QuantumAnomalyDetector

Struct QuantumAnomalyDetector 

Source
pub struct QuantumAnomalyDetector { /* private fields */ }
Expand description

Main quantum anomaly detector

Implementations§

Source§

impl QuantumAnomalyDetector

Source

pub fn new(config: QuantumAnomalyConfig) -> Result<Self>

Create a new quantum anomaly detector

Examples found in repository?
examples/anomaly_detection_demo.rs (line 20)
10fn main() -> quantrs2_ml::Result<()> {
11    println!("Quantum Anomaly Detection Demo");
12    println!("===============================");
13
14    // Create default configuration
15    let config = QuantumAnomalyConfig::default();
16    println!("Created default anomaly detection configuration");
17    println!("Primary method: {:?}", config.primary_method);
18
19    // Create quantum anomaly detector
20    let mut detector = QuantumAnomalyDetector::new(config)?;
21    println!("Created quantum anomaly detector");
22
23    // Generate synthetic normal data (multivariate normal distribution)
24    let n_samples = 1000;
25    let n_features = 8;
26    let mut normal_data = Array2::zeros((n_samples, n_features));
27
28    for i in 0..n_samples {
29        for j in 0..n_features {
30            normal_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0; // Normal range [-1, 1]
31        }
32    }
33
34    println!(
35        "Generated {} normal samples with {} features",
36        n_samples, n_features
37    );
38
39    // Train the detector on normal data
40    println!("Training anomaly detector...");
41    detector.fit(&normal_data)?;
42
43    if let Some(stats) = detector.get_training_stats() {
44        println!("Training completed in {:.3} seconds", stats.training_time);
45        println!("Training samples: {}", stats.n_training_samples);
46    }
47
48    // Generate test data with some anomalies
49    let n_test = 100;
50    let mut test_data = Array2::zeros((n_test, n_features));
51
52    // Normal samples (first 80)
53    for i in 0..80 {
54        for j in 0..n_features {
55            test_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0;
56        }
57    }
58
59    // Anomalous samples (last 20) - outliers with larger values
60    for i in 80..n_test {
61        for j in 0..n_features {
62            test_data[[i, j]] = thread_rng().gen::<f64>() * 6.0 + 5.0; // Anomalous range [5, 11]
63        }
64    }
65
66    println!(
67        "Generated {} test samples (80 normal, 20 anomalous)",
68        n_test
69    );
70
71    // Detect anomalies
72    println!("Detecting anomalies...");
73    let result = detector.detect(&test_data)?;
74
75    // Display results
76    println!("\nDetection Results:");
77    println!("==================");
78    println!(
79        "Anomaly scores range: [{:.3}, {:.3}]",
80        result.anomaly_scores.fold(f64::INFINITY, |a, &b| a.min(b)),
81        result
82            .anomaly_scores
83            .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
84    );
85
86    let anomaly_count = result.anomaly_labels.iter().sum::<i32>();
87    println!(
88        "Detected {} anomalies out of {} samples",
89        anomaly_count, n_test
90    );
91
92    // Performance metrics
93    println!("\nPerformance Metrics:");
94    println!("====================");
95    println!("AUC-ROC: {:.3}", result.metrics.auc_roc);
96    println!("Precision: {:.3}", result.metrics.precision);
97    println!("Recall: {:.3}", result.metrics.recall);
98    println!("F1-Score: {:.3}", result.metrics.f1_score);
99
100    // Quantum-specific metrics
101    println!("\nQuantum Metrics:");
102    println!("================");
103    println!(
104        "Quantum Advantage: {:.3}x",
105        result.metrics.quantum_metrics.quantum_advantage
106    );
107    println!(
108        "Entanglement Utilization: {:.1}%",
109        result.metrics.quantum_metrics.entanglement_utilization * 100.0
110    );
111    println!(
112        "Circuit Efficiency: {:.1}%",
113        result.metrics.quantum_metrics.circuit_efficiency * 100.0
114    );
115
116    // Processing statistics
117    println!("\nProcessing Statistics:");
118    println!("======================");
119    println!(
120        "Total time: {:.3} seconds",
121        result.processing_stats.total_time
122    );
123    println!(
124        "Quantum time: {:.3} seconds",
125        result.processing_stats.quantum_time
126    );
127    println!(
128        "Classical time: {:.3} seconds",
129        result.processing_stats.classical_time
130    );
131    println!(
132        "Memory usage: {:.1} MB",
133        result.processing_stats.memory_usage
134    );
135    println!(
136        "Quantum executions: {}",
137        result.processing_stats.quantum_executions
138    );
139
140    // Test different configurations
141    println!("\n{}", "=".repeat(50));
142    println!("Testing Different Configurations");
143    println!("{}", "=".repeat(50));
144
145    // Network security configuration
146    let network_config = QuantumAnomalyConfig::default();
147    let mut network_detector = QuantumAnomalyDetector::new(network_config)?;
148    network_detector.fit(&normal_data)?;
149    let network_result = network_detector.detect(&test_data)?;
150
151    println!("\nNetwork Security Detection:");
152    println!("AUC-ROC: {:.3}", network_result.metrics.auc_roc);
153    println!(
154        "Detected anomalies: {}",
155        network_result.anomaly_labels.iter().sum::<i32>()
156    );
157
158    // Financial fraud configuration
159    let fraud_config = QuantumAnomalyConfig::default();
160    let mut fraud_detector = QuantumAnomalyDetector::new(fraud_config)?;
161    fraud_detector.fit(&normal_data)?;
162    let fraud_result = fraud_detector.detect(&test_data)?;
163
164    println!("\nFinancial Fraud Detection:");
165    println!("AUC-ROC: {:.3}", fraud_result.metrics.auc_roc);
166    println!(
167        "Detected anomalies: {}",
168        fraud_result.anomaly_labels.iter().sum::<i32>()
169    );
170
171    // Test streaming detection
172    println!("\n{}", "=".repeat(50));
173    println!("Testing Streaming Detection");
174    println!("{}", "=".repeat(50));
175
176    let iot_config = QuantumAnomalyConfig::default();
177    let mut streaming_detector = QuantumAnomalyDetector::new(iot_config)?;
178    streaming_detector.fit(&normal_data)?;
179
180    println!("Testing real-time streaming detection...");
181    for i in 0..10 {
182        let sample = test_data.row(i).to_owned();
183        let sample_2d = sample.clone().insert_axis(scirs2_core::ndarray::Axis(0));
184        let result = streaming_detector.detect(&sample_2d)?;
185        let anomaly_score = result.anomaly_scores[0];
186        let is_anomaly = if anomaly_score > 0.5 {
187            "ANOMALY"
188        } else {
189            "normal"
190        };
191        println!(
192            "Sample {}: score = {:.3} -> {}",
193            i + 1,
194            anomaly_score,
195            is_anomaly
196        );
197    }
198
199    println!("\nQuantum Anomaly Detection Demo completed successfully!");
200
201    Ok(())
202}
Source

pub fn fit(&mut self, data: &Array2<f64>) -> Result<()>

Train the anomaly detector

Examples found in repository?
examples/anomaly_detection_demo.rs (line 41)
10fn main() -> quantrs2_ml::Result<()> {
11    println!("Quantum Anomaly Detection Demo");
12    println!("===============================");
13
14    // Create default configuration
15    let config = QuantumAnomalyConfig::default();
16    println!("Created default anomaly detection configuration");
17    println!("Primary method: {:?}", config.primary_method);
18
19    // Create quantum anomaly detector
20    let mut detector = QuantumAnomalyDetector::new(config)?;
21    println!("Created quantum anomaly detector");
22
23    // Generate synthetic normal data (multivariate normal distribution)
24    let n_samples = 1000;
25    let n_features = 8;
26    let mut normal_data = Array2::zeros((n_samples, n_features));
27
28    for i in 0..n_samples {
29        for j in 0..n_features {
30            normal_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0; // Normal range [-1, 1]
31        }
32    }
33
34    println!(
35        "Generated {} normal samples with {} features",
36        n_samples, n_features
37    );
38
39    // Train the detector on normal data
40    println!("Training anomaly detector...");
41    detector.fit(&normal_data)?;
42
43    if let Some(stats) = detector.get_training_stats() {
44        println!("Training completed in {:.3} seconds", stats.training_time);
45        println!("Training samples: {}", stats.n_training_samples);
46    }
47
48    // Generate test data with some anomalies
49    let n_test = 100;
50    let mut test_data = Array2::zeros((n_test, n_features));
51
52    // Normal samples (first 80)
53    for i in 0..80 {
54        for j in 0..n_features {
55            test_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0;
56        }
57    }
58
59    // Anomalous samples (last 20) - outliers with larger values
60    for i in 80..n_test {
61        for j in 0..n_features {
62            test_data[[i, j]] = thread_rng().gen::<f64>() * 6.0 + 5.0; // Anomalous range [5, 11]
63        }
64    }
65
66    println!(
67        "Generated {} test samples (80 normal, 20 anomalous)",
68        n_test
69    );
70
71    // Detect anomalies
72    println!("Detecting anomalies...");
73    let result = detector.detect(&test_data)?;
74
75    // Display results
76    println!("\nDetection Results:");
77    println!("==================");
78    println!(
79        "Anomaly scores range: [{:.3}, {:.3}]",
80        result.anomaly_scores.fold(f64::INFINITY, |a, &b| a.min(b)),
81        result
82            .anomaly_scores
83            .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
84    );
85
86    let anomaly_count = result.anomaly_labels.iter().sum::<i32>();
87    println!(
88        "Detected {} anomalies out of {} samples",
89        anomaly_count, n_test
90    );
91
92    // Performance metrics
93    println!("\nPerformance Metrics:");
94    println!("====================");
95    println!("AUC-ROC: {:.3}", result.metrics.auc_roc);
96    println!("Precision: {:.3}", result.metrics.precision);
97    println!("Recall: {:.3}", result.metrics.recall);
98    println!("F1-Score: {:.3}", result.metrics.f1_score);
99
100    // Quantum-specific metrics
101    println!("\nQuantum Metrics:");
102    println!("================");
103    println!(
104        "Quantum Advantage: {:.3}x",
105        result.metrics.quantum_metrics.quantum_advantage
106    );
107    println!(
108        "Entanglement Utilization: {:.1}%",
109        result.metrics.quantum_metrics.entanglement_utilization * 100.0
110    );
111    println!(
112        "Circuit Efficiency: {:.1}%",
113        result.metrics.quantum_metrics.circuit_efficiency * 100.0
114    );
115
116    // Processing statistics
117    println!("\nProcessing Statistics:");
118    println!("======================");
119    println!(
120        "Total time: {:.3} seconds",
121        result.processing_stats.total_time
122    );
123    println!(
124        "Quantum time: {:.3} seconds",
125        result.processing_stats.quantum_time
126    );
127    println!(
128        "Classical time: {:.3} seconds",
129        result.processing_stats.classical_time
130    );
131    println!(
132        "Memory usage: {:.1} MB",
133        result.processing_stats.memory_usage
134    );
135    println!(
136        "Quantum executions: {}",
137        result.processing_stats.quantum_executions
138    );
139
140    // Test different configurations
141    println!("\n{}", "=".repeat(50));
142    println!("Testing Different Configurations");
143    println!("{}", "=".repeat(50));
144
145    // Network security configuration
146    let network_config = QuantumAnomalyConfig::default();
147    let mut network_detector = QuantumAnomalyDetector::new(network_config)?;
148    network_detector.fit(&normal_data)?;
149    let network_result = network_detector.detect(&test_data)?;
150
151    println!("\nNetwork Security Detection:");
152    println!("AUC-ROC: {:.3}", network_result.metrics.auc_roc);
153    println!(
154        "Detected anomalies: {}",
155        network_result.anomaly_labels.iter().sum::<i32>()
156    );
157
158    // Financial fraud configuration
159    let fraud_config = QuantumAnomalyConfig::default();
160    let mut fraud_detector = QuantumAnomalyDetector::new(fraud_config)?;
161    fraud_detector.fit(&normal_data)?;
162    let fraud_result = fraud_detector.detect(&test_data)?;
163
164    println!("\nFinancial Fraud Detection:");
165    println!("AUC-ROC: {:.3}", fraud_result.metrics.auc_roc);
166    println!(
167        "Detected anomalies: {}",
168        fraud_result.anomaly_labels.iter().sum::<i32>()
169    );
170
171    // Test streaming detection
172    println!("\n{}", "=".repeat(50));
173    println!("Testing Streaming Detection");
174    println!("{}", "=".repeat(50));
175
176    let iot_config = QuantumAnomalyConfig::default();
177    let mut streaming_detector = QuantumAnomalyDetector::new(iot_config)?;
178    streaming_detector.fit(&normal_data)?;
179
180    println!("Testing real-time streaming detection...");
181    for i in 0..10 {
182        let sample = test_data.row(i).to_owned();
183        let sample_2d = sample.clone().insert_axis(scirs2_core::ndarray::Axis(0));
184        let result = streaming_detector.detect(&sample_2d)?;
185        let anomaly_score = result.anomaly_scores[0];
186        let is_anomaly = if anomaly_score > 0.5 {
187            "ANOMALY"
188        } else {
189            "normal"
190        };
191        println!(
192            "Sample {}: score = {:.3} -> {}",
193            i + 1,
194            anomaly_score,
195            is_anomaly
196        );
197    }
198
199    println!("\nQuantum Anomaly Detection Demo completed successfully!");
200
201    Ok(())
202}
Source

pub fn detect(&self, data: &Array2<f64>) -> Result<AnomalyResult>

Detect anomalies in new data

Examples found in repository?
examples/anomaly_detection_demo.rs (line 73)
10fn main() -> quantrs2_ml::Result<()> {
11    println!("Quantum Anomaly Detection Demo");
12    println!("===============================");
13
14    // Create default configuration
15    let config = QuantumAnomalyConfig::default();
16    println!("Created default anomaly detection configuration");
17    println!("Primary method: {:?}", config.primary_method);
18
19    // Create quantum anomaly detector
20    let mut detector = QuantumAnomalyDetector::new(config)?;
21    println!("Created quantum anomaly detector");
22
23    // Generate synthetic normal data (multivariate normal distribution)
24    let n_samples = 1000;
25    let n_features = 8;
26    let mut normal_data = Array2::zeros((n_samples, n_features));
27
28    for i in 0..n_samples {
29        for j in 0..n_features {
30            normal_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0; // Normal range [-1, 1]
31        }
32    }
33
34    println!(
35        "Generated {} normal samples with {} features",
36        n_samples, n_features
37    );
38
39    // Train the detector on normal data
40    println!("Training anomaly detector...");
41    detector.fit(&normal_data)?;
42
43    if let Some(stats) = detector.get_training_stats() {
44        println!("Training completed in {:.3} seconds", stats.training_time);
45        println!("Training samples: {}", stats.n_training_samples);
46    }
47
48    // Generate test data with some anomalies
49    let n_test = 100;
50    let mut test_data = Array2::zeros((n_test, n_features));
51
52    // Normal samples (first 80)
53    for i in 0..80 {
54        for j in 0..n_features {
55            test_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0;
56        }
57    }
58
59    // Anomalous samples (last 20) - outliers with larger values
60    for i in 80..n_test {
61        for j in 0..n_features {
62            test_data[[i, j]] = thread_rng().gen::<f64>() * 6.0 + 5.0; // Anomalous range [5, 11]
63        }
64    }
65
66    println!(
67        "Generated {} test samples (80 normal, 20 anomalous)",
68        n_test
69    );
70
71    // Detect anomalies
72    println!("Detecting anomalies...");
73    let result = detector.detect(&test_data)?;
74
75    // Display results
76    println!("\nDetection Results:");
77    println!("==================");
78    println!(
79        "Anomaly scores range: [{:.3}, {:.3}]",
80        result.anomaly_scores.fold(f64::INFINITY, |a, &b| a.min(b)),
81        result
82            .anomaly_scores
83            .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
84    );
85
86    let anomaly_count = result.anomaly_labels.iter().sum::<i32>();
87    println!(
88        "Detected {} anomalies out of {} samples",
89        anomaly_count, n_test
90    );
91
92    // Performance metrics
93    println!("\nPerformance Metrics:");
94    println!("====================");
95    println!("AUC-ROC: {:.3}", result.metrics.auc_roc);
96    println!("Precision: {:.3}", result.metrics.precision);
97    println!("Recall: {:.3}", result.metrics.recall);
98    println!("F1-Score: {:.3}", result.metrics.f1_score);
99
100    // Quantum-specific metrics
101    println!("\nQuantum Metrics:");
102    println!("================");
103    println!(
104        "Quantum Advantage: {:.3}x",
105        result.metrics.quantum_metrics.quantum_advantage
106    );
107    println!(
108        "Entanglement Utilization: {:.1}%",
109        result.metrics.quantum_metrics.entanglement_utilization * 100.0
110    );
111    println!(
112        "Circuit Efficiency: {:.1}%",
113        result.metrics.quantum_metrics.circuit_efficiency * 100.0
114    );
115
116    // Processing statistics
117    println!("\nProcessing Statistics:");
118    println!("======================");
119    println!(
120        "Total time: {:.3} seconds",
121        result.processing_stats.total_time
122    );
123    println!(
124        "Quantum time: {:.3} seconds",
125        result.processing_stats.quantum_time
126    );
127    println!(
128        "Classical time: {:.3} seconds",
129        result.processing_stats.classical_time
130    );
131    println!(
132        "Memory usage: {:.1} MB",
133        result.processing_stats.memory_usage
134    );
135    println!(
136        "Quantum executions: {}",
137        result.processing_stats.quantum_executions
138    );
139
140    // Test different configurations
141    println!("\n{}", "=".repeat(50));
142    println!("Testing Different Configurations");
143    println!("{}", "=".repeat(50));
144
145    // Network security configuration
146    let network_config = QuantumAnomalyConfig::default();
147    let mut network_detector = QuantumAnomalyDetector::new(network_config)?;
148    network_detector.fit(&normal_data)?;
149    let network_result = network_detector.detect(&test_data)?;
150
151    println!("\nNetwork Security Detection:");
152    println!("AUC-ROC: {:.3}", network_result.metrics.auc_roc);
153    println!(
154        "Detected anomalies: {}",
155        network_result.anomaly_labels.iter().sum::<i32>()
156    );
157
158    // Financial fraud configuration
159    let fraud_config = QuantumAnomalyConfig::default();
160    let mut fraud_detector = QuantumAnomalyDetector::new(fraud_config)?;
161    fraud_detector.fit(&normal_data)?;
162    let fraud_result = fraud_detector.detect(&test_data)?;
163
164    println!("\nFinancial Fraud Detection:");
165    println!("AUC-ROC: {:.3}", fraud_result.metrics.auc_roc);
166    println!(
167        "Detected anomalies: {}",
168        fraud_result.anomaly_labels.iter().sum::<i32>()
169    );
170
171    // Test streaming detection
172    println!("\n{}", "=".repeat(50));
173    println!("Testing Streaming Detection");
174    println!("{}", "=".repeat(50));
175
176    let iot_config = QuantumAnomalyConfig::default();
177    let mut streaming_detector = QuantumAnomalyDetector::new(iot_config)?;
178    streaming_detector.fit(&normal_data)?;
179
180    println!("Testing real-time streaming detection...");
181    for i in 0..10 {
182        let sample = test_data.row(i).to_owned();
183        let sample_2d = sample.clone().insert_axis(scirs2_core::ndarray::Axis(0));
184        let result = streaming_detector.detect(&sample_2d)?;
185        let anomaly_score = result.anomaly_scores[0];
186        let is_anomaly = if anomaly_score > 0.5 {
187            "ANOMALY"
188        } else {
189            "normal"
190        };
191        println!(
192            "Sample {}: score = {:.3} -> {}",
193            i + 1,
194            anomaly_score,
195            is_anomaly
196        );
197    }
198
199    println!("\nQuantum Anomaly Detection Demo completed successfully!");
200
201    Ok(())
202}
Source

pub fn update( &mut self, data: &Array2<f64>, labels: Option<&Array1<i32>>, ) -> Result<()>

Update detector with new data (online learning)

Source

pub fn get_config(&self) -> &QuantumAnomalyConfig

Get detector configuration

Source

pub fn get_training_stats(&self) -> Option<&TrainingStats>

Get training statistics

Examples found in repository?
examples/anomaly_detection_demo.rs (line 43)
10fn main() -> quantrs2_ml::Result<()> {
11    println!("Quantum Anomaly Detection Demo");
12    println!("===============================");
13
14    // Create default configuration
15    let config = QuantumAnomalyConfig::default();
16    println!("Created default anomaly detection configuration");
17    println!("Primary method: {:?}", config.primary_method);
18
19    // Create quantum anomaly detector
20    let mut detector = QuantumAnomalyDetector::new(config)?;
21    println!("Created quantum anomaly detector");
22
23    // Generate synthetic normal data (multivariate normal distribution)
24    let n_samples = 1000;
25    let n_features = 8;
26    let mut normal_data = Array2::zeros((n_samples, n_features));
27
28    for i in 0..n_samples {
29        for j in 0..n_features {
30            normal_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0; // Normal range [-1, 1]
31        }
32    }
33
34    println!(
35        "Generated {} normal samples with {} features",
36        n_samples, n_features
37    );
38
39    // Train the detector on normal data
40    println!("Training anomaly detector...");
41    detector.fit(&normal_data)?;
42
43    if let Some(stats) = detector.get_training_stats() {
44        println!("Training completed in {:.3} seconds", stats.training_time);
45        println!("Training samples: {}", stats.n_training_samples);
46    }
47
48    // Generate test data with some anomalies
49    let n_test = 100;
50    let mut test_data = Array2::zeros((n_test, n_features));
51
52    // Normal samples (first 80)
53    for i in 0..80 {
54        for j in 0..n_features {
55            test_data[[i, j]] = thread_rng().gen::<f64>() * 2.0 - 1.0;
56        }
57    }
58
59    // Anomalous samples (last 20) - outliers with larger values
60    for i in 80..n_test {
61        for j in 0..n_features {
62            test_data[[i, j]] = thread_rng().gen::<f64>() * 6.0 + 5.0; // Anomalous range [5, 11]
63        }
64    }
65
66    println!(
67        "Generated {} test samples (80 normal, 20 anomalous)",
68        n_test
69    );
70
71    // Detect anomalies
72    println!("Detecting anomalies...");
73    let result = detector.detect(&test_data)?;
74
75    // Display results
76    println!("\nDetection Results:");
77    println!("==================");
78    println!(
79        "Anomaly scores range: [{:.3}, {:.3}]",
80        result.anomaly_scores.fold(f64::INFINITY, |a, &b| a.min(b)),
81        result
82            .anomaly_scores
83            .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
84    );
85
86    let anomaly_count = result.anomaly_labels.iter().sum::<i32>();
87    println!(
88        "Detected {} anomalies out of {} samples",
89        anomaly_count, n_test
90    );
91
92    // Performance metrics
93    println!("\nPerformance Metrics:");
94    println!("====================");
95    println!("AUC-ROC: {:.3}", result.metrics.auc_roc);
96    println!("Precision: {:.3}", result.metrics.precision);
97    println!("Recall: {:.3}", result.metrics.recall);
98    println!("F1-Score: {:.3}", result.metrics.f1_score);
99
100    // Quantum-specific metrics
101    println!("\nQuantum Metrics:");
102    println!("================");
103    println!(
104        "Quantum Advantage: {:.3}x",
105        result.metrics.quantum_metrics.quantum_advantage
106    );
107    println!(
108        "Entanglement Utilization: {:.1}%",
109        result.metrics.quantum_metrics.entanglement_utilization * 100.0
110    );
111    println!(
112        "Circuit Efficiency: {:.1}%",
113        result.metrics.quantum_metrics.circuit_efficiency * 100.0
114    );
115
116    // Processing statistics
117    println!("\nProcessing Statistics:");
118    println!("======================");
119    println!(
120        "Total time: {:.3} seconds",
121        result.processing_stats.total_time
122    );
123    println!(
124        "Quantum time: {:.3} seconds",
125        result.processing_stats.quantum_time
126    );
127    println!(
128        "Classical time: {:.3} seconds",
129        result.processing_stats.classical_time
130    );
131    println!(
132        "Memory usage: {:.1} MB",
133        result.processing_stats.memory_usage
134    );
135    println!(
136        "Quantum executions: {}",
137        result.processing_stats.quantum_executions
138    );
139
140    // Test different configurations
141    println!("\n{}", "=".repeat(50));
142    println!("Testing Different Configurations");
143    println!("{}", "=".repeat(50));
144
145    // Network security configuration
146    let network_config = QuantumAnomalyConfig::default();
147    let mut network_detector = QuantumAnomalyDetector::new(network_config)?;
148    network_detector.fit(&normal_data)?;
149    let network_result = network_detector.detect(&test_data)?;
150
151    println!("\nNetwork Security Detection:");
152    println!("AUC-ROC: {:.3}", network_result.metrics.auc_roc);
153    println!(
154        "Detected anomalies: {}",
155        network_result.anomaly_labels.iter().sum::<i32>()
156    );
157
158    // Financial fraud configuration
159    let fraud_config = QuantumAnomalyConfig::default();
160    let mut fraud_detector = QuantumAnomalyDetector::new(fraud_config)?;
161    fraud_detector.fit(&normal_data)?;
162    let fraud_result = fraud_detector.detect(&test_data)?;
163
164    println!("\nFinancial Fraud Detection:");
165    println!("AUC-ROC: {:.3}", fraud_result.metrics.auc_roc);
166    println!(
167        "Detected anomalies: {}",
168        fraud_result.anomaly_labels.iter().sum::<i32>()
169    );
170
171    // Test streaming detection
172    println!("\n{}", "=".repeat(50));
173    println!("Testing Streaming Detection");
174    println!("{}", "=".repeat(50));
175
176    let iot_config = QuantumAnomalyConfig::default();
177    let mut streaming_detector = QuantumAnomalyDetector::new(iot_config)?;
178    streaming_detector.fit(&normal_data)?;
179
180    println!("Testing real-time streaming detection...");
181    for i in 0..10 {
182        let sample = test_data.row(i).to_owned();
183        let sample_2d = sample.clone().insert_axis(scirs2_core::ndarray::Axis(0));
184        let result = streaming_detector.detect(&sample_2d)?;
185        let anomaly_score = result.anomaly_scores[0];
186        let is_anomaly = if anomaly_score > 0.5 {
187            "ANOMALY"
188        } else {
189            "normal"
190        };
191        println!(
192            "Sample {}: score = {:.3} -> {}",
193            i + 1,
194            anomaly_score,
195            is_anomaly
196        );
197    }
198
199    println!("\nQuantum Anomaly Detection Demo completed successfully!");
200
201    Ok(())
202}

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V