pub struct ContinualMetaLearner { /* private fields */ }Expand description
Continual meta-learning with memory
Implementations§
Source§impl ContinualMetaLearner
impl ContinualMetaLearner
Sourcepub fn new(
meta_learner: QuantumMetaLearner,
memory_capacity: usize,
replay_ratio: f64,
) -> Self
pub fn new( meta_learner: QuantumMetaLearner, memory_capacity: usize, replay_ratio: f64, ) -> Self
Create new continual meta-learner
Examples found in repository?
examples/quantum_meta_learning.rs (lines 311-315)
294fn continual_meta_learning_demo() -> Result<()> {
295 let layers = vec![
296 QNNLayerType::EncodingLayer { num_features: 4 },
297 QNNLayerType::VariationalLayer { num_params: 8 },
298 QNNLayerType::MeasurementLayer {
299 measurement_basis: "computational".to_string(),
300 },
301 ];
302
303 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
304
305 let algorithm = MetaLearningAlgorithm::Reptile {
306 inner_steps: 5,
307 inner_lr: 0.05,
308 };
309
310 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
311 let mut continual_learner = ContinualMetaLearner::new(
312 meta_learner,
313 10, // memory capacity
314 0.3, // replay ratio
315 );
316
317 println!(" Created Continual Meta-Learner:");
318 println!(" - Memory capacity: 10 tasks");
319 println!(" - Replay ratio: 30%");
320
321 // Generate sequence of tasks
322 let generator = TaskGenerator::new(4, 2);
323
324 println!("\n Learning sequence of tasks...");
325 for i in 0..20 {
326 let task = if i < 10 {
327 generator.generate_rotation_task(30)
328 } else {
329 generator.generate_sinusoid_task(30)
330 };
331
332 continual_learner.learn_task(task)?;
333
334 if i % 5 == 4 {
335 println!(
336 " Learned {} tasks, memory contains {} unique tasks",
337 i + 1,
338 continual_learner.memory_buffer_len()
339 );
340 }
341 }
342
343 println!("\n Continual learning prevents catastrophic forgetting");
344
345 Ok(())
346}Sourcepub fn learn_task(&mut self, new_task: MetaTask) -> Result<()>
pub fn learn_task(&mut self, new_task: MetaTask) -> Result<()>
Learn new task while preserving old knowledge
Examples found in repository?
examples/quantum_meta_learning.rs (line 332)
294fn continual_meta_learning_demo() -> Result<()> {
295 let layers = vec![
296 QNNLayerType::EncodingLayer { num_features: 4 },
297 QNNLayerType::VariationalLayer { num_params: 8 },
298 QNNLayerType::MeasurementLayer {
299 measurement_basis: "computational".to_string(),
300 },
301 ];
302
303 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
304
305 let algorithm = MetaLearningAlgorithm::Reptile {
306 inner_steps: 5,
307 inner_lr: 0.05,
308 };
309
310 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
311 let mut continual_learner = ContinualMetaLearner::new(
312 meta_learner,
313 10, // memory capacity
314 0.3, // replay ratio
315 );
316
317 println!(" Created Continual Meta-Learner:");
318 println!(" - Memory capacity: 10 tasks");
319 println!(" - Replay ratio: 30%");
320
321 // Generate sequence of tasks
322 let generator = TaskGenerator::new(4, 2);
323
324 println!("\n Learning sequence of tasks...");
325 for i in 0..20 {
326 let task = if i < 10 {
327 generator.generate_rotation_task(30)
328 } else {
329 generator.generate_sinusoid_task(30)
330 };
331
332 continual_learner.learn_task(task)?;
333
334 if i % 5 == 4 {
335 println!(
336 " Learned {} tasks, memory contains {} unique tasks",
337 i + 1,
338 continual_learner.memory_buffer_len()
339 );
340 }
341 }
342
343 println!("\n Continual learning prevents catastrophic forgetting");
344
345 Ok(())
346}Sourcepub fn memory_buffer_len(&self) -> usize
pub fn memory_buffer_len(&self) -> usize
Get memory buffer length
Examples found in repository?
examples/quantum_meta_learning.rs (line 338)
294fn continual_meta_learning_demo() -> Result<()> {
295 let layers = vec![
296 QNNLayerType::EncodingLayer { num_features: 4 },
297 QNNLayerType::VariationalLayer { num_params: 8 },
298 QNNLayerType::MeasurementLayer {
299 measurement_basis: "computational".to_string(),
300 },
301 ];
302
303 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
304
305 let algorithm = MetaLearningAlgorithm::Reptile {
306 inner_steps: 5,
307 inner_lr: 0.05,
308 };
309
310 let meta_learner = QuantumMetaLearner::new(algorithm, qnn);
311 let mut continual_learner = ContinualMetaLearner::new(
312 meta_learner,
313 10, // memory capacity
314 0.3, // replay ratio
315 );
316
317 println!(" Created Continual Meta-Learner:");
318 println!(" - Memory capacity: 10 tasks");
319 println!(" - Replay ratio: 30%");
320
321 // Generate sequence of tasks
322 let generator = TaskGenerator::new(4, 2);
323
324 println!("\n Learning sequence of tasks...");
325 for i in 0..20 {
326 let task = if i < 10 {
327 generator.generate_rotation_task(30)
328 } else {
329 generator.generate_sinusoid_task(30)
330 };
331
332 continual_learner.learn_task(task)?;
333
334 if i % 5 == 4 {
335 println!(
336 " Learned {} tasks, memory contains {} unique tasks",
337 i + 1,
338 continual_learner.memory_buffer_len()
339 );
340 }
341 }
342
343 println!("\n Continual learning prevents catastrophic forgetting");
344
345 Ok(())
346}Auto Trait Implementations§
impl Freeze for ContinualMetaLearner
impl RefUnwindSafe for ContinualMetaLearner
impl Send for ContinualMetaLearner
impl Sync for ContinualMetaLearner
impl Unpin for ContinualMetaLearner
impl UnwindSafe for ContinualMetaLearner
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> Pointable for T
impl<T> Pointable for T
Source§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
Source§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read moreSource§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).Source§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.Source§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.