quantrs2_ml/
vae.rs

1//! Quantum Variational Autoencoders (QVAE)
2//!
3//! This module implements quantum variational autoencoders for
4//! quantum data compression and feature extraction.
5
6use crate::error::MLError;
7use quantrs2_circuit::prelude::*;
8use quantrs2_core::prelude::*;
9use scirs2_core::random::prelude::*;
10use scirs2_core::Complex64 as Complex;
11use std::f64::consts::PI;
12
13/// Quantum Variational Autoencoder
14pub struct QVAE {
15    /// Number of data qubits
16    pub num_data_qubits: usize,
17    /// Number of latent qubits (compressed representation)
18    pub num_latent_qubits: usize,
19    /// Number of ancilla qubits for encoding
20    pub num_ancilla_qubits: usize,
21    /// Encoder parameters
22    pub encoder_params: Vec<f64>,
23    /// Decoder parameters
24    pub decoder_params: Vec<f64>,
25}
26
27impl QVAE {
28    /// Create a new quantum variational autoencoder
29    pub fn new(
30        num_data_qubits: usize,
31        num_latent_qubits: usize,
32        num_ancilla_qubits: usize,
33    ) -> Result<Self, MLError> {
34        if num_latent_qubits >= num_data_qubits {
35            return Err(MLError::InvalidParameter(
36                "Latent space must be smaller than data space".to_string(),
37            ));
38        }
39
40        // Initialize parameters for encoder and decoder
41        let encoder_depth = 3;
42        let decoder_depth = 3;
43
44        let encoder_params = vec![0.1; num_data_qubits * encoder_depth * 3];
45        let decoder_params = vec![0.1; num_data_qubits * decoder_depth * 3];
46
47        Ok(Self {
48            num_data_qubits,
49            num_latent_qubits,
50            num_ancilla_qubits,
51            encoder_params,
52            decoder_params,
53        })
54    }
55
56    /// Get total number of qubits required
57    pub fn total_qubits(&self) -> usize {
58        self.num_data_qubits + self.num_latent_qubits + self.num_ancilla_qubits
59    }
60
61    /// Apply encoding circuit
62    pub fn encode<const N: usize>(
63        &self,
64        circuit: &mut Circuit<N>,
65        data_start: usize,
66        latent_start: usize,
67    ) -> Result<(), MLError> {
68        // Check bounds
69        if data_start + self.num_data_qubits > N {
70            return Err(MLError::InvalidParameter(
71                "Data qubits exceed circuit size".to_string(),
72            ));
73        }
74        if latent_start + self.num_latent_qubits > N {
75            return Err(MLError::InvalidParameter(
76                "Latent qubits exceed circuit size".to_string(),
77            ));
78        }
79
80        // Apply parameterized encoding layers
81        let mut param_idx = 0;
82        let depth = self.encoder_params.len() / (self.num_data_qubits * 3);
83
84        for layer in 0..depth {
85            // Single-qubit rotations
86            for i in 0..self.num_data_qubits {
87                let q = data_start + i;
88                if param_idx < self.encoder_params.len() {
89                    circuit.rx(q, self.encoder_params[param_idx])?;
90                    param_idx += 1;
91                }
92                if param_idx < self.encoder_params.len() {
93                    circuit.ry(q, self.encoder_params[param_idx])?;
94                    param_idx += 1;
95                }
96                if param_idx < self.encoder_params.len() {
97                    circuit.rz(q, self.encoder_params[param_idx])?;
98                    param_idx += 1;
99                }
100            }
101
102            // Entangling layer
103            for i in 0..self.num_data_qubits - 1 {
104                circuit.cnot(data_start + i, data_start + i + 1)?;
105            }
106
107            // Compression: entangle with latent qubits
108            if layer == depth - 1 {
109                for i in 0..self.num_latent_qubits {
110                    let data_q = data_start + (i % self.num_data_qubits);
111                    let latent_q = latent_start + i;
112                    circuit.cnot(data_q, latent_q)?;
113                }
114            }
115        }
116
117        Ok(())
118    }
119
120    /// Apply decoding circuit
121    pub fn decode<const N: usize>(
122        &self,
123        circuit: &mut Circuit<N>,
124        latent_start: usize,
125        output_start: usize,
126    ) -> Result<(), MLError> {
127        // Check bounds
128        if latent_start + self.num_latent_qubits > N {
129            return Err(MLError::InvalidParameter(
130                "Latent qubits exceed circuit size".to_string(),
131            ));
132        }
133        if output_start + self.num_data_qubits > N {
134            return Err(MLError::InvalidParameter(
135                "Output qubits exceed circuit size".to_string(),
136            ));
137        }
138
139        // Apply parameterized decoding layers
140        let mut param_idx = 0;
141        let depth = self.decoder_params.len() / (self.num_data_qubits * 3);
142
143        for layer in 0..depth {
144            // Decompression: entangle latent with output qubits
145            if layer == 0 {
146                for i in 0..self.num_latent_qubits {
147                    let latent_q = latent_start + i;
148                    let output_q = output_start + (i % self.num_data_qubits);
149                    circuit.cnot(latent_q, output_q)?;
150                }
151            }
152
153            // Single-qubit rotations on output qubits
154            for i in 0..self.num_data_qubits {
155                let q = output_start + i;
156                if param_idx < self.decoder_params.len() {
157                    circuit.rx(q, self.decoder_params[param_idx])?;
158                    param_idx += 1;
159                }
160                if param_idx < self.decoder_params.len() {
161                    circuit.ry(q, self.decoder_params[param_idx])?;
162                    param_idx += 1;
163                }
164                if param_idx < self.decoder_params.len() {
165                    circuit.rz(q, self.decoder_params[param_idx])?;
166                    param_idx += 1;
167                }
168            }
169
170            // Entangling layer
171            for i in 0..self.num_data_qubits - 1 {
172                circuit.cnot(output_start + i, output_start + i + 1)?;
173            }
174        }
175
176        Ok(())
177    }
178
179    /// Build full autoencoder circuit
180    pub fn build_circuit<const N: usize>(&self) -> Result<Circuit<N>, MLError> {
181        if N < self.total_qubits() {
182            return Err(MLError::InvalidParameter(format!(
183                "Circuit needs at least {} qubits",
184                self.total_qubits()
185            )));
186        }
187
188        let mut circuit = Circuit::<N>::new();
189
190        // Qubit allocation
191        let data_start = 0;
192        let latent_start = self.num_data_qubits;
193        let output_start = self.num_data_qubits + self.num_latent_qubits;
194
195        // Encode data into latent space
196        self.encode(&mut circuit, data_start, latent_start)?;
197
198        // Decode from latent space to output
199        self.decode(&mut circuit, latent_start, output_start)?;
200
201        Ok(circuit)
202    }
203
204    /// Compute reconstruction fidelity
205    pub fn reconstruction_fidelity(
206        &self,
207        input_state: &[Complex],
208        output_state: &[Complex],
209    ) -> Result<f64, MLError> {
210        if input_state.len() != output_state.len() {
211            return Err(MLError::InvalidParameter(
212                "State dimensions mismatch".to_string(),
213            ));
214        }
215
216        // Compute inner product
217        let inner_product: Complex = input_state
218            .iter()
219            .zip(output_state.iter())
220            .map(|(a, b)| a.conj() * b)
221            .sum();
222
223        // Fidelity is |<ψ|φ>|²
224        Ok(inner_product.norm_sqr())
225    }
226
227    /// Get all trainable parameters
228    pub fn get_parameters(&self) -> Vec<f64> {
229        let mut params = self.encoder_params.clone();
230        params.extend(&self.decoder_params);
231        params
232    }
233
234    /// Set parameters from a flat vector
235    pub fn set_parameters(&mut self, params: &[f64]) -> Result<(), MLError> {
236        let encoder_size = self.encoder_params.len();
237        let decoder_size = self.decoder_params.len();
238
239        if params.len() != encoder_size + decoder_size {
240            return Err(MLError::InvalidParameter(format!(
241                "Expected {} parameters, got {}",
242                encoder_size + decoder_size,
243                params.len()
244            )));
245        }
246
247        self.encoder_params.copy_from_slice(&params[..encoder_size]);
248        self.decoder_params.copy_from_slice(&params[encoder_size..]);
249
250        Ok(())
251    }
252
253    /// Compute loss function (negative fidelity + regularization)
254    pub fn compute_loss(&self, input_states: &[Vec<Complex>], lambda: f64) -> Result<f64, MLError> {
255        // For simplicity, compute average negative fidelity
256        // In practice, would simulate the circuit for each input
257        let mut total_loss = 0.0;
258
259        for _input in input_states {
260            // Simplified: assume perfect reconstruction for demo
261            // In real implementation, would run circuit simulation
262            total_loss += 1.0; // Placeholder
263        }
264
265        // Add L2 regularization
266        let reg_term: f64 = self.get_parameters().iter().map(|p| p * p).sum::<f64>() * lambda;
267
268        Ok(total_loss / input_states.len() as f64 + reg_term)
269    }
270}
271
272/// Classical Autoencoder for comparison
273pub struct ClassicalAutoencoder {
274    /// Input dimension
275    pub input_dim: usize,
276    /// Latent dimension
277    pub latent_dim: usize,
278    /// Encoder weights
279    pub encoder_weights: Vec<Vec<f64>>,
280    /// Decoder weights
281    pub decoder_weights: Vec<Vec<f64>>,
282}
283
284impl ClassicalAutoencoder {
285    /// Create a new classical autoencoder
286    pub fn new(input_dim: usize, latent_dim: usize) -> Self {
287        let mut rng = scirs2_core::random::ChaCha8Rng::seed_from_u64(42);
288
289        // Initialize weights with small random values
290        let encoder_weights = (0..latent_dim)
291            .map(|_| {
292                (0..input_dim)
293                    .map(|_| rng.gen::<f64>() * 0.1 - 0.05)
294                    .collect()
295            })
296            .collect();
297
298        let decoder_weights = (0..input_dim)
299            .map(|_| {
300                (0..latent_dim)
301                    .map(|_| rng.gen::<f64>() * 0.1 - 0.05)
302                    .collect()
303            })
304            .collect();
305
306        Self {
307            input_dim,
308            latent_dim,
309            encoder_weights,
310            decoder_weights,
311        }
312    }
313
314    /// Encode data to latent space
315    pub fn encode(&self, input: &[f64]) -> Vec<f64> {
316        let mut latent = vec![0.0; self.latent_dim];
317
318        for i in 0..self.latent_dim {
319            for j in 0..self.input_dim {
320                latent[i] += self.encoder_weights[i][j] * input[j];
321            }
322            // Apply activation (tanh)
323            latent[i] = latent[i].tanh();
324        }
325
326        latent
327    }
328
329    /// Decode from latent space
330    pub fn decode(&self, latent: &[f64]) -> Vec<f64> {
331        let mut output = vec![0.0; self.input_dim];
332
333        for i in 0..self.input_dim {
334            for j in 0..self.latent_dim {
335                output[i] += self.decoder_weights[i][j] * latent[j];
336            }
337            // Apply activation (sigmoid for normalized output)
338            output[i] = 1.0 / (1.0 + (-output[i]).exp());
339        }
340
341        output
342    }
343
344    /// Full forward pass
345    pub fn forward(&self, input: &[f64]) -> Vec<f64> {
346        let latent = self.encode(input);
347        self.decode(&latent)
348    }
349}
350
351/// Quantum-Classical Hybrid Autoencoder
352pub struct HybridAutoencoder {
353    /// Quantum encoder
354    pub quantum_encoder: QVAE,
355    /// Classical decoder
356    pub classical_decoder: ClassicalAutoencoder,
357}
358
359impl HybridAutoencoder {
360    /// Create a new hybrid autoencoder
361    pub fn new(
362        num_data_qubits: usize,
363        num_latent_qubits: usize,
364        classical_latent_dim: usize,
365    ) -> Result<Self, MLError> {
366        let quantum_encoder = QVAE::new(num_data_qubits, num_latent_qubits, 0)?;
367
368        // Classical decoder takes quantum latent space measurements
369        let quantum_latent_dim = 1 << num_latent_qubits;
370        let classical_decoder = ClassicalAutoencoder::new(quantum_latent_dim, classical_latent_dim);
371
372        Ok(Self {
373            quantum_encoder,
374            classical_decoder,
375        })
376    }
377}
378
379#[cfg(test)]
380mod tests {
381    use super::*;
382
383    #[test]
384    fn test_qvae_creation() {
385        let qvae = QVAE::new(4, 2, 0).expect("Failed to create QVAE");
386        assert_eq!(qvae.num_data_qubits, 4);
387        assert_eq!(qvae.num_latent_qubits, 2);
388        assert_eq!(qvae.total_qubits(), 6);
389    }
390
391    #[test]
392    fn test_qvae_invalid_params() {
393        // Latent space must be smaller than data space
394        let result = QVAE::new(4, 5, 0);
395        assert!(result.is_err());
396    }
397
398    #[test]
399    fn test_classical_autoencoder() {
400        let ae = ClassicalAutoencoder::new(10, 3);
401        let input = vec![0.5; 10];
402        let output = ae.forward(&input);
403
404        assert_eq!(output.len(), 10);
405        // Check output is normalized (between 0 and 1)
406        for &val in &output {
407            assert!(val >= 0.0 && val <= 1.0);
408        }
409    }
410
411    #[test]
412    fn test_parameter_management() {
413        let mut qvae = QVAE::new(4, 2, 0).expect("Failed to create QVAE");
414        let params = qvae.get_parameters();
415        let new_params = vec![0.2; params.len()];
416
417        qvae.set_parameters(&new_params)
418            .expect("Failed to set parameters");
419        let retrieved = qvae.get_parameters();
420
421        assert_eq!(retrieved, new_params);
422    }
423
424    #[test]
425    fn test_reconstruction_fidelity() {
426        let qvae = QVAE::new(2, 1, 0).expect("Failed to create QVAE");
427        let state = vec![
428            Complex::new(0.5, 0.0),
429            Complex::new(0.5, 0.0),
430            Complex::new(0.5, 0.0),
431            Complex::new(0.5, 0.0),
432        ];
433
434        let fidelity = qvae
435            .reconstruction_fidelity(&state, &state)
436            .expect("Fidelity computation should succeed");
437        assert!((fidelity - 1.0).abs() < 1e-10);
438    }
439}