning capabilities
203fn quantum_reasoning_demo() -> Result<()> {
204 println!(" Testing quantum reasoning modules...");
205
206 let reasoning_configs = vec![
207 ("Basic Logical", QuantumReasoningConfig::default()),
208 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
209 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
210 ];
211
212 for (name, config) in reasoning_configs {
213 println!("\n --- {name} Reasoning ---");
214
215 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
216
217 println!(" Reasoning capabilities:");
218 println!(" - Logical reasoning: {}", config.logical_reasoning);
219 println!(" - Causal reasoning: {}", config.causal_reasoning);
220 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
221 println!(" - Reasoning steps: {}", config.reasoning_steps);
222 println!(" - Circuit depth: {}", config.circuit_depth);
223 println!(
224 " - Entanglement strength: {:.2}",
225 config.entanglement_strength
226 );
227
228 // Test reasoning on sample hidden states
229 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
230 // Create patterns that require reasoning
231 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
232 let causal_pattern = s as f64 * 0.1;
233 let base_value = logical_pattern + causal_pattern;
234
235 0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
236 });
237
238 println!(" Input hidden states shape: {:?}", hidden_states.dim());
239
240 // Apply quantum reasoning
241 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
242 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
243
244 // Analyze reasoning effects
245 let reasoning_enhancement =
246 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
247 println!(" Reasoning enhancement metrics:");
248 println!(
249 " - Pattern amplification: {:.3}",
250 reasoning_enhancement.pattern_amplification
251 );
252 println!(
253 " - Logical consistency: {:.3}",
254 reasoning_enhancement.logical_consistency
255 );
256 println!(
257 " - Causal coherence: {:.3}",
258 reasoning_enhancement.causal_coherence
259 );
260
261 // Test quantum coherence during reasoning
262 let coherence = reasoning_module.measure_coherence()?;
263 println!(" Quantum coherence: {coherence:.3}");
264
265 // Test token selection enhancement
266 let sample_logits = Array1::from_shape_fn(1000, |i| {
267 0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
268 });
269
270 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
271 let enhancement_effect = (&enhanced_logits - &sample_logits)
272 .mapv(f64::abs)
273 .mean()
274 .unwrap_or(0.0);
275 println!(" Token selection enhancement: {enhancement_effect:.4}");
276 }
277
278 Ok(())
279}
280
281/// Demonstrate quantum-enhanced text generation
282fn text_generation_demo() -> Result<()> {
283 println!(" Testing quantum-enhanced text generation...");
284
285 let config = QuantumLLMConfig::small(10000);
286 let mut model = QuantumLLM::new(config)?;
287
288 // Test different generation configurations
289 let generation_configs = vec![
290 ("Default", GenerationConfig::default()),
291 ("Creative", GenerationConfig::creative()),
292 ("Precise", GenerationConfig::precise()),
293 ];
294
295 let test_prompts = [
296 "The quantum computer",
297 "Artificial intelligence will",
298 "In the future, quantum computing",
299 "The relationship between quantum mechanics and consciousness",
300 ];
301
302 for (config_name, gen_config) in generation_configs {
303 println!("\n --- {config_name} Generation ---");
304 println!(" Configuration:");
305 println!(" - Max length: {}", gen_config.max_length);
306 println!(" - Temperature: {:.1}", gen_config.temperature);
307 println!(" - Top-k: {:?}", gen_config.top_k);
308 println!(" - Top-p: {:?}", gen_config.top_p);
309 println!(
310 " - Quantum reasoning: {}",
311 gen_config.use_quantum_reasoning
312 );
313 println!(" - Memory usage: {}", gen_config.use_memory);
314 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
315
316 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
317 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
318
319 let start_time = std::time::Instant::now();
320 let generated = model.generate(prompt, gen_config.clone())?;
321 let generation_time = start_time.elapsed();
322
323 // Display partial generated text (first 100 chars)
324 let display_text = if generated.len() > 100 {
325 format!("{}...", &generated[..100])
326 } else {
327 generated.clone()
328 };
329
330 println!(" Generated: \"{display_text}\"");
331 println!(" Generation time: {generation_time:.2?}");
332
333 // Analyze generation quality
334 let quality = analyze_generation_quality(&generated, &gen_config)?;
335 println!(" Quality metrics:");
336 println!(" - Fluency: {:.2}", quality.fluency);
337 println!(" - Coherence: {:.2}", quality.coherence);
338 println!(" - Novelty: {:.2}", quality.novelty);
339 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
340 }
341 }
342
343 // Display generation statistics
344 let stats = model.generation_stats();
345 println!("\n Generation Statistics:");
346 println!(" - Total tokens generated: {}", stats.total_tokens);
347 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
348 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
349 println!(" - Memory retrievals: {}", stats.memory_retrievals);
350
351 Ok(())
352}
353
354/// Demonstrate language understanding capabilities
355fn language_understanding_demo() -> Result<()> {
356 println!(" Testing quantum language understanding...");
357
358 let config = QuantumLLMConfig::medium(20000);
359 let mut model = QuantumLLM::new(config)?;
360
361 // Test different understanding tasks
362 let understanding_tasks = vec![
363 ("Reading Comprehension", vec![
364 "The photon exhibits wave-particle duality in quantum mechanics.",
365 "What properties does a photon exhibit according to quantum mechanics?",
366 ]),
367 ("Logical Reasoning", vec![
368 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
369 "Apply logical reasoning to derive the conclusion.",
370 ]),
371 ("Causal Understanding", vec![
372 "When a quantum measurement is performed, the wavefunction collapses.",
373 "What causes the wavefunction to collapse?",
374 ]),
375 ("Analogical Reasoning", vec![
376 "Quantum superposition is like a coin spinning in the air before landing.",
377 "How is quantum entanglement similar to this analogy?",
378 ]),
379 ];
380
381 for (task_name, texts) in understanding_tasks {
382 println!("\n --- {task_name} Task ---");
383
384 for (i, text) in texts.iter().enumerate() {
385 println!(" Input {}: \"{}\"", i + 1, text);
386
387 // Process text through model
388 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
389
390 // Enable different reasoning modes based on task
391 let use_reasoning = match task_name {
392 "Logical Reasoning" => true,
393 "Causal Understanding" => true,
394 "Analogical Reasoning" => true,
395 _ => false,
396 };
397
398 let use_memory = true;
399
400 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
401 println!(" Model output shape: {:?}", output.dim());
402
403 // Analyze understanding quality
404 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
405 println!(" Understanding score: {understanding_score:.3}");
406 }
407
408 // Task-specific analysis
409 match task_name {
410 "Reading Comprehension" => {
411 println!(" ✓ Model shows information extraction capabilities");
412 }
413 "Logical Reasoning" => {
414 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
415 }
416 "Causal Understanding" => {
417 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
418 }
419 "Analogical Reasoning" => {
420 println!(" ✓ Quantum analogy engine maps structural similarities");
421 }
422 _ => {}
423 }
424 }
425
426 Ok(())
427}
428
429/// Demonstrate chain-of-thought reasoning
430fn chain_of_thought_demo() -> Result<()> {
431 println!(" Testing quantum chain-of-thought reasoning...");
432
433 let config = QuantumLLMConfig::large(30000);
434 let mut model = QuantumLLM::new(config)?;
435
436 let reasoning_problems = vec![
437 ("Mathematical Problem",
438 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
439 ("Physics Problem",
440 "Explain how quantum entanglement enables quantum teleportation step by step."),
441 ("Logic Problem",
442 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
443 ("Ethics Problem",
444 "What are the implications of quantum computing for cryptography and privacy?"),
445 ];
446
447 for (problem_type, prompt) in reasoning_problems {
448 println!("\n --- {problem_type} ---");
449 println!(" Problem: \"{prompt}\"");
450
451 // Enable chain-of-thought generation
452 let cot_config = GenerationConfig {
453 max_length: 200,
454 temperature: 0.8,
455 top_k: Some(40),
456 top_p: Some(0.9),
457 repetition_penalty: 1.1,
458 use_quantum_reasoning: true,
459 use_memory: true,
460 chain_of_thought: true,
461 };
462
463 let start_time = std::time::Instant::now();
464 let reasoning_output = model.generate(prompt, cot_config)?;
465 let reasoning_time = start_time.elapsed();
466
467 // Display reasoning steps (truncated for readability)
468 let display_output = if reasoning_output.len() > 200 {
469 format!("{}...", &reasoning_output[..200])
470 } else {
471 reasoning_output.clone()
472 };
473
474 println!(" Chain-of-thought reasoning:");
475 println!(" \"{display_output}\"");
476 println!(" Reasoning time: {reasoning_time:.2?}");
477
478 // Analyze reasoning quality
479 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
480 println!(" Reasoning analysis:");
481 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
482 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
483 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
484 println!(
485 " - Quantum enhancement: {:.3}",
486 reasoning_analysis.quantum_enhancement
487 );
488
489 // Check for quantum reasoning patterns
490 if reasoning_analysis.quantum_enhancement > 0.5 {
491 println!(" ✓ Strong quantum reasoning signature detected");
492 } else if reasoning_analysis.quantum_enhancement > 0.2 {
493 println!(" ~ Moderate quantum reasoning influence");
494 } else {
495 println!(" - Limited quantum reasoning detected");
496 }
497 }
498
499 Ok(())
500}
501
502/// Demonstrate multi-modal quantum language processing
503fn multimodal_demo() -> Result<()> {
504 println!(" Testing multi-modal quantum language processing...");
505
506 let config = QuantumLLMConfig::medium(25000);
507 let mut model = QuantumLLM::new(config)?;
508
509 // Simulate different modalities
510 let multimodal_tasks = vec![
511 (
512 "Text + Quantum Data",
513 "Analyze this quantum measurement sequence",
514 ),
515 (
516 "Text + Mathematical",
517 "Solve this quantum mechanics equation",
518 ),
519 ("Text + Logical", "Apply quantum logic to this proposition"),
520 (
521 "Text + Memory",
522 "Recall information about quantum algorithms",
523 ),
524 ];
525
526 for (modality, task_description) in multimodal_tasks {
527 println!("\n --- {modality} Processing ---");
528 println!(" Task: \"{task_description}\"");
529
530 // Create synthetic multi-modal input
531 let text_input =
532 Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
533
534 // Enable all quantum capabilities for multi-modal processing
535 let output = model.forward(&text_input, None, true, true)?;
536
537 println!(" Multi-modal output shape: {:?}", output.dim());
538
539 // Analyze multi-modal integration
540 let integration_quality = evaluate_multimodal_integration(&output, modality)?;
541 println!(" Integration metrics:");
542 println!(
543 " - Cross-modal coherence: {:.3}",
544 integration_quality.coherence
545 );
546 println!(
547 " - Information fusion: {:.3}",
548 integration_quality.fusion_quality
549 );
550 println!(
551 " - Quantum entanglement: {:.3}",
552 integration_quality.quantum_entanglement
553 );
554
555 // Test specific capabilities based on modality
556 match modality {
557 "Text + Quantum Data" => {
558 let quantum_analysis = analyze_quantum_data_processing(&output)?;
559 println!(
560 " - Quantum state recognition: {:.3}",
561 quantum_analysis.state_recognition
562 );
563 println!(
564 " - Measurement prediction: {:.3}",
565 quantum_analysis.measurement_prediction
566 );
567 }
568 "Text + Mathematical" => {
569 let math_analysis = analyze_mathematical_reasoning(&output)?;
570 println!(
571 " - Equation understanding: {:.3}",
572 math_analysis.equation_understanding
573 );
574 println!(
575 " - Symbol manipulation: {:.3}",
576 math_analysis.symbol_manipulation
577 );
578 }
579 "Text + Logical" => {
580 let logic_analysis = analyze_logical_processing(&output)?;
581 println!(" - Logical validity: {:.3}", logic_analysis.validity);
582 println!(
583 " - Inference quality: {:.3}",
584 logic_analysis.inference_quality
585 );
586 }
587 "Text + Memory" => {
588 let memory_analysis = analyze_memory_retrieval(&output)?;
589 println!(" - Memory accuracy: {:.3}", memory_analysis.accuracy);
590 println!(
591 " - Retrieval efficiency: {:.3}",
592 memory_analysis.efficiency
593 );
594 }
595 _ => {}
596 }
597 }
598
599 Ok(())
600}
601
602/// Demonstrate performance analysis and quantum advantage
603fn performance_analysis_demo() -> Result<()> {
604 println!(" Analyzing performance and quantum advantage...");
605
606 // Create models of different scales
607 let small_config = QuantumLLMConfig::small(10000);
608 let medium_config = QuantumLLMConfig::medium(20000);
609 let large_config = QuantumLLMConfig::large(50000);
610
611 let small_model = QuantumLLM::new(small_config)?;
612 let medium_model = QuantumLLM::new(medium_config)?;
613 let large_model = QuantumLLM::new(large_config)?;
614
615 let models = vec![
616 ("Small", &small_model),
617 ("Medium", &medium_model),
618 ("Large", &large_model),
619 ];
620
621 println!("\n Model Comparison:");
622
623 for (name, model) in &models {
624 let config = model.config();
625 let params = model.num_parameters();
626
627 println!(" {name} Model:");
628 println!(" - Parameters: {:.1}M", params as f64 / 1_000_000.0);
629 println!(
630 " - Model dimension: {}",
631 config.transformer_config.model_dim
632 );
633 println!(
634 " - Quantum qubits: {}",
635 config.transformer_config.num_qubits
636 );
637 println!(" - Memory size: {}", config.memory_config.memory_size);
638 println!(
639 " - Reasoning steps: {}",
640 config.reasoning_config.reasoning_steps
641 );
642
643 // Estimate quantum advantage
644 let quantum_advantage = estimate_quantum_advantage(model)?;
645 println!(" - Quantum advantage: {:.2}x", quantum_advantage.speedup);
646 println!(
647 " - Memory efficiency: {:.2}x",
648 quantum_advantage.memory_efficiency
649 );
650 println!(
651 " - Reasoning enhancement: {:.2}x",
652 quantum_advantage.reasoning_enhancement
653 );
654 }
655
656 // Performance benchmarks
657 println!("\n Performance Benchmarks:");
658
659 let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
660 ("Text Generation", measure_generation_performance),
661 ("Language Understanding", measure_understanding_performance),
662 ("Reasoning Tasks", measure_reasoning_performance),
663 ("Memory Operations", measure_memory_performance),
664 ];
665
666 for (task_name, benchmark_fn) in benchmark_tasks {
667 println!("\n {task_name} Benchmark:");
668
669 for (model_name, model) in &models {
670 let performance = benchmark_fn(model)?;
671 println!(
672 " {} Model: {:.2} ops/sec, {:.1} MB memory",
673 model_name, performance.operations_per_sec, performance.memory_usage_mb
674 );
675 }
676 }
677
678 // Quantum scaling analysis
679 println!("\n Quantum Scaling Analysis:");
680 let scaling_analysis = analyze_quantum_scaling(&models)?;
681 println!(
682 " - Parameter scaling: {:.2} (vs {:.2} classical)",
683 scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
684 );
685 println!(
686 " - Performance scaling: {:.2}",
687 scaling_analysis.performance_scaling
688 );
689 println!(
690 " - Quantum efficiency: {:.1}%",
691 scaling_analysis.efficiency * 100.0
692 );
693
694 // Future projections
695 println!("\n Future Projections:");
696 println!(
697 " - 100B parameter QLLM estimated efficiency: {:.2}x classical",
698 project_future_efficiency(100_000_000_000)
699 );
700 println!(
701 " - Quantum coherence preservation: {:.1}%",
702 project_coherence_preservation() * 100.0
703 );
704 println!(
705 " - Reasoning capability enhancement: {:.2}x",
706 project_reasoning_enhancement()
707 );
708
709 Ok(())
710}Sourcepub fn medium(vocab_size: usize) -> Self
pub fn medium(vocab_size: usize) -> Self
Create medium model configuration
Examples found in repository?
examples/quantum_llm.rs (line 87)
53fn model_configurations_demo() -> Result<()> {
54 println!(" Creating quantum LLM configurations...");
55
56 let vocab_size = 50000;
57
58 // Small model for edge deployment
59 let small_config = QuantumLLMConfig::small(vocab_size);
60 println!(" Small Model Configuration:");
61 println!(" - Vocabulary size: {}", small_config.vocab_size);
62 println!(
63 " - Model dimension: {}",
64 small_config.transformer_config.model_dim
65 );
66 println!(
67 " - Number of heads: {}",
68 small_config.transformer_config.num_heads
69 );
70 println!(
71 " - Number of layers: {}",
72 small_config.transformer_config.num_layers
73 );
74 println!(
75 " - Quantum qubits: {}",
76 small_config.transformer_config.num_qubits
77 );
78 println!(" - Memory layers: {}", small_config.quantum_memory_layers);
79
80 let small_model = QuantumLLM::new(small_config)?;
81 println!(
82 " Small model parameters: {:.1}M",
83 small_model.num_parameters() as f64 / 1_000_000.0
84 );
85
86 // Medium model for general use
87 let medium_config = QuantumLLMConfig::medium(vocab_size);
88 println!("\n Medium Model Configuration:");
89 println!(
90 " - Model dimension: {}",
91 medium_config.transformer_config.model_dim
92 );
93 println!(
94 " - Number of layers: {}",
95 medium_config.transformer_config.num_layers
96 );
97 println!(
98 " - Quantum qubits: {}",
99 medium_config.transformer_config.num_qubits
100 );
101 println!(
102 " - Max context length: {}",
103 medium_config.max_context_length
104 );
105
106 let medium_model = QuantumLLM::new(medium_config)?;
107 println!(
108 " Medium model parameters: {:.1}M",
109 medium_model.num_parameters() as f64 / 1_000_000.0
110 );
111
112 // Large model for research and advanced applications
113 let large_config = QuantumLLMConfig::large(vocab_size);
114 println!("\n Large Model Configuration:");
115 println!(
116 " - Model dimension: {}",
117 large_config.transformer_config.model_dim
118 );
119 println!(
120 " - Number of layers: {}",
121 large_config.transformer_config.num_layers
122 );
123 println!(
124 " - Quantum qubits: {}",
125 large_config.transformer_config.num_qubits
126 );
127 println!(
128 " - Max context length: {}",
129 large_config.max_context_length
130 );
131 println!(
132 " - Reasoning steps: {}",
133 large_config.reasoning_config.reasoning_steps
134 );
135
136 let large_model = QuantumLLM::new(large_config)?;
137 println!(
138 " Large model parameters: {:.1}B",
139 large_model.num_parameters() as f64 / 1_000_000_000.0
140 );
141
142 // Compare quantum vs classical parameter efficiency
143 println!("\n Quantum Efficiency Analysis:");
144 let quantum_efficiency =
145 calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
146 println!(" - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
147
148 Ok(())
149}
150
151/// Demonstrate quantum memory systems
152fn quantum_memory_demo() -> Result<()> {
153 println!(" Testing quantum memory systems...");
154
155 // Test different memory configurations
156 let memory_configs = vec![
157 ("Basic Associative", QuantumMemoryConfig::default()),
158 ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
159 ("Advanced Holographic", QuantumMemoryConfig::advanced()),
160 ];
161
162 for (name, config) in memory_configs {
163 println!("\n --- {name} Memory ---");
164
165 let mut memory_system = QuantumMemorySystem::new(config.clone())?;
166 println!(" Memory configuration:");
167 println!(" - Memory size: {}", config.memory_size);
168 println!(" - Associative memory: {}", config.associative_memory);
169 println!(" - Episodic memory: {}", config.episodic_memory);
170 println!(" - Retrieval mechanism: {:?}", config.retrieval_mechanism);
171 println!(" - Quantum compression: {}", config.quantum_compression);
172
173 // Test memory storage and retrieval
174 let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
175 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
176 });
177
178 // Enhance embeddings with memory
179 let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
180 println!(" Enhanced embeddings shape: {:?}", enhanced.dim());
181
182 // Measure memory enhancement effect
183 let original_variance = test_embeddings.var(0.0);
184 let enhanced_variance = enhanced.var(0.0);
185 let enhancement_factor = enhanced_variance / original_variance;
186
187 println!(" Memory enhancement factor: {enhancement_factor:.3}");
188
189 // Test memory update
190 let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
191 memory_system.update_memory(&enhanced, &input_ids)?;
192
193 println!(" Memory updated with new experiences");
194
195 // Test memory retrieval patterns
196 test_memory_patterns(&memory_system, &config)?;
197 }
198
199 Ok(())
200}
201
202/// Demonstrate quantum reasoning capabilities
203fn quantum_reasoning_demo() -> Result<()> {
204 println!(" Testing quantum reasoning modules...");
205
206 let reasoning_configs = vec![
207 ("Basic Logical", QuantumReasoningConfig::default()),
208 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
209 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
210 ];
211
212 for (name, config) in reasoning_configs {
213 println!("\n --- {name} Reasoning ---");
214
215 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
216
217 println!(" Reasoning capabilities:");
218 println!(" - Logical reasoning: {}", config.logical_reasoning);
219 println!(" - Causal reasoning: {}", config.causal_reasoning);
220 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
221 println!(" - Reasoning steps: {}", config.reasoning_steps);
222 println!(" - Circuit depth: {}", config.circuit_depth);
223 println!(
224 " - Entanglement strength: {:.2}",
225 config.entanglement_strength
226 );
227
228 // Test reasoning on sample hidden states
229 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
230 // Create patterns that require reasoning
231 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
232 let causal_pattern = s as f64 * 0.1;
233 let base_value = logical_pattern + causal_pattern;
234
235 0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
236 });
237
238 println!(" Input hidden states shape: {:?}", hidden_states.dim());
239
240 // Apply quantum reasoning
241 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
242 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
243
244 // Analyze reasoning effects
245 let reasoning_enhancement =
246 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
247 println!(" Reasoning enhancement metrics:");
248 println!(
249 " - Pattern amplification: {:.3}",
250 reasoning_enhancement.pattern_amplification
251 );
252 println!(
253 " - Logical consistency: {:.3}",
254 reasoning_enhancement.logical_consistency
255 );
256 println!(
257 " - Causal coherence: {:.3}",
258 reasoning_enhancement.causal_coherence
259 );
260
261 // Test quantum coherence during reasoning
262 let coherence = reasoning_module.measure_coherence()?;
263 println!(" Quantum coherence: {coherence:.3}");
264
265 // Test token selection enhancement
266 let sample_logits = Array1::from_shape_fn(1000, |i| {
267 0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
268 });
269
270 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
271 let enhancement_effect = (&enhanced_logits - &sample_logits)
272 .mapv(f64::abs)
273 .mean()
274 .unwrap_or(0.0);
275 println!(" Token selection enhancement: {enhancement_effect:.4}");
276 }
277
278 Ok(())
279}
280
281/// Demonstrate quantum-enhanced text generation
282fn text_generation_demo() -> Result<()> {
283 println!(" Testing quantum-enhanced text generation...");
284
285 let config = QuantumLLMConfig::small(10000);
286 let mut model = QuantumLLM::new(config)?;
287
288 // Test different generation configurations
289 let generation_configs = vec![
290 ("Default", GenerationConfig::default()),
291 ("Creative", GenerationConfig::creative()),
292 ("Precise", GenerationConfig::precise()),
293 ];
294
295 let test_prompts = [
296 "The quantum computer",
297 "Artificial intelligence will",
298 "In the future, quantum computing",
299 "The relationship between quantum mechanics and consciousness",
300 ];
301
302 for (config_name, gen_config) in generation_configs {
303 println!("\n --- {config_name} Generation ---");
304 println!(" Configuration:");
305 println!(" - Max length: {}", gen_config.max_length);
306 println!(" - Temperature: {:.1}", gen_config.temperature);
307 println!(" - Top-k: {:?}", gen_config.top_k);
308 println!(" - Top-p: {:?}", gen_config.top_p);
309 println!(
310 " - Quantum reasoning: {}",
311 gen_config.use_quantum_reasoning
312 );
313 println!(" - Memory usage: {}", gen_config.use_memory);
314 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
315
316 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
317 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
318
319 let start_time = std::time::Instant::now();
320 let generated = model.generate(prompt, gen_config.clone())?;
321 let generation_time = start_time.elapsed();
322
323 // Display partial generated text (first 100 chars)
324 let display_text = if generated.len() > 100 {
325 format!("{}...", &generated[..100])
326 } else {
327 generated.clone()
328 };
329
330 println!(" Generated: \"{display_text}\"");
331 println!(" Generation time: {generation_time:.2?}");
332
333 // Analyze generation quality
334 let quality = analyze_generation_quality(&generated, &gen_config)?;
335 println!(" Quality metrics:");
336 println!(" - Fluency: {:.2}", quality.fluency);
337 println!(" - Coherence: {:.2}", quality.coherence);
338 println!(" - Novelty: {:.2}", quality.novelty);
339 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
340 }
341 }
342
343 // Display generation statistics
344 let stats = model.generation_stats();
345 println!("\n Generation Statistics:");
346 println!(" - Total tokens generated: {}", stats.total_tokens);
347 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
348 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
349 println!(" - Memory retrievals: {}", stats.memory_retrievals);
350
351 Ok(())
352}
353
354/// Demonstrate language understanding capabilities
355fn language_understanding_demo() -> Result<()> {
356 println!(" Testing quantum language understanding...");
357
358 let config = QuantumLLMConfig::medium(20000);
359 let mut model = QuantumLLM::new(config)?;
360
361 // Test different understanding tasks
362 let understanding_tasks = vec![
363 ("Reading Comprehension", vec![
364 "The photon exhibits wave-particle duality in quantum mechanics.",
365 "What properties does a photon exhibit according to quantum mechanics?",
366 ]),
367 ("Logical Reasoning", vec![
368 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
369 "Apply logical reasoning to derive the conclusion.",
370 ]),
371 ("Causal Understanding", vec![
372 "When a quantum measurement is performed, the wavefunction collapses.",
373 "What causes the wavefunction to collapse?",
374 ]),
375 ("Analogical Reasoning", vec![
376 "Quantum superposition is like a coin spinning in the air before landing.",
377 "How is quantum entanglement similar to this analogy?",
378 ]),
379 ];
380
381 for (task_name, texts) in understanding_tasks {
382 println!("\n --- {task_name} Task ---");
383
384 for (i, text) in texts.iter().enumerate() {
385 println!(" Input {}: \"{}\"", i + 1, text);
386
387 // Process text through model
388 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
389
390 // Enable different reasoning modes based on task
391 let use_reasoning = match task_name {
392 "Logical Reasoning" => true,
393 "Causal Understanding" => true,
394 "Analogical Reasoning" => true,
395 _ => false,
396 };
397
398 let use_memory = true;
399
400 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
401 println!(" Model output shape: {:?}", output.dim());
402
403 // Analyze understanding quality
404 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
405 println!(" Understanding score: {understanding_score:.3}");
406 }
407
408 // Task-specific analysis
409 match task_name {
410 "Reading Comprehension" => {
411 println!(" ✓ Model shows information extraction capabilities");
412 }
413 "Logical Reasoning" => {
414 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
415 }
416 "Causal Understanding" => {
417 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
418 }
419 "Analogical Reasoning" => {
420 println!(" ✓ Quantum analogy engine maps structural similarities");
421 }
422 _ => {}
423 }
424 }
425
426 Ok(())
427}
428
429/// Demonstrate chain-of-thought reasoning
430fn chain_of_thought_demo() -> Result<()> {
431 println!(" Testing quantum chain-of-thought reasoning...");
432
433 let config = QuantumLLMConfig::large(30000);
434 let mut model = QuantumLLM::new(config)?;
435
436 let reasoning_problems = vec![
437 ("Mathematical Problem",
438 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
439 ("Physics Problem",
440 "Explain how quantum entanglement enables quantum teleportation step by step."),
441 ("Logic Problem",
442 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
443 ("Ethics Problem",
444 "What are the implications of quantum computing for cryptography and privacy?"),
445 ];
446
447 for (problem_type, prompt) in reasoning_problems {
448 println!("\n --- {problem_type} ---");
449 println!(" Problem: \"{prompt}\"");
450
451 // Enable chain-of-thought generation
452 let cot_config = GenerationConfig {
453 max_length: 200,
454 temperature: 0.8,
455 top_k: Some(40),
456 top_p: Some(0.9),
457 repetition_penalty: 1.1,
458 use_quantum_reasoning: true,
459 use_memory: true,
460 chain_of_thought: true,
461 };
462
463 let start_time = std::time::Instant::now();
464 let reasoning_output = model.generate(prompt, cot_config)?;
465 let reasoning_time = start_time.elapsed();
466
467 // Display reasoning steps (truncated for readability)
468 let display_output = if reasoning_output.len() > 200 {
469 format!("{}...", &reasoning_output[..200])
470 } else {
471 reasoning_output.clone()
472 };
473
474 println!(" Chain-of-thought reasoning:");
475 println!(" \"{display_output}\"");
476 println!(" Reasoning time: {reasoning_time:.2?}");
477
478 // Analyze reasoning quality
479 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
480 println!(" Reasoning analysis:");
481 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
482 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
483 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
484 println!(
485 " - Quantum enhancement: {:.3}",
486 reasoning_analysis.quantum_enhancement
487 );
488
489 // Check for quantum reasoning patterns
490 if reasoning_analysis.quantum_enhancement > 0.5 {
491 println!(" ✓ Strong quantum reasoning signature detected");
492 } else if reasoning_analysis.quantum_enhancement > 0.2 {
493 println!(" ~ Moderate quantum reasoning influence");
494 } else {
495 println!(" - Limited quantum reasoning detected");
496 }
497 }
498
499 Ok(())
500}
501
502/// Demonstrate multi-modal quantum language processing
503fn multimodal_demo() -> Result<()> {
504 println!(" Testing multi-modal quantum language processing...");
505
506 let config = QuantumLLMConfig::medium(25000);
507 let mut model = QuantumLLM::new(config)?;
508
509 // Simulate different modalities
510 let multimodal_tasks = vec![
511 (
512 "Text + Quantum Data",
513 "Analyze this quantum measurement sequence",
514 ),
515 (
516 "Text + Mathematical",
517 "Solve this quantum mechanics equation",
518 ),
519 ("Text + Logical", "Apply quantum logic to this proposition"),
520 (
521 "Text + Memory",
522 "Recall information about quantum algorithms",
523 ),
524 ];
525
526 for (modality, task_description) in multimodal_tasks {
527 println!("\n --- {modality} Processing ---");
528 println!(" Task: \"{task_description}\"");
529
530 // Create synthetic multi-modal input
531 let text_input =
532 Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
533
534 // Enable all quantum capabilities for multi-modal processing
535 let output = model.forward(&text_input, None, true, true)?;
536
537 println!(" Multi-modal output shape: {:?}", output.dim());
538
539 // Analyze multi-modal integration
540 let integration_quality = evaluate_multimodal_integration(&output, modality)?;
541 println!(" Integration metrics:");
542 println!(
543 " - Cross-modal coherence: {:.3}",
544 integration_quality.coherence
545 );
546 println!(
547 " - Information fusion: {:.3}",
548 integration_quality.fusion_quality
549 );
550 println!(
551 " - Quantum entanglement: {:.3}",
552 integration_quality.quantum_entanglement
553 );
554
555 // Test specific capabilities based on modality
556 match modality {
557 "Text + Quantum Data" => {
558 let quantum_analysis = analyze_quantum_data_processing(&output)?;
559 println!(
560 " - Quantum state recognition: {:.3}",
561 quantum_analysis.state_recognition
562 );
563 println!(
564 " - Measurement prediction: {:.3}",
565 quantum_analysis.measurement_prediction
566 );
567 }
568 "Text + Mathematical" => {
569 let math_analysis = analyze_mathematical_reasoning(&output)?;
570 println!(
571 " - Equation understanding: {:.3}",
572 math_analysis.equation_understanding
573 );
574 println!(
575 " - Symbol manipulation: {:.3}",
576 math_analysis.symbol_manipulation
577 );
578 }
579 "Text + Logical" => {
580 let logic_analysis = analyze_logical_processing(&output)?;
581 println!(" - Logical validity: {:.3}", logic_analysis.validity);
582 println!(
583 " - Inference quality: {:.3}",
584 logic_analysis.inference_quality
585 );
586 }
587 "Text + Memory" => {
588 let memory_analysis = analyze_memory_retrieval(&output)?;
589 println!(" - Memory accuracy: {:.3}", memory_analysis.accuracy);
590 println!(
591 " - Retrieval efficiency: {:.3}",
592 memory_analysis.efficiency
593 );
594 }
595 _ => {}
596 }
597 }
598
599 Ok(())
600}
601
602/// Demonstrate performance analysis and quantum advantage
603fn performance_analysis_demo() -> Result<()> {
604 println!(" Analyzing performance and quantum advantage...");
605
606 // Create models of different scales
607 let small_config = QuantumLLMConfig::small(10000);
608 let medium_config = QuantumLLMConfig::medium(20000);
609 let large_config = QuantumLLMConfig::large(50000);
610
611 let small_model = QuantumLLM::new(small_config)?;
612 let medium_model = QuantumLLM::new(medium_config)?;
613 let large_model = QuantumLLM::new(large_config)?;
614
615 let models = vec![
616 ("Small", &small_model),
617 ("Medium", &medium_model),
618 ("Large", &large_model),
619 ];
620
621 println!("\n Model Comparison:");
622
623 for (name, model) in &models {
624 let config = model.config();
625 let params = model.num_parameters();
626
627 println!(" {name} Model:");
628 println!(" - Parameters: {:.1}M", params as f64 / 1_000_000.0);
629 println!(
630 " - Model dimension: {}",
631 config.transformer_config.model_dim
632 );
633 println!(
634 " - Quantum qubits: {}",
635 config.transformer_config.num_qubits
636 );
637 println!(" - Memory size: {}", config.memory_config.memory_size);
638 println!(
639 " - Reasoning steps: {}",
640 config.reasoning_config.reasoning_steps
641 );
642
643 // Estimate quantum advantage
644 let quantum_advantage = estimate_quantum_advantage(model)?;
645 println!(" - Quantum advantage: {:.2}x", quantum_advantage.speedup);
646 println!(
647 " - Memory efficiency: {:.2}x",
648 quantum_advantage.memory_efficiency
649 );
650 println!(
651 " - Reasoning enhancement: {:.2}x",
652 quantum_advantage.reasoning_enhancement
653 );
654 }
655
656 // Performance benchmarks
657 println!("\n Performance Benchmarks:");
658
659 let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
660 ("Text Generation", measure_generation_performance),
661 ("Language Understanding", measure_understanding_performance),
662 ("Reasoning Tasks", measure_reasoning_performance),
663 ("Memory Operations", measure_memory_performance),
664 ];
665
666 for (task_name, benchmark_fn) in benchmark_tasks {
667 println!("\n {task_name} Benchmark:");
668
669 for (model_name, model) in &models {
670 let performance = benchmark_fn(model)?;
671 println!(
672 " {} Model: {:.2} ops/sec, {:.1} MB memory",
673 model_name, performance.operations_per_sec, performance.memory_usage_mb
674 );
675 }
676 }
677
678 // Quantum scaling analysis
679 println!("\n Quantum Scaling Analysis:");
680 let scaling_analysis = analyze_quantum_scaling(&models)?;
681 println!(
682 " - Parameter scaling: {:.2} (vs {:.2} classical)",
683 scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
684 );
685 println!(
686 " - Performance scaling: {:.2}",
687 scaling_analysis.performance_scaling
688 );
689 println!(
690 " - Quantum efficiency: {:.1}%",
691 scaling_analysis.efficiency * 100.0
692 );
693
694 // Future projections
695 println!("\n Future Projections:");
696 println!(
697 " - 100B parameter QLLM estimated efficiency: {:.2}x classical",
698 project_future_efficiency(100_000_000_000)
699 );
700 println!(
701 " - Quantum coherence preservation: {:.1}%",
702 project_coherence_preservation() * 100.0
703 );
704 println!(
705 " - Reasoning capability enhancement: {:.2}x",
706 project_reasoning_enhancement()
707 );
708
709 Ok(())
710}Sourcepub fn large(vocab_size: usize) -> Self
pub fn large(vocab_size: usize) -> Self
Create large model configuration
Examples found in repository?
examples/quantum_llm.rs (line 113)
53fn model_configurations_demo() -> Result<()> {
54 println!(" Creating quantum LLM configurations...");
55
56 let vocab_size = 50000;
57
58 // Small model for edge deployment
59 let small_config = QuantumLLMConfig::small(vocab_size);
60 println!(" Small Model Configuration:");
61 println!(" - Vocabulary size: {}", small_config.vocab_size);
62 println!(
63 " - Model dimension: {}",
64 small_config.transformer_config.model_dim
65 );
66 println!(
67 " - Number of heads: {}",
68 small_config.transformer_config.num_heads
69 );
70 println!(
71 " - Number of layers: {}",
72 small_config.transformer_config.num_layers
73 );
74 println!(
75 " - Quantum qubits: {}",
76 small_config.transformer_config.num_qubits
77 );
78 println!(" - Memory layers: {}", small_config.quantum_memory_layers);
79
80 let small_model = QuantumLLM::new(small_config)?;
81 println!(
82 " Small model parameters: {:.1}M",
83 small_model.num_parameters() as f64 / 1_000_000.0
84 );
85
86 // Medium model for general use
87 let medium_config = QuantumLLMConfig::medium(vocab_size);
88 println!("\n Medium Model Configuration:");
89 println!(
90 " - Model dimension: {}",
91 medium_config.transformer_config.model_dim
92 );
93 println!(
94 " - Number of layers: {}",
95 medium_config.transformer_config.num_layers
96 );
97 println!(
98 " - Quantum qubits: {}",
99 medium_config.transformer_config.num_qubits
100 );
101 println!(
102 " - Max context length: {}",
103 medium_config.max_context_length
104 );
105
106 let medium_model = QuantumLLM::new(medium_config)?;
107 println!(
108 " Medium model parameters: {:.1}M",
109 medium_model.num_parameters() as f64 / 1_000_000.0
110 );
111
112 // Large model for research and advanced applications
113 let large_config = QuantumLLMConfig::large(vocab_size);
114 println!("\n Large Model Configuration:");
115 println!(
116 " - Model dimension: {}",
117 large_config.transformer_config.model_dim
118 );
119 println!(
120 " - Number of layers: {}",
121 large_config.transformer_config.num_layers
122 );
123 println!(
124 " - Quantum qubits: {}",
125 large_config.transformer_config.num_qubits
126 );
127 println!(
128 " - Max context length: {}",
129 large_config.max_context_length
130 );
131 println!(
132 " - Reasoning steps: {}",
133 large_config.reasoning_config.reasoning_steps
134 );
135
136 let large_model = QuantumLLM::new(large_config)?;
137 println!(
138 " Large model parameters: {:.1}B",
139 large_model.num_parameters() as f64 / 1_000_000_000.0
140 );
141
142 // Compare quantum vs classical parameter efficiency
143 println!("\n Quantum Efficiency Analysis:");
144 let quantum_efficiency =
145 calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
146 println!(" - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
147
148 Ok(())
149}
150
151/// Demonstrate quantum memory systems
152fn quantum_memory_demo() -> Result<()> {
153 println!(" Testing quantum memory systems...");
154
155 // Test different memory configurations
156 let memory_configs = vec![
157 ("Basic Associative", QuantumMemoryConfig::default()),
158 ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
159 ("Advanced Holographic", QuantumMemoryConfig::advanced()),
160 ];
161
162 for (name, config) in memory_configs {
163 println!("\n --- {name} Memory ---");
164
165 let mut memory_system = QuantumMemorySystem::new(config.clone())?;
166 println!(" Memory configuration:");
167 println!(" - Memory size: {}", config.memory_size);
168 println!(" - Associative memory: {}", config.associative_memory);
169 println!(" - Episodic memory: {}", config.episodic_memory);
170 println!(" - Retrieval mechanism: {:?}", config.retrieval_mechanism);
171 println!(" - Quantum compression: {}", config.quantum_compression);
172
173 // Test memory storage and retrieval
174 let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
175 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
176 });
177
178 // Enhance embeddings with memory
179 let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
180 println!(" Enhanced embeddings shape: {:?}", enhanced.dim());
181
182 // Measure memory enhancement effect
183 let original_variance = test_embeddings.var(0.0);
184 let enhanced_variance = enhanced.var(0.0);
185 let enhancement_factor = enhanced_variance / original_variance;
186
187 println!(" Memory enhancement factor: {enhancement_factor:.3}");
188
189 // Test memory update
190 let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
191 memory_system.update_memory(&enhanced, &input_ids)?;
192
193 println!(" Memory updated with new experiences");
194
195 // Test memory retrieval patterns
196 test_memory_patterns(&memory_system, &config)?;
197 }
198
199 Ok(())
200}
201
202/// Demonstrate quantum reasoning capabilities
203fn quantum_reasoning_demo() -> Result<()> {
204 println!(" Testing quantum reasoning modules...");
205
206 let reasoning_configs = vec![
207 ("Basic Logical", QuantumReasoningConfig::default()),
208 ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
209 ("Advanced Analogical", QuantumReasoningConfig::advanced()),
210 ];
211
212 for (name, config) in reasoning_configs {
213 println!("\n --- {name} Reasoning ---");
214
215 let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
216
217 println!(" Reasoning capabilities:");
218 println!(" - Logical reasoning: {}", config.logical_reasoning);
219 println!(" - Causal reasoning: {}", config.causal_reasoning);
220 println!(" - Analogical reasoning: {}", config.analogical_reasoning);
221 println!(" - Reasoning steps: {}", config.reasoning_steps);
222 println!(" - Circuit depth: {}", config.circuit_depth);
223 println!(
224 " - Entanglement strength: {:.2}",
225 config.entanglement_strength
226 );
227
228 // Test reasoning on sample hidden states
229 let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
230 // Create patterns that require reasoning
231 let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
232 let causal_pattern = s as f64 * 0.1;
233 let base_value = logical_pattern + causal_pattern;
234
235 0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
236 });
237
238 println!(" Input hidden states shape: {:?}", hidden_states.dim());
239
240 // Apply quantum reasoning
241 let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
242 println!(" Reasoned output shape: {:?}", reasoned_output.dim());
243
244 // Analyze reasoning effects
245 let reasoning_enhancement =
246 analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
247 println!(" Reasoning enhancement metrics:");
248 println!(
249 " - Pattern amplification: {:.3}",
250 reasoning_enhancement.pattern_amplification
251 );
252 println!(
253 " - Logical consistency: {:.3}",
254 reasoning_enhancement.logical_consistency
255 );
256 println!(
257 " - Causal coherence: {:.3}",
258 reasoning_enhancement.causal_coherence
259 );
260
261 // Test quantum coherence during reasoning
262 let coherence = reasoning_module.measure_coherence()?;
263 println!(" Quantum coherence: {coherence:.3}");
264
265 // Test token selection enhancement
266 let sample_logits = Array1::from_shape_fn(1000, |i| {
267 0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
268 });
269
270 let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
271 let enhancement_effect = (&enhanced_logits - &sample_logits)
272 .mapv(f64::abs)
273 .mean()
274 .unwrap_or(0.0);
275 println!(" Token selection enhancement: {enhancement_effect:.4}");
276 }
277
278 Ok(())
279}
280
281/// Demonstrate quantum-enhanced text generation
282fn text_generation_demo() -> Result<()> {
283 println!(" Testing quantum-enhanced text generation...");
284
285 let config = QuantumLLMConfig::small(10000);
286 let mut model = QuantumLLM::new(config)?;
287
288 // Test different generation configurations
289 let generation_configs = vec![
290 ("Default", GenerationConfig::default()),
291 ("Creative", GenerationConfig::creative()),
292 ("Precise", GenerationConfig::precise()),
293 ];
294
295 let test_prompts = [
296 "The quantum computer",
297 "Artificial intelligence will",
298 "In the future, quantum computing",
299 "The relationship between quantum mechanics and consciousness",
300 ];
301
302 for (config_name, gen_config) in generation_configs {
303 println!("\n --- {config_name} Generation ---");
304 println!(" Configuration:");
305 println!(" - Max length: {}", gen_config.max_length);
306 println!(" - Temperature: {:.1}", gen_config.temperature);
307 println!(" - Top-k: {:?}", gen_config.top_k);
308 println!(" - Top-p: {:?}", gen_config.top_p);
309 println!(
310 " - Quantum reasoning: {}",
311 gen_config.use_quantum_reasoning
312 );
313 println!(" - Memory usage: {}", gen_config.use_memory);
314 println!(" - Chain-of-thought: {}", gen_config.chain_of_thought);
315
316 for (i, prompt) in test_prompts.iter().take(2).enumerate() {
317 println!("\n Prompt {}: \"{}\"", i + 1, prompt);
318
319 let start_time = std::time::Instant::now();
320 let generated = model.generate(prompt, gen_config.clone())?;
321 let generation_time = start_time.elapsed();
322
323 // Display partial generated text (first 100 chars)
324 let display_text = if generated.len() > 100 {
325 format!("{}...", &generated[..100])
326 } else {
327 generated.clone()
328 };
329
330 println!(" Generated: \"{display_text}\"");
331 println!(" Generation time: {generation_time:.2?}");
332
333 // Analyze generation quality
334 let quality = analyze_generation_quality(&generated, &gen_config)?;
335 println!(" Quality metrics:");
336 println!(" - Fluency: {:.2}", quality.fluency);
337 println!(" - Coherence: {:.2}", quality.coherence);
338 println!(" - Novelty: {:.2}", quality.novelty);
339 println!(" - Quantum advantage: {:.3}", quality.quantum_advantage);
340 }
341 }
342
343 // Display generation statistics
344 let stats = model.generation_stats();
345 println!("\n Generation Statistics:");
346 println!(" - Total tokens generated: {}", stats.total_tokens);
347 println!(" - Quantum coherence: {:.3}", stats.quantum_coherence);
348 println!(" - Reasoning steps taken: {}", stats.reasoning_steps);
349 println!(" - Memory retrievals: {}", stats.memory_retrievals);
350
351 Ok(())
352}
353
354/// Demonstrate language understanding capabilities
355fn language_understanding_demo() -> Result<()> {
356 println!(" Testing quantum language understanding...");
357
358 let config = QuantumLLMConfig::medium(20000);
359 let mut model = QuantumLLM::new(config)?;
360
361 // Test different understanding tasks
362 let understanding_tasks = vec![
363 ("Reading Comprehension", vec![
364 "The photon exhibits wave-particle duality in quantum mechanics.",
365 "What properties does a photon exhibit according to quantum mechanics?",
366 ]),
367 ("Logical Reasoning", vec![
368 "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
369 "Apply logical reasoning to derive the conclusion.",
370 ]),
371 ("Causal Understanding", vec![
372 "When a quantum measurement is performed, the wavefunction collapses.",
373 "What causes the wavefunction to collapse?",
374 ]),
375 ("Analogical Reasoning", vec![
376 "Quantum superposition is like a coin spinning in the air before landing.",
377 "How is quantum entanglement similar to this analogy?",
378 ]),
379 ];
380
381 for (task_name, texts) in understanding_tasks {
382 println!("\n --- {task_name} Task ---");
383
384 for (i, text) in texts.iter().enumerate() {
385 println!(" Input {}: \"{}\"", i + 1, text);
386
387 // Process text through model
388 let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
389
390 // Enable different reasoning modes based on task
391 let use_reasoning = match task_name {
392 "Logical Reasoning" => true,
393 "Causal Understanding" => true,
394 "Analogical Reasoning" => true,
395 _ => false,
396 };
397
398 let use_memory = true;
399
400 let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
401 println!(" Model output shape: {:?}", output.dim());
402
403 // Analyze understanding quality
404 let understanding_score = evaluate_understanding_quality(&output, task_name)?;
405 println!(" Understanding score: {understanding_score:.3}");
406 }
407
408 // Task-specific analysis
409 match task_name {
410 "Reading Comprehension" => {
411 println!(" ✓ Model shows information extraction capabilities");
412 }
413 "Logical Reasoning" => {
414 println!(" ✓ Quantum logical circuits enhance deductive reasoning");
415 }
416 "Causal Understanding" => {
417 println!(" ✓ Causal reasoning networks identify cause-effect relationships");
418 }
419 "Analogical Reasoning" => {
420 println!(" ✓ Quantum analogy engine maps structural similarities");
421 }
422 _ => {}
423 }
424 }
425
426 Ok(())
427}
428
429/// Demonstrate chain-of-thought reasoning
430fn chain_of_thought_demo() -> Result<()> {
431 println!(" Testing quantum chain-of-thought reasoning...");
432
433 let config = QuantumLLMConfig::large(30000);
434 let mut model = QuantumLLM::new(config)?;
435
436 let reasoning_problems = vec![
437 ("Mathematical Problem",
438 "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
439 ("Physics Problem",
440 "Explain how quantum entanglement enables quantum teleportation step by step."),
441 ("Logic Problem",
442 "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
443 ("Ethics Problem",
444 "What are the implications of quantum computing for cryptography and privacy?"),
445 ];
446
447 for (problem_type, prompt) in reasoning_problems {
448 println!("\n --- {problem_type} ---");
449 println!(" Problem: \"{prompt}\"");
450
451 // Enable chain-of-thought generation
452 let cot_config = GenerationConfig {
453 max_length: 200,
454 temperature: 0.8,
455 top_k: Some(40),
456 top_p: Some(0.9),
457 repetition_penalty: 1.1,
458 use_quantum_reasoning: true,
459 use_memory: true,
460 chain_of_thought: true,
461 };
462
463 let start_time = std::time::Instant::now();
464 let reasoning_output = model.generate(prompt, cot_config)?;
465 let reasoning_time = start_time.elapsed();
466
467 // Display reasoning steps (truncated for readability)
468 let display_output = if reasoning_output.len() > 200 {
469 format!("{}...", &reasoning_output[..200])
470 } else {
471 reasoning_output.clone()
472 };
473
474 println!(" Chain-of-thought reasoning:");
475 println!(" \"{display_output}\"");
476 println!(" Reasoning time: {reasoning_time:.2?}");
477
478 // Analyze reasoning quality
479 let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
480 println!(" Reasoning analysis:");
481 println!(" - Logical steps: {}", reasoning_analysis.logical_steps);
482 println!(" - Coherence score: {:.3}", reasoning_analysis.coherence);
483 println!(" - Depth of reasoning: {:.3}", reasoning_analysis.depth);
484 println!(
485 " - Quantum enhancement: {:.3}",
486 reasoning_analysis.quantum_enhancement
487 );
488
489 // Check for quantum reasoning patterns
490 if reasoning_analysis.quantum_enhancement > 0.5 {
491 println!(" ✓ Strong quantum reasoning signature detected");
492 } else if reasoning_analysis.quantum_enhancement > 0.2 {
493 println!(" ~ Moderate quantum reasoning influence");
494 } else {
495 println!(" - Limited quantum reasoning detected");
496 }
497 }
498
499 Ok(())
500}
501
502/// Demonstrate multi-modal quantum language processing
503fn multimodal_demo() -> Result<()> {
504 println!(" Testing multi-modal quantum language processing...");
505
506 let config = QuantumLLMConfig::medium(25000);
507 let mut model = QuantumLLM::new(config)?;
508
509 // Simulate different modalities
510 let multimodal_tasks = vec![
511 (
512 "Text + Quantum Data",
513 "Analyze this quantum measurement sequence",
514 ),
515 (
516 "Text + Mathematical",
517 "Solve this quantum mechanics equation",
518 ),
519 ("Text + Logical", "Apply quantum logic to this proposition"),
520 (
521 "Text + Memory",
522 "Recall information about quantum algorithms",
523 ),
524 ];
525
526 for (modality, task_description) in multimodal_tasks {
527 println!("\n --- {modality} Processing ---");
528 println!(" Task: \"{task_description}\"");
529
530 // Create synthetic multi-modal input
531 let text_input =
532 Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
533
534 // Enable all quantum capabilities for multi-modal processing
535 let output = model.forward(&text_input, None, true, true)?;
536
537 println!(" Multi-modal output shape: {:?}", output.dim());
538
539 // Analyze multi-modal integration
540 let integration_quality = evaluate_multimodal_integration(&output, modality)?;
541 println!(" Integration metrics:");
542 println!(
543 " - Cross-modal coherence: {:.3}",
544 integration_quality.coherence
545 );
546 println!(
547 " - Information fusion: {:.3}",
548 integration_quality.fusion_quality
549 );
550 println!(
551 " - Quantum entanglement: {:.3}",
552 integration_quality.quantum_entanglement
553 );
554
555 // Test specific capabilities based on modality
556 match modality {
557 "Text + Quantum Data" => {
558 let quantum_analysis = analyze_quantum_data_processing(&output)?;
559 println!(
560 " - Quantum state recognition: {:.3}",
561 quantum_analysis.state_recognition
562 );
563 println!(
564 " - Measurement prediction: {:.3}",
565 quantum_analysis.measurement_prediction
566 );
567 }
568 "Text + Mathematical" => {
569 let math_analysis = analyze_mathematical_reasoning(&output)?;
570 println!(
571 " - Equation understanding: {:.3}",
572 math_analysis.equation_understanding
573 );
574 println!(
575 " - Symbol manipulation: {:.3}",
576 math_analysis.symbol_manipulation
577 );
578 }
579 "Text + Logical" => {
580 let logic_analysis = analyze_logical_processing(&output)?;
581 println!(" - Logical validity: {:.3}", logic_analysis.validity);
582 println!(
583 " - Inference quality: {:.3}",
584 logic_analysis.inference_quality
585 );
586 }
587 "Text + Memory" => {
588 let memory_analysis = analyze_memory_retrieval(&output)?;
589 println!(" - Memory accuracy: {:.3}", memory_analysis.accuracy);
590 println!(
591 " - Retrieval efficiency: {:.3}",
592 memory_analysis.efficiency
593 );
594 }
595 _ => {}
596 }
597 }
598
599 Ok(())
600}
601
602/// Demonstrate performance analysis and quantum advantage
603fn performance_analysis_demo() -> Result<()> {
604 println!(" Analyzing performance and quantum advantage...");
605
606 // Create models of different scales
607 let small_config = QuantumLLMConfig::small(10000);
608 let medium_config = QuantumLLMConfig::medium(20000);
609 let large_config = QuantumLLMConfig::large(50000);
610
611 let small_model = QuantumLLM::new(small_config)?;
612 let medium_model = QuantumLLM::new(medium_config)?;
613 let large_model = QuantumLLM::new(large_config)?;
614
615 let models = vec![
616 ("Small", &small_model),
617 ("Medium", &medium_model),
618 ("Large", &large_model),
619 ];
620
621 println!("\n Model Comparison:");
622
623 for (name, model) in &models {
624 let config = model.config();
625 let params = model.num_parameters();
626
627 println!(" {name} Model:");
628 println!(" - Parameters: {:.1}M", params as f64 / 1_000_000.0);
629 println!(
630 " - Model dimension: {}",
631 config.transformer_config.model_dim
632 );
633 println!(
634 " - Quantum qubits: {}",
635 config.transformer_config.num_qubits
636 );
637 println!(" - Memory size: {}", config.memory_config.memory_size);
638 println!(
639 " - Reasoning steps: {}",
640 config.reasoning_config.reasoning_steps
641 );
642
643 // Estimate quantum advantage
644 let quantum_advantage = estimate_quantum_advantage(model)?;
645 println!(" - Quantum advantage: {:.2}x", quantum_advantage.speedup);
646 println!(
647 " - Memory efficiency: {:.2}x",
648 quantum_advantage.memory_efficiency
649 );
650 println!(
651 " - Reasoning enhancement: {:.2}x",
652 quantum_advantage.reasoning_enhancement
653 );
654 }
655
656 // Performance benchmarks
657 println!("\n Performance Benchmarks:");
658
659 let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
660 ("Text Generation", measure_generation_performance),
661 ("Language Understanding", measure_understanding_performance),
662 ("Reasoning Tasks", measure_reasoning_performance),
663 ("Memory Operations", measure_memory_performance),
664 ];
665
666 for (task_name, benchmark_fn) in benchmark_tasks {
667 println!("\n {task_name} Benchmark:");
668
669 for (model_name, model) in &models {
670 let performance = benchmark_fn(model)?;
671 println!(
672 " {} Model: {:.2} ops/sec, {:.1} MB memory",
673 model_name, performance.operations_per_sec, performance.memory_usage_mb
674 );
675 }
676 }
677
678 // Quantum scaling analysis
679 println!("\n Quantum Scaling Analysis:");
680 let scaling_analysis = analyze_quantum_scaling(&models)?;
681 println!(
682 " - Parameter scaling: {:.2} (vs {:.2} classical)",
683 scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
684 );
685 println!(
686 " - Performance scaling: {:.2}",
687 scaling_analysis.performance_scaling
688 );
689 println!(
690 " - Quantum efficiency: {:.1}%",
691 scaling_analysis.efficiency * 100.0
692 );
693
694 // Future projections
695 println!("\n Future Projections:");
696 println!(
697 " - 100B parameter QLLM estimated efficiency: {:.2}x classical",
698 project_future_efficiency(100_000_000_000)
699 );
700 println!(
701 " - Quantum coherence preservation: {:.1}%",
702 project_coherence_preservation() * 100.0
703 );
704 println!(
705 " - Reasoning capability enhancement: {:.2}x",
706 project_reasoning_enhancement()
707 );
708
709 Ok(())
710}Trait Implementations§
Source§impl Clone for QuantumLLMConfig
impl Clone for QuantumLLMConfig
Source§fn clone(&self) -> QuantumLLMConfig
fn clone(&self) -> QuantumLLMConfig
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreAuto Trait Implementations§
impl Freeze for QuantumLLMConfig
impl RefUnwindSafe for QuantumLLMConfig
impl Send for QuantumLLMConfig
impl Sync for QuantumLLMConfig
impl Unpin for QuantumLLMConfig
impl UnwindSafe for QuantumLLMConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.