quantrs2_ml/
vae.rs

1//! Quantum Variational Autoencoders (QVAE)
2//!
3//! This module implements quantum variational autoencoders for
4//! quantum data compression and feature extraction.
5
6use crate::error::MLError;
7use num_complex::Complex64 as Complex;
8use quantrs2_circuit::prelude::*;
9use quantrs2_core::prelude::*;
10use std::f64::consts::PI;
11
12/// Quantum Variational Autoencoder
13pub struct QVAE {
14    /// Number of data qubits
15    pub num_data_qubits: usize,
16    /// Number of latent qubits (compressed representation)
17    pub num_latent_qubits: usize,
18    /// Number of ancilla qubits for encoding
19    pub num_ancilla_qubits: usize,
20    /// Encoder parameters
21    pub encoder_params: Vec<f64>,
22    /// Decoder parameters
23    pub decoder_params: Vec<f64>,
24}
25
26impl QVAE {
27    /// Create a new quantum variational autoencoder
28    pub fn new(
29        num_data_qubits: usize,
30        num_latent_qubits: usize,
31        num_ancilla_qubits: usize,
32    ) -> Result<Self, MLError> {
33        if num_latent_qubits >= num_data_qubits {
34            return Err(MLError::InvalidParameter(
35                "Latent space must be smaller than data space".to_string(),
36            ));
37        }
38
39        // Initialize parameters for encoder and decoder
40        let encoder_depth = 3;
41        let decoder_depth = 3;
42
43        let encoder_params = vec![0.1; num_data_qubits * encoder_depth * 3];
44        let decoder_params = vec![0.1; num_data_qubits * decoder_depth * 3];
45
46        Ok(Self {
47            num_data_qubits,
48            num_latent_qubits,
49            num_ancilla_qubits,
50            encoder_params,
51            decoder_params,
52        })
53    }
54
55    /// Get total number of qubits required
56    pub fn total_qubits(&self) -> usize {
57        self.num_data_qubits + self.num_latent_qubits + self.num_ancilla_qubits
58    }
59
60    /// Apply encoding circuit
61    pub fn encode<const N: usize>(
62        &self,
63        circuit: &mut Circuit<N>,
64        data_start: usize,
65        latent_start: usize,
66    ) -> Result<(), MLError> {
67        // Check bounds
68        if data_start + self.num_data_qubits > N {
69            return Err(MLError::InvalidParameter(
70                "Data qubits exceed circuit size".to_string(),
71            ));
72        }
73        if latent_start + self.num_latent_qubits > N {
74            return Err(MLError::InvalidParameter(
75                "Latent qubits exceed circuit size".to_string(),
76            ));
77        }
78
79        // Apply parameterized encoding layers
80        let mut param_idx = 0;
81        let depth = self.encoder_params.len() / (self.num_data_qubits * 3);
82
83        for layer in 0..depth {
84            // Single-qubit rotations
85            for i in 0..self.num_data_qubits {
86                let q = data_start + i;
87                if param_idx < self.encoder_params.len() {
88                    circuit.rx(q, self.encoder_params[param_idx])?;
89                    param_idx += 1;
90                }
91                if param_idx < self.encoder_params.len() {
92                    circuit.ry(q, self.encoder_params[param_idx])?;
93                    param_idx += 1;
94                }
95                if param_idx < self.encoder_params.len() {
96                    circuit.rz(q, self.encoder_params[param_idx])?;
97                    param_idx += 1;
98                }
99            }
100
101            // Entangling layer
102            for i in 0..self.num_data_qubits - 1 {
103                circuit.cnot(data_start + i, data_start + i + 1)?;
104            }
105
106            // Compression: entangle with latent qubits
107            if layer == depth - 1 {
108                for i in 0..self.num_latent_qubits {
109                    let data_q = data_start + (i % self.num_data_qubits);
110                    let latent_q = latent_start + i;
111                    circuit.cnot(data_q, latent_q)?;
112                }
113            }
114        }
115
116        Ok(())
117    }
118
119    /// Apply decoding circuit
120    pub fn decode<const N: usize>(
121        &self,
122        circuit: &mut Circuit<N>,
123        latent_start: usize,
124        output_start: usize,
125    ) -> Result<(), MLError> {
126        // Check bounds
127        if latent_start + self.num_latent_qubits > N {
128            return Err(MLError::InvalidParameter(
129                "Latent qubits exceed circuit size".to_string(),
130            ));
131        }
132        if output_start + self.num_data_qubits > N {
133            return Err(MLError::InvalidParameter(
134                "Output qubits exceed circuit size".to_string(),
135            ));
136        }
137
138        // Apply parameterized decoding layers
139        let mut param_idx = 0;
140        let depth = self.decoder_params.len() / (self.num_data_qubits * 3);
141
142        for layer in 0..depth {
143            // Decompression: entangle latent with output qubits
144            if layer == 0 {
145                for i in 0..self.num_latent_qubits {
146                    let latent_q = latent_start + i;
147                    let output_q = output_start + (i % self.num_data_qubits);
148                    circuit.cnot(latent_q, output_q)?;
149                }
150            }
151
152            // Single-qubit rotations on output qubits
153            for i in 0..self.num_data_qubits {
154                let q = output_start + i;
155                if param_idx < self.decoder_params.len() {
156                    circuit.rx(q, self.decoder_params[param_idx])?;
157                    param_idx += 1;
158                }
159                if param_idx < self.decoder_params.len() {
160                    circuit.ry(q, self.decoder_params[param_idx])?;
161                    param_idx += 1;
162                }
163                if param_idx < self.decoder_params.len() {
164                    circuit.rz(q, self.decoder_params[param_idx])?;
165                    param_idx += 1;
166                }
167            }
168
169            // Entangling layer
170            for i in 0..self.num_data_qubits - 1 {
171                circuit.cnot(output_start + i, output_start + i + 1)?;
172            }
173        }
174
175        Ok(())
176    }
177
178    /// Build full autoencoder circuit
179    pub fn build_circuit<const N: usize>(&self) -> Result<Circuit<N>, MLError> {
180        if N < self.total_qubits() {
181            return Err(MLError::InvalidParameter(format!(
182                "Circuit needs at least {} qubits",
183                self.total_qubits()
184            )));
185        }
186
187        let mut circuit = Circuit::<N>::new();
188
189        // Qubit allocation
190        let data_start = 0;
191        let latent_start = self.num_data_qubits;
192        let output_start = self.num_data_qubits + self.num_latent_qubits;
193
194        // Encode data into latent space
195        self.encode(&mut circuit, data_start, latent_start)?;
196
197        // Decode from latent space to output
198        self.decode(&mut circuit, latent_start, output_start)?;
199
200        Ok(circuit)
201    }
202
203    /// Compute reconstruction fidelity
204    pub fn reconstruction_fidelity(
205        &self,
206        input_state: &[Complex],
207        output_state: &[Complex],
208    ) -> Result<f64, MLError> {
209        if input_state.len() != output_state.len() {
210            return Err(MLError::InvalidParameter(
211                "State dimensions mismatch".to_string(),
212            ));
213        }
214
215        // Compute inner product
216        let inner_product: Complex = input_state
217            .iter()
218            .zip(output_state.iter())
219            .map(|(a, b)| a.conj() * b)
220            .sum();
221
222        // Fidelity is |<ψ|φ>|²
223        Ok(inner_product.norm_sqr())
224    }
225
226    /// Get all trainable parameters
227    pub fn get_parameters(&self) -> Vec<f64> {
228        let mut params = self.encoder_params.clone();
229        params.extend(&self.decoder_params);
230        params
231    }
232
233    /// Set parameters from a flat vector
234    pub fn set_parameters(&mut self, params: &[f64]) -> Result<(), MLError> {
235        let encoder_size = self.encoder_params.len();
236        let decoder_size = self.decoder_params.len();
237
238        if params.len() != encoder_size + decoder_size {
239            return Err(MLError::InvalidParameter(format!(
240                "Expected {} parameters, got {}",
241                encoder_size + decoder_size,
242                params.len()
243            )));
244        }
245
246        self.encoder_params.copy_from_slice(&params[..encoder_size]);
247        self.decoder_params.copy_from_slice(&params[encoder_size..]);
248
249        Ok(())
250    }
251
252    /// Compute loss function (negative fidelity + regularization)
253    pub fn compute_loss(&self, input_states: &[Vec<Complex>], lambda: f64) -> Result<f64, MLError> {
254        // For simplicity, compute average negative fidelity
255        // In practice, would simulate the circuit for each input
256        let mut total_loss = 0.0;
257
258        for _input in input_states {
259            // Simplified: assume perfect reconstruction for demo
260            // In real implementation, would run circuit simulation
261            total_loss += 1.0; // Placeholder
262        }
263
264        // Add L2 regularization
265        let reg_term: f64 = self.get_parameters().iter().map(|p| p * p).sum::<f64>() * lambda;
266
267        Ok(total_loss / input_states.len() as f64 + reg_term)
268    }
269}
270
271/// Classical Autoencoder for comparison
272pub struct ClassicalAutoencoder {
273    /// Input dimension
274    pub input_dim: usize,
275    /// Latent dimension
276    pub latent_dim: usize,
277    /// Encoder weights
278    pub encoder_weights: Vec<Vec<f64>>,
279    /// Decoder weights
280    pub decoder_weights: Vec<Vec<f64>>,
281}
282
283impl ClassicalAutoencoder {
284    /// Create a new classical autoencoder
285    pub fn new(input_dim: usize, latent_dim: usize) -> Self {
286        let mut rng = fastrand::Rng::with_seed(42);
287
288        // Initialize weights with small random values
289        let encoder_weights = (0..latent_dim)
290            .map(|_| (0..input_dim).map(|_| rng.f64() * 0.1 - 0.05).collect())
291            .collect();
292
293        let decoder_weights = (0..input_dim)
294            .map(|_| (0..latent_dim).map(|_| rng.f64() * 0.1 - 0.05).collect())
295            .collect();
296
297        Self {
298            input_dim,
299            latent_dim,
300            encoder_weights,
301            decoder_weights,
302        }
303    }
304
305    /// Encode data to latent space
306    pub fn encode(&self, input: &[f64]) -> Vec<f64> {
307        let mut latent = vec![0.0; self.latent_dim];
308
309        for i in 0..self.latent_dim {
310            for j in 0..self.input_dim {
311                latent[i] += self.encoder_weights[i][j] * input[j];
312            }
313            // Apply activation (tanh)
314            latent[i] = latent[i].tanh();
315        }
316
317        latent
318    }
319
320    /// Decode from latent space
321    pub fn decode(&self, latent: &[f64]) -> Vec<f64> {
322        let mut output = vec![0.0; self.input_dim];
323
324        for i in 0..self.input_dim {
325            for j in 0..self.latent_dim {
326                output[i] += self.decoder_weights[i][j] * latent[j];
327            }
328            // Apply activation (sigmoid for normalized output)
329            output[i] = 1.0 / (1.0 + (-output[i]).exp());
330        }
331
332        output
333    }
334
335    /// Full forward pass
336    pub fn forward(&self, input: &[f64]) -> Vec<f64> {
337        let latent = self.encode(input);
338        self.decode(&latent)
339    }
340}
341
342/// Quantum-Classical Hybrid Autoencoder
343pub struct HybridAutoencoder {
344    /// Quantum encoder
345    pub quantum_encoder: QVAE,
346    /// Classical decoder
347    pub classical_decoder: ClassicalAutoencoder,
348}
349
350impl HybridAutoencoder {
351    /// Create a new hybrid autoencoder
352    pub fn new(
353        num_data_qubits: usize,
354        num_latent_qubits: usize,
355        classical_latent_dim: usize,
356    ) -> Result<Self, MLError> {
357        let quantum_encoder = QVAE::new(num_data_qubits, num_latent_qubits, 0)?;
358
359        // Classical decoder takes quantum latent space measurements
360        let quantum_latent_dim = 1 << num_latent_qubits;
361        let classical_decoder = ClassicalAutoencoder::new(quantum_latent_dim, classical_latent_dim);
362
363        Ok(Self {
364            quantum_encoder,
365            classical_decoder,
366        })
367    }
368}
369
370#[cfg(test)]
371mod tests {
372    use super::*;
373
374    #[test]
375    fn test_qvae_creation() {
376        let qvae = QVAE::new(4, 2, 0).unwrap();
377        assert_eq!(qvae.num_data_qubits, 4);
378        assert_eq!(qvae.num_latent_qubits, 2);
379        assert_eq!(qvae.total_qubits(), 6);
380    }
381
382    #[test]
383    fn test_qvae_invalid_params() {
384        // Latent space must be smaller than data space
385        let result = QVAE::new(4, 5, 0);
386        assert!(result.is_err());
387    }
388
389    #[test]
390    fn test_classical_autoencoder() {
391        let ae = ClassicalAutoencoder::new(10, 3);
392        let input = vec![0.5; 10];
393        let output = ae.forward(&input);
394
395        assert_eq!(output.len(), 10);
396        // Check output is normalized (between 0 and 1)
397        for &val in &output {
398            assert!(val >= 0.0 && val <= 1.0);
399        }
400    }
401
402    #[test]
403    fn test_parameter_management() {
404        let mut qvae = QVAE::new(4, 2, 0).unwrap();
405        let params = qvae.get_parameters();
406        let new_params = vec![0.2; params.len()];
407
408        qvae.set_parameters(&new_params).unwrap();
409        let retrieved = qvae.get_parameters();
410
411        assert_eq!(retrieved, new_params);
412    }
413
414    #[test]
415    fn test_reconstruction_fidelity() {
416        let qvae = QVAE::new(2, 1, 0).unwrap();
417        let state = vec![
418            Complex::new(0.5, 0.0),
419            Complex::new(0.5, 0.0),
420            Complex::new(0.5, 0.0),
421            Complex::new(0.5, 0.0),
422        ];
423
424        let fidelity = qvae.reconstruction_fidelity(&state, &state).unwrap();
425        assert!((fidelity - 1.0).abs() < 1e-10);
426    }
427}