QuantumReasoningModule

Struct QuantumReasoningModule 

Source
pub struct QuantumReasoningModule { /* private fields */ }
Expand description

Quantum reasoning module

Implementations§

Source§

impl QuantumReasoningModule

Source

pub fn new(config: QuantumReasoningConfig) -> Result<Self>

Create new quantum reasoning module

Examples found in repository?
examples/quantum_llm.rs (line 218)
206fn quantum_reasoning_demo() -> Result<()> {
207    println!("   Testing quantum reasoning modules...");
208
209    let reasoning_configs = vec![
210        ("Basic Logical", QuantumReasoningConfig::default()),
211        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213    ];
214
215    for (name, config) in reasoning_configs {
216        println!("\n   --- {} Reasoning ---", name);
217
218        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220        println!("   Reasoning capabilities:");
221        println!("   - Logical reasoning: {}", config.logical_reasoning);
222        println!("   - Causal reasoning: {}", config.causal_reasoning);
223        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
224        println!("   - Reasoning steps: {}", config.reasoning_steps);
225        println!("   - Circuit depth: {}", config.circuit_depth);
226        println!(
227            "   - Entanglement strength: {:.2}",
228            config.entanglement_strength
229        );
230
231        // Test reasoning on sample hidden states
232        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233            // Create patterns that require reasoning
234            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235            let causal_pattern = s as f64 * 0.1;
236            let base_value = logical_pattern + causal_pattern;
237
238            base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239        });
240
241        println!("   Input hidden states shape: {:?}", hidden_states.dim());
242
243        // Apply quantum reasoning
244        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
246
247        // Analyze reasoning effects
248        let reasoning_enhancement =
249            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250        println!("   Reasoning enhancement metrics:");
251        println!(
252            "   - Pattern amplification: {:.3}",
253            reasoning_enhancement.pattern_amplification
254        );
255        println!(
256            "   - Logical consistency: {:.3}",
257            reasoning_enhancement.logical_consistency
258        );
259        println!(
260            "   - Causal coherence: {:.3}",
261            reasoning_enhancement.causal_coherence
262        );
263
264        // Test quantum coherence during reasoning
265        let coherence = reasoning_module.measure_coherence()?;
266        println!("   Quantum coherence: {:.3}", coherence);
267
268        // Test token selection enhancement
269        let sample_logits = Array1::from_shape_fn(1000, |i| {
270            0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271        });
272
273        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274        let enhancement_effect = (&enhanced_logits - &sample_logits)
275            .mapv(|x| x.abs())
276            .mean()
277            .unwrap_or(0.0);
278        println!("   Token selection enhancement: {:.4}", enhancement_effect);
279    }
280
281    Ok(())
282}
Source

pub fn apply_reasoning( &mut self, hidden_states: &Array3<f64>, ) -> Result<Array3<f64>>

Apply quantum reasoning to transformer output

Examples found in repository?
examples/quantum_llm.rs (line 244)
206fn quantum_reasoning_demo() -> Result<()> {
207    println!("   Testing quantum reasoning modules...");
208
209    let reasoning_configs = vec![
210        ("Basic Logical", QuantumReasoningConfig::default()),
211        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213    ];
214
215    for (name, config) in reasoning_configs {
216        println!("\n   --- {} Reasoning ---", name);
217
218        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220        println!("   Reasoning capabilities:");
221        println!("   - Logical reasoning: {}", config.logical_reasoning);
222        println!("   - Causal reasoning: {}", config.causal_reasoning);
223        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
224        println!("   - Reasoning steps: {}", config.reasoning_steps);
225        println!("   - Circuit depth: {}", config.circuit_depth);
226        println!(
227            "   - Entanglement strength: {:.2}",
228            config.entanglement_strength
229        );
230
231        // Test reasoning on sample hidden states
232        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233            // Create patterns that require reasoning
234            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235            let causal_pattern = s as f64 * 0.1;
236            let base_value = logical_pattern + causal_pattern;
237
238            base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239        });
240
241        println!("   Input hidden states shape: {:?}", hidden_states.dim());
242
243        // Apply quantum reasoning
244        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
246
247        // Analyze reasoning effects
248        let reasoning_enhancement =
249            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250        println!("   Reasoning enhancement metrics:");
251        println!(
252            "   - Pattern amplification: {:.3}",
253            reasoning_enhancement.pattern_amplification
254        );
255        println!(
256            "   - Logical consistency: {:.3}",
257            reasoning_enhancement.logical_consistency
258        );
259        println!(
260            "   - Causal coherence: {:.3}",
261            reasoning_enhancement.causal_coherence
262        );
263
264        // Test quantum coherence during reasoning
265        let coherence = reasoning_module.measure_coherence()?;
266        println!("   Quantum coherence: {:.3}", coherence);
267
268        // Test token selection enhancement
269        let sample_logits = Array1::from_shape_fn(1000, |i| {
270            0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271        });
272
273        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274        let enhancement_effect = (&enhanced_logits - &sample_logits)
275            .mapv(|x| x.abs())
276            .mean()
277            .unwrap_or(0.0);
278        println!("   Token selection enhancement: {:.4}", enhancement_effect);
279    }
280
281    Ok(())
282}
Source

pub fn enhance_token_selection( &self, logits: &Array1<f64>, ) -> Result<Array1<f64>>

Enhance token selection with quantum reasoning

Examples found in repository?
examples/quantum_llm.rs (line 273)
206fn quantum_reasoning_demo() -> Result<()> {
207    println!("   Testing quantum reasoning modules...");
208
209    let reasoning_configs = vec![
210        ("Basic Logical", QuantumReasoningConfig::default()),
211        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213    ];
214
215    for (name, config) in reasoning_configs {
216        println!("\n   --- {} Reasoning ---", name);
217
218        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220        println!("   Reasoning capabilities:");
221        println!("   - Logical reasoning: {}", config.logical_reasoning);
222        println!("   - Causal reasoning: {}", config.causal_reasoning);
223        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
224        println!("   - Reasoning steps: {}", config.reasoning_steps);
225        println!("   - Circuit depth: {}", config.circuit_depth);
226        println!(
227            "   - Entanglement strength: {:.2}",
228            config.entanglement_strength
229        );
230
231        // Test reasoning on sample hidden states
232        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233            // Create patterns that require reasoning
234            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235            let causal_pattern = s as f64 * 0.1;
236            let base_value = logical_pattern + causal_pattern;
237
238            base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239        });
240
241        println!("   Input hidden states shape: {:?}", hidden_states.dim());
242
243        // Apply quantum reasoning
244        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
246
247        // Analyze reasoning effects
248        let reasoning_enhancement =
249            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250        println!("   Reasoning enhancement metrics:");
251        println!(
252            "   - Pattern amplification: {:.3}",
253            reasoning_enhancement.pattern_amplification
254        );
255        println!(
256            "   - Logical consistency: {:.3}",
257            reasoning_enhancement.logical_consistency
258        );
259        println!(
260            "   - Causal coherence: {:.3}",
261            reasoning_enhancement.causal_coherence
262        );
263
264        // Test quantum coherence during reasoning
265        let coherence = reasoning_module.measure_coherence()?;
266        println!("   Quantum coherence: {:.3}", coherence);
267
268        // Test token selection enhancement
269        let sample_logits = Array1::from_shape_fn(1000, |i| {
270            0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271        });
272
273        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274        let enhancement_effect = (&enhanced_logits - &sample_logits)
275            .mapv(|x| x.abs())
276            .mean()
277            .unwrap_or(0.0);
278        println!("   Token selection enhancement: {:.4}", enhancement_effect);
279    }
280
281    Ok(())
282}
Source

pub fn measure_coherence(&self) -> Result<f64>

Measure quantum coherence in reasoning

Examples found in repository?
examples/quantum_llm.rs (line 265)
206fn quantum_reasoning_demo() -> Result<()> {
207    println!("   Testing quantum reasoning modules...");
208
209    let reasoning_configs = vec![
210        ("Basic Logical", QuantumReasoningConfig::default()),
211        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
212        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
213    ];
214
215    for (name, config) in reasoning_configs {
216        println!("\n   --- {} Reasoning ---", name);
217
218        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
219
220        println!("   Reasoning capabilities:");
221        println!("   - Logical reasoning: {}", config.logical_reasoning);
222        println!("   - Causal reasoning: {}", config.causal_reasoning);
223        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
224        println!("   - Reasoning steps: {}", config.reasoning_steps);
225        println!("   - Circuit depth: {}", config.circuit_depth);
226        println!(
227            "   - Entanglement strength: {:.2}",
228            config.entanglement_strength
229        );
230
231        // Test reasoning on sample hidden states
232        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
233            // Create patterns that require reasoning
234            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
235            let causal_pattern = s as f64 * 0.1;
236            let base_value = logical_pattern + causal_pattern;
237
238            base_value + 0.05 * (b as f64 + d as f64 * 0.001)
239        });
240
241        println!("   Input hidden states shape: {:?}", hidden_states.dim());
242
243        // Apply quantum reasoning
244        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
245        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
246
247        // Analyze reasoning effects
248        let reasoning_enhancement =
249            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
250        println!("   Reasoning enhancement metrics:");
251        println!(
252            "   - Pattern amplification: {:.3}",
253            reasoning_enhancement.pattern_amplification
254        );
255        println!(
256            "   - Logical consistency: {:.3}",
257            reasoning_enhancement.logical_consistency
258        );
259        println!(
260            "   - Causal coherence: {:.3}",
261            reasoning_enhancement.causal_coherence
262        );
263
264        // Test quantum coherence during reasoning
265        let coherence = reasoning_module.measure_coherence()?;
266        println!("   Quantum coherence: {:.3}", coherence);
267
268        // Test token selection enhancement
269        let sample_logits = Array1::from_shape_fn(1000, |i| {
270            0.01 * (i as f64 * 0.1).sin() + 0.001 * fastrand::f64()
271        });
272
273        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
274        let enhancement_effect = (&enhanced_logits - &sample_logits)
275            .mapv(|x| x.abs())
276            .mean()
277            .unwrap_or(0.0);
278        println!("   Token selection enhancement: {:.4}", enhancement_effect);
279    }
280
281    Ok(())
282}
Source

pub fn num_parameters(&self) -> usize

Get number of parameters

Trait Implementations§

Source§

impl Clone for QuantumReasoningModule

Source§

fn clone(&self) -> QuantumReasoningModule

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for QuantumReasoningModule

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V

Source§

impl<T> Ungil for T
where T: Send,