quantrs2_ml/
quantum_nas.rs

1//! Quantum Neural Architecture Search (NAS)
2//!
3//! This module implements automated search algorithms for finding optimal quantum
4//! circuit architectures, including evolutionary algorithms, reinforcement learning-based
5//! search, and gradient-based methods adapted for quantum circuits.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use ndarray::{s, Array1, Array2, Array3, Axis};
12use quantrs2_circuit::builder::{Circuit, Simulator};
13use quantrs2_core::gate::{
14    single::{RotationX, RotationY, RotationZ},
15    GateOp,
16};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::{HashMap, HashSet};
19use std::fmt;
20
21/// Search strategy for quantum architecture search
22#[derive(Debug, Clone, Copy)]
23pub enum SearchStrategy {
24    /// Evolutionary algorithm search
25    Evolutionary {
26        population_size: usize,
27        mutation_rate: f64,
28        crossover_rate: f64,
29        elitism_ratio: f64,
30    },
31
32    /// Reinforcement learning-based search
33    ReinforcementLearning {
34        agent_type: RLAgentType,
35        exploration_rate: f64,
36        learning_rate: f64,
37    },
38
39    /// Random search baseline
40    Random { num_samples: usize },
41
42    /// Bayesian optimization
43    BayesianOptimization {
44        acquisition_function: AcquisitionFunction,
45        num_initial_points: usize,
46    },
47
48    /// Differentiable architecture search
49    DARTS {
50        learning_rate: f64,
51        weight_decay: f64,
52    },
53}
54
55/// RL agent types for NAS
56#[derive(Debug, Clone, Copy)]
57pub enum RLAgentType {
58    /// Deep Q-Network
59    DQN,
60    /// Policy Gradient
61    PolicyGradient,
62    /// Actor-Critic
63    ActorCritic,
64}
65
66/// Acquisition functions for Bayesian optimization
67#[derive(Debug, Clone, Copy)]
68pub enum AcquisitionFunction {
69    /// Expected Improvement
70    ExpectedImprovement,
71    /// Upper Confidence Bound
72    UpperConfidenceBound,
73    /// Probability of Improvement
74    ProbabilityOfImprovement,
75}
76
77/// Architecture search space definition
78#[derive(Debug, Clone)]
79pub struct SearchSpace {
80    /// Available layer types
81    pub layer_types: Vec<QNNLayerType>,
82
83    /// Minimum/maximum depth
84    pub depth_range: (usize, usize),
85
86    /// Qubit count constraints
87    pub qubit_constraints: QubitConstraints,
88
89    /// Parameter ranges for variational layers
90    pub param_ranges: HashMap<String, (usize, usize)>,
91
92    /// Connectivity patterns
93    pub connectivity_patterns: Vec<String>,
94
95    /// Measurement basis options
96    pub measurement_bases: Vec<String>,
97}
98
99/// Qubit constraints for architecture search
100#[derive(Debug, Clone)]
101pub struct QubitConstraints {
102    /// Minimum number of qubits
103    pub min_qubits: usize,
104
105    /// Maximum number of qubits
106    pub max_qubits: usize,
107
108    /// Hardware topology constraints
109    pub topology: Option<QuantumTopology>,
110}
111
112/// Quantum hardware topology
113#[derive(Debug, Clone)]
114pub enum QuantumTopology {
115    /// Linear chain topology
116    Linear,
117    /// Ring/circular topology
118    Ring,
119    /// 2D grid topology
120    Grid { width: usize, height: usize },
121    /// Complete graph (all-to-all)
122    Complete,
123    /// Custom connectivity
124    Custom { edges: Vec<(usize, usize)> },
125}
126
127/// Architecture candidate with evaluation metrics
128#[derive(Debug, Clone)]
129pub struct ArchitectureCandidate {
130    /// Unique identifier
131    pub id: String,
132
133    /// Layer configuration
134    pub layers: Vec<QNNLayerType>,
135
136    /// Number of qubits
137    pub num_qubits: usize,
138
139    /// Performance metrics
140    pub metrics: ArchitectureMetrics,
141
142    /// Architecture properties
143    pub properties: ArchitectureProperties,
144}
145
146/// Performance metrics for architecture evaluation
147#[derive(Debug, Clone)]
148pub struct ArchitectureMetrics {
149    /// Validation accuracy
150    pub accuracy: Option<f64>,
151
152    /// Training loss
153    pub loss: Option<f64>,
154
155    /// Circuit depth
156    pub circuit_depth: usize,
157
158    /// Parameter count
159    pub parameter_count: usize,
160
161    /// Training time
162    pub training_time: Option<f64>,
163
164    /// Memory usage
165    pub memory_usage: Option<usize>,
166
167    /// Hardware efficiency score
168    pub hardware_efficiency: Option<f64>,
169}
170
171/// Architecture properties for analysis
172#[derive(Debug, Clone)]
173pub struct ArchitectureProperties {
174    /// Expressivity measure
175    pub expressivity: Option<f64>,
176
177    /// Entanglement capability
178    pub entanglement_capability: Option<f64>,
179
180    /// Gradient variance
181    pub gradient_variance: Option<f64>,
182
183    /// Barren plateau susceptibility
184    pub barren_plateau_score: Option<f64>,
185
186    /// Noise resilience
187    pub noise_resilience: Option<f64>,
188}
189
190/// Main quantum neural architecture search engine
191pub struct QuantumNAS {
192    /// Search strategy
193    strategy: SearchStrategy,
194
195    /// Search space definition
196    search_space: SearchSpace,
197
198    /// Evaluation dataset
199    eval_data: Option<(Array2<f64>, Array1<usize>)>,
200
201    /// Best architectures found
202    best_architectures: Vec<ArchitectureCandidate>,
203
204    /// Search history
205    search_history: Vec<ArchitectureCandidate>,
206
207    /// Current generation (for evolutionary)
208    current_generation: usize,
209
210    /// RL agent state (for RL-based search)
211    rl_state: Option<RLSearchState>,
212
213    /// Pareto front for multi-objective optimization
214    pareto_front: Vec<ArchitectureCandidate>,
215}
216
217/// RL agent state for reinforcement learning NAS
218#[derive(Debug, Clone)]
219pub struct RLSearchState {
220    /// Q-values for actions
221    q_values: HashMap<String, f64>,
222
223    /// Policy parameters
224    policy_params: Array1<f64>,
225
226    /// Experience replay buffer
227    replay_buffer: Vec<RLExperience>,
228
229    /// Current state representation
230    current_state: Array1<f64>,
231}
232
233/// Experience for RL training
234#[derive(Debug, Clone)]
235pub struct RLExperience {
236    /// State before action
237    pub state: Array1<f64>,
238
239    /// Action taken
240    pub action: ArchitectureAction,
241
242    /// Reward received
243    pub reward: f64,
244
245    /// Next state
246    pub next_state: Array1<f64>,
247
248    /// Whether episode ended
249    pub done: bool,
250}
251
252/// Actions for RL-based architecture search
253#[derive(Debug, Clone)]
254pub enum ArchitectureAction {
255    /// Add a layer
256    AddLayer(QNNLayerType),
257
258    /// Remove a layer
259    RemoveLayer(usize),
260
261    /// Modify layer parameters
262    ModifyLayer(usize, HashMap<String, f64>),
263
264    /// Change connectivity
265    ChangeConnectivity(String),
266
267    /// Finish architecture
268    Finish,
269}
270
271impl QuantumNAS {
272    /// Create a new quantum NAS instance
273    pub fn new(strategy: SearchStrategy, search_space: SearchSpace) -> Self {
274        Self {
275            strategy,
276            search_space,
277            eval_data: None,
278            best_architectures: Vec::new(),
279            search_history: Vec::new(),
280            current_generation: 0,
281            rl_state: None,
282            pareto_front: Vec::new(),
283        }
284    }
285
286    /// Set evaluation dataset
287    pub fn set_evaluation_data(&mut self, data: Array2<f64>, labels: Array1<usize>) {
288        self.eval_data = Some((data, labels));
289    }
290
291    /// Search for optimal architectures
292    pub fn search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
293        println!("Starting quantum neural architecture search...");
294
295        match self.strategy {
296            SearchStrategy::Evolutionary { .. } => self.evolutionary_search(max_iterations),
297            SearchStrategy::ReinforcementLearning { .. } => self.rl_search(max_iterations),
298            SearchStrategy::Random { .. } => self.random_search(max_iterations),
299            SearchStrategy::BayesianOptimization { .. } => self.bayesian_search(max_iterations),
300            SearchStrategy::DARTS { .. } => self.darts_search(max_iterations),
301        }
302    }
303
304    /// Evolutionary algorithm search
305    fn evolutionary_search(
306        &mut self,
307        max_generations: usize,
308    ) -> Result<Vec<ArchitectureCandidate>> {
309        let (population_size, mutation_rate, crossover_rate, elitism_ratio) = match self.strategy {
310            SearchStrategy::Evolutionary {
311                population_size,
312                mutation_rate,
313                crossover_rate,
314                elitism_ratio,
315            } => (
316                population_size,
317                mutation_rate,
318                crossover_rate,
319                elitism_ratio,
320            ),
321            _ => unreachable!(),
322        };
323
324        // Initialize population
325        let mut population = self.initialize_population(population_size)?;
326
327        for generation in 0..max_generations {
328            self.current_generation = generation;
329
330            // Evaluate population
331            for candidate in &mut population {
332                if candidate.metrics.accuracy.is_none() {
333                    self.evaluate_architecture(candidate)?;
334                }
335            }
336
337            // Sort by fitness
338            population.sort_by(|a, b| {
339                let fitness_a = self.compute_fitness(a);
340                let fitness_b = self.compute_fitness(b);
341                fitness_b.partial_cmp(&fitness_a).unwrap()
342            });
343
344            // Update best architectures
345            self.update_best_architectures(&population);
346
347            // Update Pareto front
348            self.update_pareto_front(&population);
349
350            println!(
351                "Generation {}: Best fitness = {:.4}",
352                generation,
353                self.compute_fitness(&population[0])
354            );
355
356            // Create next generation
357            let elite_count = (population_size as f64 * elitism_ratio) as usize;
358            let mut next_generation = population[..elite_count].to_vec();
359
360            while next_generation.len() < population_size {
361                // Tournament selection
362                let parent1 = self.tournament_selection(&population, 3)?;
363                let parent2 = self.tournament_selection(&population, 3)?;
364
365                // Crossover
366                let mut offspring = if rand::random::<f64>() < crossover_rate {
367                    self.crossover(&parent1, &parent2)?
368                } else {
369                    parent1.clone()
370                };
371
372                // Mutation
373                if rand::random::<f64>() < mutation_rate {
374                    self.mutate(&mut offspring)?;
375                }
376
377                next_generation.push(offspring);
378            }
379
380            population = next_generation;
381
382            // Add to search history
383            self.search_history.extend(population.clone());
384        }
385
386        Ok(self.best_architectures.clone())
387    }
388
389    /// Reinforcement learning-based search
390    fn rl_search(&mut self, max_episodes: usize) -> Result<Vec<ArchitectureCandidate>> {
391        let (agent_type, exploration_rate, learning_rate) = match self.strategy {
392            SearchStrategy::ReinforcementLearning {
393                agent_type,
394                exploration_rate,
395                learning_rate,
396            } => (agent_type, exploration_rate, learning_rate),
397            _ => unreachable!(),
398        };
399
400        // Initialize RL agent
401        self.initialize_rl_agent(agent_type, learning_rate)?;
402
403        for episode in 0..max_episodes {
404            let mut current_architecture = self.create_empty_architecture();
405            let mut episode_reward = 0.0;
406            let mut step = 0;
407
408            loop {
409                // Get current state
410                let state = self.architecture_to_state(&current_architecture)?;
411
412                // Choose action (epsilon-greedy)
413                let action = if rand::random::<f64>() < exploration_rate {
414                    self.sample_random_action(&current_architecture)?
415                } else {
416                    self.choose_best_action(&state)?
417                };
418
419                // Apply action
420                let (next_architecture, reward, done) =
421                    self.apply_action(&current_architecture, &action)?;
422
423                // Update experience
424                let next_state = self.architecture_to_state(&next_architecture)?;
425                let experience = RLExperience {
426                    state: state.clone(),
427                    action: action.clone(),
428                    reward,
429                    next_state: next_state.clone(),
430                    done,
431                };
432
433                if let Some(ref mut rl_state) = self.rl_state {
434                    rl_state.replay_buffer.push(experience);
435                }
436
437                // Train agent
438                if step % 10 == 0 {
439                    self.train_rl_agent()?;
440                }
441
442                episode_reward += reward;
443                current_architecture = next_architecture;
444                step += 1;
445
446                if done || step > 20 {
447                    break;
448                }
449            }
450
451            // Evaluate final architecture
452            let mut final_candidate = current_architecture;
453            self.evaluate_architecture(&mut final_candidate)?;
454            self.search_history.push(final_candidate.clone());
455            self.update_best_architectures(&[final_candidate]);
456
457            if episode % 100 == 0 {
458                println!("Episode {}: Reward = {:.4}", episode, episode_reward);
459            }
460        }
461
462        Ok(self.best_architectures.clone())
463    }
464
465    /// Random search baseline
466    fn random_search(&mut self, num_samples: usize) -> Result<Vec<ArchitectureCandidate>> {
467        for i in 0..num_samples {
468            let mut candidate = self.sample_random_architecture()?;
469            self.evaluate_architecture(&mut candidate)?;
470
471            self.search_history.push(candidate.clone());
472            self.update_best_architectures(&[candidate]);
473
474            if i % 100 == 0 {
475                println!("Evaluated {} random architectures", i + 1);
476            }
477        }
478
479        Ok(self.best_architectures.clone())
480    }
481
482    /// Bayesian optimization search
483    fn bayesian_search(&mut self, max_iterations: usize) -> Result<Vec<ArchitectureCandidate>> {
484        let (acquisition_fn, num_initial) = match self.strategy {
485            SearchStrategy::BayesianOptimization {
486                acquisition_function,
487                num_initial_points,
488            } => (acquisition_function, num_initial_points),
489            _ => unreachable!(),
490        };
491
492        // Initial random sampling
493        let mut candidates = Vec::new();
494        for _ in 0..num_initial {
495            let mut candidate = self.sample_random_architecture()?;
496            self.evaluate_architecture(&mut candidate)?;
497            candidates.push(candidate);
498        }
499
500        // Bayesian optimization loop
501        for iteration in num_initial..max_iterations {
502            // Fit surrogate model (simplified)
503            let surrogate = self.fit_surrogate_model(&candidates)?;
504
505            // Optimize acquisition function
506            let next_candidate = self.optimize_acquisition(&surrogate, acquisition_fn)?;
507
508            // Evaluate candidate
509            let mut evaluated_candidate = next_candidate;
510            self.evaluate_architecture(&mut evaluated_candidate)?;
511
512            candidates.push(evaluated_candidate.clone());
513            self.search_history.push(evaluated_candidate.clone());
514            self.update_best_architectures(&[evaluated_candidate]);
515
516            if iteration % 50 == 0 {
517                let best_acc = self.best_architectures[0].metrics.accuracy.unwrap_or(0.0);
518                println!("Iteration {}: Best accuracy = {:.4}", iteration, best_acc);
519            }
520        }
521
522        Ok(self.best_architectures.clone())
523    }
524
525    /// DARTS (Differentiable Architecture Search)
526    fn darts_search(&mut self, max_epochs: usize) -> Result<Vec<ArchitectureCandidate>> {
527        let (learning_rate, weight_decay) = match self.strategy {
528            SearchStrategy::DARTS {
529                learning_rate,
530                weight_decay,
531            } => (learning_rate, weight_decay),
532            _ => unreachable!(),
533        };
534
535        // Initialize architecture weights (alpha parameters)
536        let num_layers = 8; // Fixed depth for DARTS
537        let num_ops = self.search_space.layer_types.len();
538        let mut alpha = Array2::zeros((num_layers, num_ops));
539
540        // Initialize with uniform distribution
541        for i in 0..num_layers {
542            for j in 0..num_ops {
543                alpha[[i, j]] = 1.0 / num_ops as f64;
544            }
545        }
546
547        for epoch in 0..max_epochs {
548            // Update alpha parameters using gradient descent
549            let alpha_grad = self.compute_architecture_gradients(&alpha)?;
550            alpha = alpha - learning_rate * &alpha_grad;
551
552            // Apply softmax to alpha
553            for i in 0..num_layers {
554                let row_sum: f64 = alpha.row(i).iter().map(|x| x.exp()).sum();
555                for j in 0..num_ops {
556                    alpha[[i, j]] = alpha[[i, j]].exp() / row_sum;
557                }
558            }
559
560            if epoch % 100 == 0 {
561                println!("DARTS epoch {}: Architecture weights updated", epoch);
562            }
563        }
564
565        // Derive final architecture from learned weights
566        let final_architecture = self.derive_architecture_from_weights(&alpha)?;
567        let mut candidate = final_architecture;
568        self.evaluate_architecture(&mut candidate)?;
569
570        self.search_history.push(candidate.clone());
571        self.update_best_architectures(&[candidate]);
572
573        Ok(self.best_architectures.clone())
574    }
575
576    /// Initialize random population for evolutionary search
577    fn initialize_population(&self, size: usize) -> Result<Vec<ArchitectureCandidate>> {
578        let mut population = Vec::new();
579        for i in 0..size {
580            let candidate = self.sample_random_architecture()?;
581            population.push(candidate);
582        }
583        Ok(population)
584    }
585
586    /// Sample a random architecture from search space
587    fn sample_random_architecture(&self) -> Result<ArchitectureCandidate> {
588        let depth =
589            fastrand::usize(self.search_space.depth_range.0..=self.search_space.depth_range.1);
590        let num_qubits = fastrand::usize(
591            self.search_space.qubit_constraints.min_qubits
592                ..=self.search_space.qubit_constraints.max_qubits,
593        );
594
595        let mut layers = Vec::new();
596
597        // Add encoding layer
598        layers.push(QNNLayerType::EncodingLayer {
599            num_features: fastrand::usize(2..8),
600        });
601
602        // Add random layers
603        for _ in 0..depth {
604            let layer_type_idx = fastrand::usize(0..self.search_space.layer_types.len());
605            let layer_type = self.search_space.layer_types[layer_type_idx].clone();
606            layers.push(layer_type);
607        }
608
609        // Add measurement layer
610        let basis_idx = fastrand::usize(0..self.search_space.measurement_bases.len());
611        layers.push(QNNLayerType::MeasurementLayer {
612            measurement_basis: self.search_space.measurement_bases[basis_idx].clone(),
613        });
614
615        Ok(ArchitectureCandidate {
616            id: format!("arch_{}", fastrand::u64(..)),
617            layers,
618            num_qubits,
619            metrics: ArchitectureMetrics {
620                accuracy: None,
621                loss: None,
622                circuit_depth: 0,
623                parameter_count: 0,
624                training_time: None,
625                memory_usage: None,
626                hardware_efficiency: None,
627            },
628            properties: ArchitectureProperties {
629                expressivity: None,
630                entanglement_capability: None,
631                gradient_variance: None,
632                barren_plateau_score: None,
633                noise_resilience: None,
634            },
635        })
636    }
637
638    /// Evaluate architecture performance
639    fn evaluate_architecture(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
640        // Create QNN from architecture
641        let qnn = QuantumNeuralNetwork::new(
642            candidate.layers.clone(),
643            candidate.num_qubits,
644            4, // input_dim
645            2, // output_dim
646        )?;
647
648        // Compute metrics
649        candidate.metrics.parameter_count = qnn.parameters.len();
650        candidate.metrics.circuit_depth = self.estimate_circuit_depth(&candidate.layers);
651
652        // Evaluate on dataset if available
653        if let Some((data, labels)) = &self.eval_data {
654            let (accuracy, loss) = self.evaluate_on_dataset(&qnn, data, labels)?;
655            candidate.metrics.accuracy = Some(accuracy);
656            candidate.metrics.loss = Some(loss);
657        } else {
658            // Synthetic evaluation
659            candidate.metrics.accuracy = Some(0.5 + 0.4 * rand::random::<f64>());
660            candidate.metrics.loss = Some(0.5 + 0.5 * rand::random::<f64>());
661        }
662
663        // Compute architecture properties
664        self.compute_architecture_properties(candidate)?;
665
666        Ok(())
667    }
668
669    /// Compute fitness score for evolutionary algorithm
670    fn compute_fitness(&self, candidate: &ArchitectureCandidate) -> f64 {
671        let accuracy = candidate.metrics.accuracy.unwrap_or(0.0);
672        let param_penalty = candidate.metrics.parameter_count as f64 / 1000.0;
673        let depth_penalty = candidate.metrics.circuit_depth as f64 / 100.0;
674
675        // Multi-objective fitness
676        accuracy - 0.1 * param_penalty - 0.05 * depth_penalty
677    }
678
679    /// Tournament selection for evolutionary algorithm
680    fn tournament_selection(
681        &self,
682        population: &[ArchitectureCandidate],
683        tournament_size: usize,
684    ) -> Result<ArchitectureCandidate> {
685        let mut best = None;
686        let mut best_fitness = f64::NEG_INFINITY;
687
688        for _ in 0..tournament_size {
689            let idx = fastrand::usize(0..population.len());
690            let candidate = &population[idx];
691            let fitness = self.compute_fitness(candidate);
692
693            if fitness > best_fitness {
694                best_fitness = fitness;
695                best = Some(candidate.clone());
696            }
697        }
698
699        Ok(best.unwrap())
700    }
701
702    /// Crossover operation for evolutionary algorithm
703    fn crossover(
704        &self,
705        parent1: &ArchitectureCandidate,
706        parent2: &ArchitectureCandidate,
707    ) -> Result<ArchitectureCandidate> {
708        // Simple layer-wise crossover
709        let mut child_layers = Vec::new();
710        let max_len = parent1.layers.len().max(parent2.layers.len());
711
712        for i in 0..max_len {
713            if rand::random::<bool>() {
714                if i < parent1.layers.len() {
715                    child_layers.push(parent1.layers[i].clone());
716                }
717            } else {
718                if i < parent2.layers.len() {
719                    child_layers.push(parent2.layers[i].clone());
720                }
721            }
722        }
723
724        let num_qubits = if rand::random::<bool>() {
725            parent1.num_qubits
726        } else {
727            parent2.num_qubits
728        };
729
730        Ok(ArchitectureCandidate {
731            id: format!("crossover_{}", fastrand::u64(..)),
732            layers: child_layers,
733            num_qubits,
734            metrics: ArchitectureMetrics {
735                accuracy: None,
736                loss: None,
737                circuit_depth: 0,
738                parameter_count: 0,
739                training_time: None,
740                memory_usage: None,
741                hardware_efficiency: None,
742            },
743            properties: ArchitectureProperties {
744                expressivity: None,
745                entanglement_capability: None,
746                gradient_variance: None,
747                barren_plateau_score: None,
748                noise_resilience: None,
749            },
750        })
751    }
752
753    /// Mutation operation for evolutionary algorithm
754    fn mutate(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
755        let mutation_type = fastrand::usize(0..4);
756
757        match mutation_type {
758            0 => {
759                // Add layer
760                if candidate.layers.len() < self.search_space.depth_range.1 + 2 {
761                    let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
762                    let new_layer = self.search_space.layer_types[layer_idx].clone();
763                    let insert_pos = fastrand::usize(1..candidate.layers.len()); // Skip encoding layer
764                    candidate.layers.insert(insert_pos, new_layer);
765                }
766            }
767            1 => {
768                // Remove layer
769                if candidate.layers.len() > 3 {
770                    // Keep encoding and measurement
771                    let remove_pos = fastrand::usize(1..candidate.layers.len() - 1);
772                    candidate.layers.remove(remove_pos);
773                }
774            }
775            2 => {
776                // Modify layer
777                if candidate.layers.len() > 2 {
778                    let layer_idx = fastrand::usize(1..candidate.layers.len() - 1);
779                    let new_layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
780                    candidate.layers[layer_idx] =
781                        self.search_space.layer_types[new_layer_idx].clone();
782                }
783            }
784            3 => {
785                // Change qubit count
786                candidate.num_qubits = fastrand::usize(
787                    self.search_space.qubit_constraints.min_qubits
788                        ..=self.search_space.qubit_constraints.max_qubits,
789                );
790            }
791            _ => {}
792        }
793
794        // Reset metrics
795        candidate.metrics.accuracy = None;
796        candidate.metrics.loss = None;
797
798        Ok(())
799    }
800
801    /// Update best architectures list
802    fn update_best_architectures(&mut self, candidates: &[ArchitectureCandidate]) {
803        for candidate in candidates {
804            if candidate.metrics.accuracy.is_some() {
805                self.best_architectures.push(candidate.clone());
806            }
807        }
808
809        // Compute fitness scores for sorting
810        let mut fitness_scores: Vec<(usize, f64)> = self
811            .best_architectures
812            .iter()
813            .enumerate()
814            .map(|(i, arch)| (i, self.compute_fitness(arch)))
815            .collect();
816
817        // Sort by fitness (descending)
818        fitness_scores.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
819
820        // Reorder architectures based on fitness
821        let sorted_architectures: Vec<_> = fitness_scores
822            .into_iter()
823            .take(10)
824            .map(|(i, _)| self.best_architectures[i].clone())
825            .collect();
826
827        self.best_architectures = sorted_architectures;
828    }
829
830    /// Update Pareto front for multi-objective optimization
831    fn update_pareto_front(&mut self, candidates: &[ArchitectureCandidate]) {
832        for candidate in candidates {
833            let is_dominated = self
834                .pareto_front
835                .iter()
836                .any(|other| self.dominates(other, candidate));
837
838            if !is_dominated {
839                // Find indices of dominated solutions
840                let mut to_remove = Vec::new();
841                for (i, other) in self.pareto_front.iter().enumerate() {
842                    if self.dominates(candidate, other) {
843                        to_remove.push(i);
844                    }
845                }
846
847                // Remove dominated solutions (in reverse order to maintain indices)
848                for &i in to_remove.iter().rev() {
849                    self.pareto_front.remove(i);
850                }
851
852                // Add new candidate
853                self.pareto_front.push(candidate.clone());
854            }
855        }
856    }
857
858    /// Check if one candidate dominates another (Pareto dominance)
859    fn dominates(&self, a: &ArchitectureCandidate, b: &ArchitectureCandidate) -> bool {
860        let acc_a = a.metrics.accuracy.unwrap_or(0.0);
861        let acc_b = b.metrics.accuracy.unwrap_or(0.0);
862        let params_a = a.metrics.parameter_count as f64;
863        let params_b = b.metrics.parameter_count as f64;
864
865        (acc_a >= acc_b && params_a <= params_b) && (acc_a > acc_b || params_a < params_b)
866    }
867
868    /// Estimate circuit depth from layers
869    fn estimate_circuit_depth(&self, layers: &[QNNLayerType]) -> usize {
870        layers
871            .iter()
872            .map(|layer| match layer {
873                QNNLayerType::EncodingLayer { .. } => 1,
874                QNNLayerType::VariationalLayer { num_params } => num_params / 3, // Roughly gates per qubit
875                QNNLayerType::EntanglementLayer { .. } => 1,
876                QNNLayerType::MeasurementLayer { .. } => 1,
877            })
878            .sum()
879    }
880
881    /// Evaluate QNN on dataset
882    fn evaluate_on_dataset(
883        &self,
884        qnn: &QuantumNeuralNetwork,
885        data: &Array2<f64>,
886        labels: &Array1<usize>,
887    ) -> Result<(f64, f64)> {
888        // Simplified evaluation - would use actual training/validation
889        let accuracy = 0.6 + 0.3 * rand::random::<f64>();
890        let loss = 0.2 + 0.8 * rand::random::<f64>();
891        Ok((accuracy, loss))
892    }
893
894    /// Compute architecture properties
895    fn compute_architecture_properties(&self, candidate: &mut ArchitectureCandidate) -> Result<()> {
896        // Estimate expressivity based on parameter count and depth
897        let expressivity = (candidate.metrics.parameter_count as f64).ln()
898            * (candidate.metrics.circuit_depth as f64).sqrt()
899            / 100.0;
900        candidate.properties.expressivity = Some(expressivity.min(1.0));
901
902        // Estimate entanglement capability
903        let entanglement_layers = candidate
904            .layers
905            .iter()
906            .filter(|layer| matches!(layer, QNNLayerType::EntanglementLayer { .. }))
907            .count();
908        candidate.properties.entanglement_capability =
909            Some((entanglement_layers as f64 / candidate.layers.len() as f64).min(1.0));
910
911        // Placeholder values for other properties
912        candidate.properties.gradient_variance = Some(0.1 + 0.3 * rand::random::<f64>());
913        candidate.properties.barren_plateau_score = Some(0.2 + 0.6 * rand::random::<f64>());
914        candidate.properties.noise_resilience = Some(0.3 + 0.4 * rand::random::<f64>());
915
916        Ok(())
917    }
918
919    /// Initialize RL agent
920    fn initialize_rl_agent(&mut self, agent_type: RLAgentType, learning_rate: f64) -> Result<()> {
921        let state_dim = 64; // State representation dimension
922
923        self.rl_state = Some(RLSearchState {
924            q_values: HashMap::new(),
925            policy_params: Array1::zeros(state_dim),
926            replay_buffer: Vec::new(),
927            current_state: Array1::zeros(state_dim),
928        });
929
930        Ok(())
931    }
932
933    /// Convert architecture to state representation
934    fn architecture_to_state(&self, arch: &ArchitectureCandidate) -> Result<Array1<f64>> {
935        let mut state = Array1::zeros(64);
936
937        // Encode architecture features
938        state[0] = arch.layers.len() as f64 / 20.0; // Normalized depth
939        state[1] = arch.num_qubits as f64 / 16.0; // Normalized qubit count
940
941        // Encode layer types
942        for (i, layer) in arch.layers.iter().enumerate().take(30) {
943            let layer_code = match layer {
944                QNNLayerType::EncodingLayer { .. } => 0.1,
945                QNNLayerType::VariationalLayer { .. } => 0.3,
946                QNNLayerType::EntanglementLayer { .. } => 0.5,
947                QNNLayerType::MeasurementLayer { .. } => 0.7,
948            };
949            state[2 + i] = layer_code;
950        }
951
952        Ok(state)
953    }
954
955    /// Sample random action for RL
956    fn sample_random_action(&self, arch: &ArchitectureCandidate) -> Result<ArchitectureAction> {
957        let action_type = fastrand::usize(0..5);
958
959        match action_type {
960            0 => {
961                let layer_idx = fastrand::usize(0..self.search_space.layer_types.len());
962                Ok(ArchitectureAction::AddLayer(
963                    self.search_space.layer_types[layer_idx].clone(),
964                ))
965            }
966            1 => {
967                if arch.layers.len() > 3 {
968                    let layer_idx = fastrand::usize(1..arch.layers.len() - 1);
969                    Ok(ArchitectureAction::RemoveLayer(layer_idx))
970                } else {
971                    self.sample_random_action(arch)
972                }
973            }
974            2 => {
975                let layer_idx = fastrand::usize(0..arch.layers.len());
976                Ok(ArchitectureAction::ModifyLayer(layer_idx, HashMap::new()))
977            }
978            3 => {
979                let conn_idx = fastrand::usize(0..self.search_space.connectivity_patterns.len());
980                Ok(ArchitectureAction::ChangeConnectivity(
981                    self.search_space.connectivity_patterns[conn_idx].clone(),
982                ))
983            }
984            _ => Ok(ArchitectureAction::Finish),
985        }
986    }
987
988    /// Choose best action using RL policy
989    fn choose_best_action(&self, state: &Array1<f64>) -> Result<ArchitectureAction> {
990        // Placeholder - would use trained policy
991        Ok(ArchitectureAction::Finish)
992    }
993
994    /// Apply action to architecture
995    fn apply_action(
996        &self,
997        arch: &ArchitectureCandidate,
998        action: &ArchitectureAction,
999    ) -> Result<(ArchitectureCandidate, f64, bool)> {
1000        let mut new_arch = arch.clone();
1001        let mut reward = 0.0;
1002        let mut done = false;
1003
1004        match action {
1005            ArchitectureAction::AddLayer(layer) => {
1006                if new_arch.layers.len() < self.search_space.depth_range.1 + 2 {
1007                    let insert_pos = fastrand::usize(1..new_arch.layers.len());
1008                    new_arch.layers.insert(insert_pos, layer.clone());
1009                    reward = 0.1;
1010                } else {
1011                    reward = -0.1;
1012                }
1013            }
1014            ArchitectureAction::RemoveLayer(idx) => {
1015                if new_arch.layers.len() > 3 && *idx < new_arch.layers.len() {
1016                    new_arch.layers.remove(*idx);
1017                    reward = 0.05;
1018                } else {
1019                    reward = -0.1;
1020                }
1021            }
1022            ArchitectureAction::Finish => {
1023                done = true;
1024                reward = 1.0; // Will be replaced by actual evaluation
1025            }
1026            _ => {
1027                reward = 0.0;
1028            }
1029        }
1030
1031        new_arch.id = format!("rl_{}", fastrand::u64(..));
1032        Ok((new_arch, reward, done))
1033    }
1034
1035    /// Train RL agent
1036    fn train_rl_agent(&mut self) -> Result<()> {
1037        // Placeholder for RL training
1038        Ok(())
1039    }
1040
1041    /// Create empty architecture
1042    fn create_empty_architecture(&self) -> ArchitectureCandidate {
1043        ArchitectureCandidate {
1044            id: format!("empty_{}", fastrand::u64(..)),
1045            layers: vec![
1046                QNNLayerType::EncodingLayer { num_features: 4 },
1047                QNNLayerType::MeasurementLayer {
1048                    measurement_basis: "computational".to_string(),
1049                },
1050            ],
1051            num_qubits: 4,
1052            metrics: ArchitectureMetrics {
1053                accuracy: None,
1054                loss: None,
1055                circuit_depth: 0,
1056                parameter_count: 0,
1057                training_time: None,
1058                memory_usage: None,
1059                hardware_efficiency: None,
1060            },
1061            properties: ArchitectureProperties {
1062                expressivity: None,
1063                entanglement_capability: None,
1064                gradient_variance: None,
1065                barren_plateau_score: None,
1066                noise_resilience: None,
1067            },
1068        }
1069    }
1070
1071    /// Fit surrogate model for Bayesian optimization
1072    fn fit_surrogate_model(&self, candidates: &[ArchitectureCandidate]) -> Result<SurrogateModel> {
1073        // Placeholder for surrogate model
1074        Ok(SurrogateModel {
1075            mean_prediction: 0.7,
1076            uncertainty: 0.1,
1077        })
1078    }
1079
1080    /// Optimize acquisition function
1081    fn optimize_acquisition(
1082        &self,
1083        surrogate: &SurrogateModel,
1084        acquisition_fn: AcquisitionFunction,
1085    ) -> Result<ArchitectureCandidate> {
1086        // Placeholder - would optimize acquisition function
1087        self.sample_random_architecture()
1088    }
1089
1090    /// Compute architecture gradients for DARTS
1091    fn compute_architecture_gradients(&self, alpha: &Array2<f64>) -> Result<Array2<f64>> {
1092        // Placeholder for architecture gradient computation
1093        Ok(Array2::zeros(alpha.raw_dim()))
1094    }
1095
1096    /// Derive final architecture from DARTS weights
1097    fn derive_architecture_from_weights(
1098        &self,
1099        alpha: &Array2<f64>,
1100    ) -> Result<ArchitectureCandidate> {
1101        let mut layers = vec![QNNLayerType::EncodingLayer { num_features: 4 }];
1102
1103        for i in 0..alpha.nrows() {
1104            // Choose layer with highest weight
1105            let mut best_op = 0;
1106            let mut best_weight = alpha[[i, 0]];
1107
1108            for j in 1..alpha.ncols() {
1109                if alpha[[i, j]] > best_weight {
1110                    best_weight = alpha[[i, j]];
1111                    best_op = j;
1112                }
1113            }
1114
1115            if best_op < self.search_space.layer_types.len() {
1116                layers.push(self.search_space.layer_types[best_op].clone());
1117            }
1118        }
1119
1120        layers.push(QNNLayerType::MeasurementLayer {
1121            measurement_basis: "computational".to_string(),
1122        });
1123
1124        Ok(ArchitectureCandidate {
1125            id: format!("darts_{}", fastrand::u64(..)),
1126            layers,
1127            num_qubits: 4,
1128            metrics: ArchitectureMetrics {
1129                accuracy: None,
1130                loss: None,
1131                circuit_depth: 0,
1132                parameter_count: 0,
1133                training_time: None,
1134                memory_usage: None,
1135                hardware_efficiency: None,
1136            },
1137            properties: ArchitectureProperties {
1138                expressivity: None,
1139                entanglement_capability: None,
1140                gradient_variance: None,
1141                barren_plateau_score: None,
1142                noise_resilience: None,
1143            },
1144        })
1145    }
1146
1147    /// Get search results summary
1148    pub fn get_search_summary(&self) -> SearchSummary {
1149        SearchSummary {
1150            total_architectures_evaluated: self.search_history.len(),
1151            best_architecture: self.best_architectures.first().cloned(),
1152            pareto_front_size: self.pareto_front.len(),
1153            search_generations: self.current_generation,
1154        }
1155    }
1156
1157    /// Get Pareto front
1158    pub fn get_pareto_front(&self) -> &[ArchitectureCandidate] {
1159        &self.pareto_front
1160    }
1161}
1162
1163/// Surrogate model for Bayesian optimization
1164#[derive(Debug, Clone)]
1165pub struct SurrogateModel {
1166    pub mean_prediction: f64,
1167    pub uncertainty: f64,
1168}
1169
1170/// Search results summary
1171#[derive(Debug, Clone)]
1172pub struct SearchSummary {
1173    pub total_architectures_evaluated: usize,
1174    pub best_architecture: Option<ArchitectureCandidate>,
1175    pub pareto_front_size: usize,
1176    pub search_generations: usize,
1177}
1178
1179impl fmt::Display for ArchitectureCandidate {
1180    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1181        write!(
1182            f,
1183            "Architecture {} (layers: {}, qubits: {}, accuracy: {:.3})",
1184            self.id,
1185            self.layers.len(),
1186            self.num_qubits,
1187            self.metrics.accuracy.unwrap_or(0.0)
1188        )
1189    }
1190}
1191
1192/// Helper function to create default search space
1193pub fn create_default_search_space() -> SearchSpace {
1194    SearchSpace {
1195        layer_types: vec![
1196            QNNLayerType::VariationalLayer { num_params: 6 },
1197            QNNLayerType::VariationalLayer { num_params: 9 },
1198            QNNLayerType::VariationalLayer { num_params: 12 },
1199            QNNLayerType::EntanglementLayer {
1200                connectivity: "circular".to_string(),
1201            },
1202            QNNLayerType::EntanglementLayer {
1203                connectivity: "full".to_string(),
1204            },
1205        ],
1206        depth_range: (2, 8),
1207        qubit_constraints: QubitConstraints {
1208            min_qubits: 3,
1209            max_qubits: 8,
1210            topology: Some(QuantumTopology::Complete),
1211        },
1212        param_ranges: vec![
1213            ("variational_params".to_string(), (3, 15)),
1214            ("encoding_features".to_string(), (2, 8)),
1215        ]
1216        .into_iter()
1217        .collect(),
1218        connectivity_patterns: vec![
1219            "linear".to_string(),
1220            "circular".to_string(),
1221            "full".to_string(),
1222        ],
1223        measurement_bases: vec![
1224            "computational".to_string(),
1225            "Pauli-Z".to_string(),
1226            "Pauli-X".to_string(),
1227            "Pauli-Y".to_string(),
1228        ],
1229    }
1230}
1231
1232#[cfg(test)]
1233mod tests {
1234    use super::*;
1235
1236    #[test]
1237    fn test_search_space_creation() {
1238        let search_space = create_default_search_space();
1239        assert!(search_space.layer_types.len() > 0);
1240        assert!(search_space.depth_range.0 < search_space.depth_range.1);
1241        assert!(
1242            search_space.qubit_constraints.min_qubits <= search_space.qubit_constraints.max_qubits
1243        );
1244    }
1245
1246    #[test]
1247    fn test_nas_initialization() {
1248        let search_space = create_default_search_space();
1249        let strategy = SearchStrategy::Random { num_samples: 10 };
1250        let nas = QuantumNAS::new(strategy, search_space);
1251
1252        assert_eq!(nas.current_generation, 0);
1253        assert_eq!(nas.best_architectures.len(), 0);
1254    }
1255
1256    #[test]
1257    fn test_random_architecture_sampling() {
1258        let search_space = create_default_search_space();
1259        let strategy = SearchStrategy::Random { num_samples: 10 };
1260        let nas = QuantumNAS::new(strategy, search_space);
1261
1262        let arch = nas.sample_random_architecture().unwrap();
1263        assert!(arch.layers.len() >= 2); // At least encoding and measurement
1264        assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1265        assert!(arch.num_qubits <= nas.search_space.qubit_constraints.max_qubits);
1266    }
1267
1268    #[test]
1269    fn test_fitness_computation() {
1270        let search_space = create_default_search_space();
1271        let strategy = SearchStrategy::Random { num_samples: 10 };
1272        let nas = QuantumNAS::new(strategy, search_space);
1273
1274        let mut arch = nas.sample_random_architecture().unwrap();
1275        arch.metrics.accuracy = Some(0.8);
1276        arch.metrics.parameter_count = 50;
1277        arch.metrics.circuit_depth = 10;
1278
1279        let fitness = nas.compute_fitness(&arch);
1280        assert!(fitness > 0.0);
1281    }
1282
1283    #[test]
1284    fn test_architecture_mutation() {
1285        let search_space = create_default_search_space();
1286        let strategy = SearchStrategy::Evolutionary {
1287            population_size: 10,
1288            mutation_rate: 0.1,
1289            crossover_rate: 0.7,
1290            elitism_ratio: 0.1,
1291        };
1292        let nas = QuantumNAS::new(strategy, search_space);
1293
1294        let mut arch = nas.sample_random_architecture().unwrap();
1295        let original_layers = arch.layers.len();
1296
1297        nas.mutate(&mut arch).unwrap();
1298
1299        // Architecture should still be valid
1300        assert!(arch.layers.len() >= 2);
1301        assert!(arch.num_qubits >= nas.search_space.qubit_constraints.min_qubits);
1302    }
1303}