quantrs2_ml/
quantum_llm.rs

1//! Quantum Large Language Models (QLLMs)
2//!
3//! This module implements quantum-enhanced large language models that leverage
4//! quantum computing principles for improved language understanding, generation,
5//! and reasoning capabilities. It builds on quantum transformers with advanced
6//! features like quantum memory, quantum reasoning, and quantum-classical hybrid processing.
7
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use crate::quantum_transformer::{
12    create_causal_mask, PositionEncodingType, QuantumAttentionType, QuantumTransformer,
13    QuantumTransformerConfig,
14};
15use ndarray::{s, Array1, Array2, Array3, Array4, Axis};
16use quantrs2_circuit::builder::{Circuit, Simulator};
17use quantrs2_core::gate::{multi::*, single::*, GateOp};
18use quantrs2_sim::statevector::StateVectorSimulator;
19use std::collections::HashMap;
20use std::f64::consts::PI;
21
22/// Quantum Large Language Model configuration
23#[derive(Debug, Clone)]
24pub struct QuantumLLMConfig {
25    /// Base transformer configuration
26    pub transformer_config: QuantumTransformerConfig,
27
28    /// Vocabulary size
29    pub vocab_size: usize,
30
31    /// Maximum context length
32    pub max_context_length: usize,
33
34    /// Number of quantum memory layers
35    pub quantum_memory_layers: usize,
36
37    /// Quantum reasoning module configuration
38    pub reasoning_config: QuantumReasoningConfig,
39
40    /// Quantum memory configuration
41    pub memory_config: QuantumMemoryConfig,
42
43    /// Model scale
44    pub model_scale: ModelScale,
45
46    /// Training configuration
47    pub training_config: QLLMTrainingConfig,
48}
49
50/// Model scale variants
51#[derive(Debug, Clone)]
52pub enum ModelScale {
53    /// Small model (< 1B parameters)
54    Small {
55        layers: usize,
56        model_dim: usize,
57        heads: usize,
58    },
59    /// Medium model (1B - 10B parameters)
60    Medium {
61        layers: usize,
62        model_dim: usize,
63        heads: usize,
64    },
65    /// Large model (10B - 100B parameters)
66    Large {
67        layers: usize,
68        model_dim: usize,
69        heads: usize,
70    },
71    /// XL model (> 100B parameters)
72    ExtraLarge {
73        layers: usize,
74        model_dim: usize,
75        heads: usize,
76    },
77}
78
79/// Quantum reasoning configuration
80#[derive(Debug, Clone)]
81pub struct QuantumReasoningConfig {
82    /// Enable quantum logical reasoning
83    pub logical_reasoning: bool,
84
85    /// Enable quantum causal reasoning
86    pub causal_reasoning: bool,
87
88    /// Enable quantum analogical reasoning
89    pub analogical_reasoning: bool,
90
91    /// Number of reasoning steps
92    pub reasoning_steps: usize,
93
94    /// Reasoning circuit depth
95    pub circuit_depth: usize,
96
97    /// Quantum entanglement strength for reasoning
98    pub entanglement_strength: f64,
99}
100
101/// Quantum memory configuration
102#[derive(Debug, Clone)]
103pub struct QuantumMemoryConfig {
104    /// Memory bank size
105    pub memory_size: usize,
106
107    /// Quantum associative memory
108    pub associative_memory: bool,
109
110    /// Episodic memory with quantum states
111    pub episodic_memory: bool,
112
113    /// Memory retrieval mechanism
114    pub retrieval_mechanism: MemoryRetrievalType,
115
116    /// Memory compression using quantum algorithms
117    pub quantum_compression: bool,
118
119    /// Memory coherence time
120    pub coherence_time: f64,
121}
122
123/// Memory retrieval mechanisms
124#[derive(Debug, Clone)]
125pub enum MemoryRetrievalType {
126    /// Quantum associative retrieval
127    QuantumAssociative,
128
129    /// Content-addressable memory
130    ContentAddressable,
131
132    /// Holographic memory retrieval
133    Holographic,
134
135    /// Quantum Hopfield networks
136    QuantumHopfield,
137
138    /// Hierarchical memory access
139    Hierarchical,
140}
141
142/// Training configuration for QLLMs
143#[derive(Debug, Clone)]
144pub struct QLLMTrainingConfig {
145    /// Quantum-classical hybrid training
146    pub hybrid_training: bool,
147
148    /// Quantum parameter update strategy
149    pub parameter_update: QuantumParameterUpdate,
150
151    /// Gradient accumulation steps
152    pub gradient_accumulation: usize,
153
154    /// Quantum noise injection for regularization
155    pub quantum_noise: bool,
156
157    /// Quantum advantage optimization
158    pub quantum_advantage_opt: bool,
159}
160
161/// Quantum parameter update strategies
162#[derive(Debug, Clone)]
163pub enum QuantumParameterUpdate {
164    /// Classical gradient descent on quantum parameters
165    ClassicalOnQuantum,
166
167    /// Quantum natural gradients
168    QuantumNatural,
169
170    /// Quantum BFGS optimization
171    QuantumBFGS,
172
173    /// Parameter shift rule
174    ParameterShift,
175
176    /// Quantum Adam optimizer
177    QuantumAdam,
178}
179
180/// Main Quantum Large Language Model
181#[derive(Debug, Clone)]
182pub struct QuantumLLM {
183    /// Model configuration
184    config: QuantumLLMConfig,
185
186    /// Token embedding layer
187    token_embedding: QuantumNeuralNetwork,
188
189    /// Core transformer
190    transformer: QuantumTransformer,
191
192    /// Quantum memory system
193    quantum_memory: QuantumMemorySystem,
194
195    /// Quantum reasoning module
196    quantum_reasoning: QuantumReasoningModule,
197
198    /// Language modeling head
199    lm_head: QuantumNeuralNetwork,
200
201    /// Vocabulary mappings
202    vocab: Vocabulary,
203
204    /// Model statistics
205    generation_stats: GenerationStatistics,
206}
207
208/// Quantum memory system
209#[derive(Debug, Clone)]
210pub struct QuantumMemorySystem {
211    /// Memory configuration
212    config: QuantumMemoryConfig,
213
214    /// Associative memory banks
215    associative_banks: Vec<QuantumAssociativeMemory>,
216
217    /// Episodic memory store
218    episodic_memory: Vec<QuantumEpisode>,
219
220    /// Memory retrieval circuit parameters
221    retrieval_circuit_params: Vec<Vec<f64>>,
222
223    /// Memory compression codebooks
224    compression_codebooks: HashMap<String, Array2<f64>>,
225}
226
227/// Quantum associative memory
228#[derive(Debug, Clone)]
229pub struct QuantumAssociativeMemory {
230    /// Memory patterns
231    patterns: Array2<f64>,
232
233    /// Quantum Hopfield weights
234    hopfield_weights: Array2<f64>,
235
236    /// Memory circuit parameters
237    memory_circuit_params: Vec<f64>,
238
239    /// Pattern amplitudes
240    amplitudes: Array1<f64>,
241
242    /// Retrieval threshold
243    threshold: f64,
244}
245
246/// Quantum episodic memory
247#[derive(Debug, Clone)]
248pub struct QuantumEpisode {
249    /// Episode context
250    context: Array1<f64>,
251
252    /// Episode content
253    content: Array2<f64>,
254
255    /// Quantum state representation
256    quantum_state: Array1<f64>,
257
258    /// Episode timestamp
259    timestamp: f64,
260
261    /// Coherence measure
262    coherence: f64,
263
264    /// Episode importance
265    importance: f64,
266}
267
268/// Quantum reasoning module
269#[derive(Debug, Clone)]
270pub struct QuantumReasoningModule {
271    /// Reasoning configuration
272    config: QuantumReasoningConfig,
273
274    /// Logical reasoning circuits
275    logical_circuits: Vec<Circuit<16>>,
276
277    /// Causal reasoning networks
278    causal_networks: Vec<QuantumNeuralNetwork>,
279
280    /// Analogical reasoning system
281    analogical_system: QuantumAnalogyEngine,
282
283    /// Reasoning state memory
284    reasoning_memory: Array2<f64>,
285
286    /// Chain-of-thought quantum states
287    cot_states: Vec<Array1<f64>>,
288}
289
290/// Quantum analogy engine
291#[derive(Debug, Clone)]
292pub struct QuantumAnalogyEngine {
293    /// Analogy mapping circuit parameters
294    mapping_circuit_params: Vec<Vec<f64>>,
295
296    /// Structural similarity measures
297    similarity_measures: Array2<f64>,
298
299    /// Analogy transformation matrices
300    transformations: Vec<Array2<f64>>,
301
302    /// Quantum interference patterns for analogies
303    interference_patterns: Array3<f64>,
304}
305
306/// Vocabulary management
307#[derive(Debug, Clone)]
308pub struct Vocabulary {
309    /// Token to ID mapping
310    token_to_id: HashMap<String, usize>,
311
312    /// ID to token mapping
313    id_to_token: HashMap<usize, String>,
314
315    /// Special tokens
316    special_tokens: HashMap<String, usize>,
317
318    /// Subword tokenizer
319    tokenizer: SubwordTokenizer,
320
321    /// Quantum token embeddings
322    quantum_embeddings: Array2<f64>,
323}
324
325/// Subword tokenizer
326#[derive(Debug, Clone)]
327pub struct SubwordTokenizer {
328    /// BPE merges
329    merges: Vec<(String, String)>,
330
331    /// Token frequencies
332    frequencies: HashMap<String, usize>,
333
334    /// Quantum encoding of subwords
335    quantum_encodings: HashMap<String, Array1<f64>>,
336}
337
338/// Generation statistics
339#[derive(Debug, Clone)]
340pub struct GenerationStatistics {
341    /// Total tokens generated
342    pub total_tokens: usize,
343
344    /// Average generation speed (tokens/sec)
345    pub avg_speed: f64,
346
347    /// Quantum coherence during generation
348    pub quantum_coherence: f64,
349
350    /// Reasoning steps taken
351    pub reasoning_steps: usize,
352
353    /// Memory retrievals
354    pub memory_retrievals: usize,
355
356    /// Generation quality metrics
357    pub quality_metrics: QualityMetrics,
358}
359
360/// Quality metrics for generated text
361#[derive(Debug, Clone)]
362pub struct QualityMetrics {
363    /// Perplexity score
364    pub perplexity: f64,
365
366    /// Coherence score
367    pub coherence: f64,
368
369    /// Factual accuracy
370    pub factual_accuracy: f64,
371
372    /// Logical consistency
373    pub logical_consistency: f64,
374
375    /// Quantum advantage measure
376    pub quantum_advantage: f64,
377}
378
379/// Text generation parameters
380#[derive(Debug, Clone)]
381pub struct GenerationConfig {
382    /// Maximum generation length
383    pub max_length: usize,
384
385    /// Temperature for sampling
386    pub temperature: f64,
387
388    /// Top-k sampling
389    pub top_k: Option<usize>,
390
391    /// Top-p (nucleus) sampling
392    pub top_p: Option<f64>,
393
394    /// Repetition penalty
395    pub repetition_penalty: f64,
396
397    /// Enable quantum reasoning during generation
398    pub use_quantum_reasoning: bool,
399
400    /// Memory-guided generation
401    pub use_memory: bool,
402
403    /// Chain-of-thought generation
404    pub chain_of_thought: bool,
405}
406
407impl QuantumLLMConfig {
408    /// Create small model configuration
409    pub fn small(vocab_size: usize) -> Self {
410        Self {
411            transformer_config: QuantumTransformerConfig {
412                model_dim: 768,
413                num_heads: 12,
414                ff_dim: 3072,
415                num_layers: 12,
416                max_seq_len: 2048,
417                num_qubits: 10,
418                dropout_rate: 0.1,
419                attention_type: QuantumAttentionType::HybridQuantumClassical,
420                position_encoding: PositionEncodingType::Rotary,
421            },
422            vocab_size,
423            max_context_length: 2048,
424            quantum_memory_layers: 4,
425            reasoning_config: QuantumReasoningConfig::default(),
426            memory_config: QuantumMemoryConfig::default(),
427            model_scale: ModelScale::Small {
428                layers: 12,
429                model_dim: 768,
430                heads: 12,
431            },
432            training_config: QLLMTrainingConfig::default(),
433        }
434    }
435
436    /// Create medium model configuration
437    pub fn medium(vocab_size: usize) -> Self {
438        Self {
439            transformer_config: QuantumTransformerConfig {
440                model_dim: 1024,
441                num_heads: 16,
442                ff_dim: 4096,
443                num_layers: 24,
444                max_seq_len: 4096,
445                num_qubits: 16,
446                dropout_rate: 0.1,
447                attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
448                position_encoding: PositionEncodingType::LearnableQuantum,
449            },
450            vocab_size,
451            max_context_length: 4096,
452            quantum_memory_layers: 8,
453            reasoning_config: QuantumReasoningConfig::enhanced(),
454            memory_config: QuantumMemoryConfig::enhanced(),
455            model_scale: ModelScale::Medium {
456                layers: 24,
457                model_dim: 1024,
458                heads: 16,
459            },
460            training_config: QLLMTrainingConfig::default(),
461        }
462    }
463
464    /// Create large model configuration
465    pub fn large(vocab_size: usize) -> Self {
466        Self {
467            transformer_config: QuantumTransformerConfig {
468                model_dim: 1536,
469                num_heads: 24,
470                ff_dim: 6144,
471                num_layers: 48,
472                max_seq_len: 8192,
473                num_qubits: 12,
474                dropout_rate: 0.1,
475                attention_type: QuantumAttentionType::FullQuantum,
476                position_encoding: PositionEncodingType::QuantumPhase,
477            },
478            vocab_size,
479            max_context_length: 8192,
480            quantum_memory_layers: 16,
481            reasoning_config: QuantumReasoningConfig::advanced(),
482            memory_config: QuantumMemoryConfig::advanced(),
483            model_scale: ModelScale::Large {
484                layers: 48,
485                model_dim: 1536,
486                heads: 24,
487            },
488            training_config: QLLMTrainingConfig::advanced(),
489        }
490    }
491}
492
493impl QuantumReasoningConfig {
494    /// Default reasoning configuration
495    pub fn default() -> Self {
496        Self {
497            logical_reasoning: true,
498            causal_reasoning: false,
499            analogical_reasoning: false,
500            reasoning_steps: 3,
501            circuit_depth: 5,
502            entanglement_strength: 0.5,
503        }
504    }
505
506    /// Enhanced reasoning configuration
507    pub fn enhanced() -> Self {
508        Self {
509            logical_reasoning: true,
510            causal_reasoning: true,
511            analogical_reasoning: false,
512            reasoning_steps: 5,
513            circuit_depth: 8,
514            entanglement_strength: 0.7,
515        }
516    }
517
518    /// Advanced reasoning configuration
519    pub fn advanced() -> Self {
520        Self {
521            logical_reasoning: true,
522            causal_reasoning: true,
523            analogical_reasoning: true,
524            reasoning_steps: 8,
525            circuit_depth: 12,
526            entanglement_strength: 0.9,
527        }
528    }
529}
530
531impl QuantumMemoryConfig {
532    /// Default memory configuration
533    pub fn default() -> Self {
534        Self {
535            memory_size: 1000,
536            associative_memory: true,
537            episodic_memory: false,
538            retrieval_mechanism: MemoryRetrievalType::QuantumAssociative,
539            quantum_compression: false,
540            coherence_time: 100.0,
541        }
542    }
543
544    /// Enhanced memory configuration
545    pub fn enhanced() -> Self {
546        Self {
547            memory_size: 5000,
548            associative_memory: true,
549            episodic_memory: true,
550            retrieval_mechanism: MemoryRetrievalType::ContentAddressable,
551            quantum_compression: true,
552            coherence_time: 200.0,
553        }
554    }
555
556    /// Advanced memory configuration
557    pub fn advanced() -> Self {
558        Self {
559            memory_size: 20000,
560            associative_memory: true,
561            episodic_memory: true,
562            retrieval_mechanism: MemoryRetrievalType::Holographic,
563            quantum_compression: true,
564            coherence_time: 500.0,
565        }
566    }
567}
568
569impl QLLMTrainingConfig {
570    /// Default training configuration
571    pub fn default() -> Self {
572        Self {
573            hybrid_training: true,
574            parameter_update: QuantumParameterUpdate::ClassicalOnQuantum,
575            gradient_accumulation: 1,
576            quantum_noise: false,
577            quantum_advantage_opt: false,
578        }
579    }
580
581    /// Advanced training configuration
582    pub fn advanced() -> Self {
583        Self {
584            hybrid_training: true,
585            parameter_update: QuantumParameterUpdate::QuantumAdam,
586            gradient_accumulation: 8,
587            quantum_noise: true,
588            quantum_advantage_opt: true,
589        }
590    }
591}
592
593impl QuantumLLM {
594    /// Create new quantum large language model
595    pub fn new(config: QuantumLLMConfig) -> Result<Self> {
596        // Create token embedding layer
597        let embed_layers = vec![
598            QNNLayerType::EncodingLayer {
599                num_features: config.vocab_size,
600            },
601            QNNLayerType::VariationalLayer {
602                num_params: config.transformer_config.model_dim,
603            },
604            QNNLayerType::MeasurementLayer {
605                measurement_basis: "computational".to_string(),
606            },
607        ];
608        let token_embedding = QuantumNeuralNetwork::new(
609            embed_layers,
610            config.transformer_config.num_qubits,
611            config.vocab_size,
612            config.transformer_config.model_dim,
613        )?;
614
615        // Create core transformer
616        let transformer = QuantumTransformer::new(config.transformer_config.clone())?;
617
618        // Create quantum memory system
619        let quantum_memory = QuantumMemorySystem::new(config.memory_config.clone())?;
620
621        // Create quantum reasoning module
622        let quantum_reasoning = QuantumReasoningModule::new(config.reasoning_config.clone())?;
623
624        // Create language modeling head
625        let lm_layers = vec![
626            QNNLayerType::EncodingLayer {
627                num_features: config.transformer_config.model_dim,
628            },
629            QNNLayerType::VariationalLayer {
630                num_params: config.vocab_size,
631            },
632            QNNLayerType::MeasurementLayer {
633                measurement_basis: "computational".to_string(),
634            },
635        ];
636        let lm_head = QuantumNeuralNetwork::new(
637            lm_layers,
638            config.transformer_config.num_qubits,
639            config.transformer_config.model_dim,
640            config.vocab_size,
641        )?;
642
643        // Create vocabulary
644        let vocab = Vocabulary::new(config.vocab_size)?;
645
646        // Initialize generation statistics
647        let generation_stats = GenerationStatistics::new();
648
649        Ok(Self {
650            config,
651            token_embedding,
652            transformer,
653            quantum_memory,
654            quantum_reasoning,
655            lm_head,
656            vocab,
657            generation_stats,
658        })
659    }
660
661    /// Forward pass through the model
662    pub fn forward(
663        &mut self,
664        input_ids: &Array2<usize>, // [batch_size, seq_len]
665        attention_mask: Option<&Array3<bool>>,
666        use_memory: bool,
667        use_reasoning: bool,
668    ) -> Result<Array3<f64>> {
669        // [batch_size, seq_len, vocab_size]
670        let (batch_size, seq_len) = input_ids.dim();
671
672        if seq_len > self.config.max_context_length {
673            return Err(MLError::ConfigurationError(format!(
674                "Sequence length {} exceeds maximum context length {}",
675                seq_len, self.config.max_context_length
676            )));
677        }
678
679        // Token embedding
680        let mut embeddings = Array3::zeros((
681            batch_size,
682            seq_len,
683            self.config.transformer_config.model_dim,
684        ));
685        for batch_idx in 0..batch_size {
686            for seq_idx in 0..seq_len {
687                let token_id = input_ids[[batch_idx, seq_idx]];
688                let token_embedding = self.vocab.get_embedding(token_id)?;
689                let embedded = self.token_embedding.forward(&token_embedding)?;
690                embeddings
691                    .slice_mut(s![batch_idx, seq_idx, ..])
692                    .assign(&embedded);
693            }
694        }
695
696        // Apply quantum memory retrieval if enabled
697        if use_memory {
698            embeddings = self.quantum_memory.enhance_embeddings(&embeddings)?;
699        }
700
701        // Core transformer processing
702        let transformer_output = self.transformer.forward(&embeddings, attention_mask)?;
703
704        // Apply quantum reasoning if enabled
705        let reasoned_output = if use_reasoning {
706            self.quantum_reasoning
707                .apply_reasoning(&transformer_output)?
708        } else {
709            transformer_output
710        };
711
712        // Language modeling head
713        let mut logits = Array3::zeros((batch_size, seq_len, self.config.vocab_size));
714        for batch_idx in 0..batch_size {
715            for seq_idx in 0..seq_len {
716                let hidden_state = reasoned_output.slice(s![batch_idx, seq_idx, ..]).to_owned();
717                let token_logits = self.lm_head.forward(&hidden_state)?;
718                logits
719                    .slice_mut(s![batch_idx, seq_idx, ..])
720                    .assign(&token_logits);
721            }
722        }
723
724        // Update memory if enabled
725        if use_memory {
726            self.quantum_memory
727                .update_memory(&reasoned_output, input_ids)?;
728        }
729
730        Ok(logits)
731    }
732
733    /// Generate text with quantum enhancement
734    pub fn generate(&mut self, prompt: &str, config: GenerationConfig) -> Result<String> {
735        // Tokenize prompt
736        let input_ids = self.vocab.tokenize(prompt)?;
737        let mut current_ids = Array1::from_vec(input_ids);
738        let mut generated_text = prompt.to_string();
739
740        // Generation loop
741        for step in 0..config.max_length {
742            // Prepare input for forward pass
743            let batch_input = current_ids.clone().insert_axis(Axis(0)); // Add batch dimension
744            let input_2d =
745                Array2::from_shape_vec((1, current_ids.len()), current_ids.to_vec()).unwrap();
746
747            // Create causal mask
748            let seq_len = current_ids.len();
749            let causal_mask = create_causal_mask(1, seq_len);
750
751            // Forward pass
752            let logits = self.forward(
753                &input_2d,
754                Some(&causal_mask),
755                config.use_memory,
756                config.use_quantum_reasoning,
757            )?;
758
759            // Get next token logits
760            let next_token_logits = logits.slice(s![0, seq_len - 1, ..]).to_owned();
761
762            // Apply quantum reasoning for token selection if enabled
763            let final_logits = if config.use_quantum_reasoning && config.chain_of_thought {
764                self.quantum_reasoning
765                    .enhance_token_selection(&next_token_logits)?
766            } else {
767                next_token_logits
768            };
769
770            // Sample next token
771            let next_token = self.sample_token(&final_logits, &config)?;
772
773            // Check for end of sequence
774            if self.vocab.is_eos_token(next_token) {
775                break;
776            }
777
778            // Add to sequence
779            let new_current = Array1::from_iter(
780                current_ids
781                    .iter()
782                    .cloned()
783                    .chain(std::iter::once(next_token)),
784            );
785            current_ids = new_current;
786
787            // Decode and add to generated text
788            let token_text = self.vocab.decode_token(next_token)?;
789            generated_text.push_str(&token_text);
790
791            // Update generation statistics
792            self.generation_stats.total_tokens += 1;
793
794            // Quantum coherence monitoring
795            if step % 10 == 0 {
796                let coherence = self.quantum_reasoning.measure_coherence()?;
797                self.generation_stats.quantum_coherence = coherence;
798            }
799        }
800
801        Ok(generated_text)
802    }
803
804    /// Sample next token from logits
805    fn sample_token(&self, logits: &Array1<f64>, config: &GenerationConfig) -> Result<usize> {
806        let mut scores = logits.clone();
807
808        // Apply temperature
809        if config.temperature != 1.0 {
810            scores = scores / config.temperature;
811        }
812
813        // Apply repetition penalty (simplified)
814        if config.repetition_penalty != 1.0 {
815            scores = scores * config.repetition_penalty;
816        }
817
818        // Convert to probabilities
819        let max_score = scores.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
820        let exp_scores = scores.mapv(|x| (x - max_score).exp());
821        let sum_exp = exp_scores.sum();
822        let mut probs = exp_scores / sum_exp;
823
824        // Apply top-k filtering
825        if let Some(k) = config.top_k {
826            let mut indexed_probs: Vec<(usize, f64)> =
827                probs.iter().enumerate().map(|(i, &p)| (i, p)).collect();
828            indexed_probs.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
829
830            for (i, &(idx, _)) in indexed_probs.iter().enumerate() {
831                if i >= k {
832                    probs[idx] = 0.0;
833                }
834            }
835
836            // Renormalize
837            let sum_probs = probs.sum();
838            if sum_probs > 0.0 {
839                probs = probs / sum_probs;
840            }
841        }
842
843        // Apply top-p (nucleus) sampling
844        if let Some(p) = config.top_p {
845            let mut indexed_probs: Vec<(usize, f64)> = probs
846                .iter()
847                .enumerate()
848                .map(|(i, &prob)| (i, prob))
849                .collect();
850            indexed_probs.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
851
852            let mut cumulative = 0.0;
853            for (idx, prob) in &indexed_probs {
854                cumulative += prob;
855                if cumulative > p {
856                    // Zero out remaining probabilities
857                    for (i, &(remaining_idx, _)) in indexed_probs.iter().enumerate() {
858                        if cumulative - prob > p {
859                            probs[remaining_idx] = 0.0;
860                        }
861                    }
862                    break;
863                }
864            }
865
866            // Renormalize
867            let sum_probs = probs.sum();
868            if sum_probs > 0.0 {
869                probs = probs / sum_probs;
870            }
871        }
872
873        // Sample from probability distribution
874        let mut cumulative = 0.0;
875        let random_val = fastrand::f64();
876
877        for (i, &prob) in probs.iter().enumerate() {
878            cumulative += prob;
879            if random_val <= cumulative {
880                return Ok(i);
881            }
882        }
883
884        // Fallback: return most likely token
885        Ok(probs
886            .iter()
887            .enumerate()
888            .max_by(|a, b| a.1.partial_cmp(b.1).unwrap())
889            .map(|(i, _)| i)
890            .unwrap_or(0))
891    }
892
893    /// Get model configuration
894    pub fn config(&self) -> &QuantumLLMConfig {
895        &self.config
896    }
897
898    /// Get generation statistics
899    pub fn generation_stats(&self) -> &GenerationStatistics {
900        &self.generation_stats
901    }
902
903    /// Calculate total model parameters
904    pub fn num_parameters(&self) -> usize {
905        let mut total = 0;
906
907        total += self.token_embedding.parameters.len();
908        total += self.transformer.num_parameters();
909        total += self.lm_head.parameters.len();
910        total += self.quantum_memory.num_parameters();
911        total += self.quantum_reasoning.num_parameters();
912        total += self.vocab.quantum_embeddings.len();
913
914        total
915    }
916
917    /// Evaluate model perplexity on a dataset
918    pub fn evaluate_perplexity(&mut self, texts: &[String]) -> Result<f64> {
919        let mut total_log_likelihood = 0.0;
920        let mut total_tokens = 0;
921
922        for text in texts {
923            let tokens = self.vocab.tokenize(text)?;
924            if tokens.len() < 2 {
925                continue;
926            }
927
928            let tokens_len = tokens.len();
929            let input_ids = Array2::from_shape_vec((1, tokens_len), tokens.clone())?;
930            let logits = self.forward(&input_ids, None, false, false)?;
931
932            // Calculate log likelihood
933            for i in 0..tokens_len - 1 {
934                let target_token = tokens[i + 1];
935                let token_logits = logits.slice(s![0, i, ..]);
936
937                // Convert to probabilities
938                let max_logit = token_logits
939                    .iter()
940                    .cloned()
941                    .fold(f64::NEG_INFINITY, f64::max);
942                let exp_logits = token_logits.mapv(|x| (x - max_logit).exp());
943                let sum_exp = exp_logits.sum();
944                let prob = exp_logits[target_token] / sum_exp;
945
946                if prob > 1e-10 {
947                    total_log_likelihood += prob.ln();
948                    total_tokens += 1;
949                }
950            }
951        }
952
953        if total_tokens == 0 {
954            return Ok(f64::INFINITY);
955        }
956
957        let avg_log_likelihood = total_log_likelihood / total_tokens as f64;
958        let perplexity = (-avg_log_likelihood).exp();
959
960        Ok(perplexity)
961    }
962}
963
964impl QuantumMemorySystem {
965    /// Create new quantum memory system
966    pub fn new(config: QuantumMemoryConfig) -> Result<Self> {
967        let mut associative_banks = Vec::new();
968        let mut retrieval_circuit_params = Vec::new();
969
970        // Create associative memory banks
971        if config.associative_memory {
972            for _ in 0..5 {
973                // Create multiple memory banks
974                let memory_bank = QuantumAssociativeMemory::new(100, 128)?;
975                associative_banks.push(memory_bank);
976            }
977        }
978
979        // Create retrieval circuit parameters
980        for _ in 0..config.memory_size / 100 {
981            let mut params = Vec::new();
982            for _ in 0..8 {
983                params.push(1.0); // H gate marker
984                params.push(0.0); // RY angle
985            }
986            for _ in 0..7 {
987                params.push(2.0); // CNOT marker
988            }
989            retrieval_circuit_params.push(params);
990        }
991
992        Ok(Self {
993            config,
994            associative_banks,
995            episodic_memory: Vec::new(),
996            retrieval_circuit_params,
997            compression_codebooks: HashMap::new(),
998        })
999    }
1000
1001    /// Enhance embeddings with memory retrieval
1002    pub fn enhance_embeddings(&self, embeddings: &Array3<f64>) -> Result<Array3<f64>> {
1003        let mut enhanced = embeddings.clone();
1004
1005        if self.config.associative_memory && !self.associative_banks.is_empty() {
1006            // Retrieve relevant memories
1007            for batch_idx in 0..embeddings.dim().0 {
1008                for seq_idx in 0..embeddings.dim().1 {
1009                    let query = embeddings.slice(s![batch_idx, seq_idx, ..]).to_owned();
1010                    let retrieved_memory = self.retrieve_associative_memory(&query)?;
1011
1012                    // Combine with original embedding
1013                    let combination_weight = 0.1;
1014                    enhanced.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1015                        &retrieved_memory,
1016                        |orig, mem| {
1017                            *orig = *orig * (1.0 - combination_weight) + mem * combination_weight;
1018                        },
1019                    );
1020                }
1021            }
1022        }
1023
1024        Ok(enhanced)
1025    }
1026
1027    /// Retrieve from associative memory
1028    fn retrieve_associative_memory(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1029        if self.associative_banks.is_empty() {
1030            return Ok(query.clone());
1031        }
1032
1033        // Use first memory bank for simplicity
1034        self.associative_banks[0].retrieve(query)
1035    }
1036
1037    /// Update memory with new information
1038    pub fn update_memory(
1039        &mut self,
1040        hidden_states: &Array3<f64>,
1041        input_ids: &Array2<usize>,
1042    ) -> Result<()> {
1043        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1044
1045        // Store episodic memories
1046        if self.config.episodic_memory {
1047            for batch_idx in 0..batch_size {
1048                let context = hidden_states.slice(s![batch_idx, 0, ..]).to_owned();
1049                let content = hidden_states.slice(s![batch_idx, .., ..]).to_owned();
1050
1051                let episode = QuantumEpisode {
1052                    context,
1053                    content,
1054                    quantum_state: Array1::zeros(hidden_dim), // Placeholder
1055                    timestamp: self.episodic_memory.len() as f64,
1056                    coherence: 0.8,
1057                    importance: 1.0,
1058                };
1059
1060                self.episodic_memory.push(episode);
1061
1062                // Limit memory size
1063                if self.episodic_memory.len() > self.config.memory_size {
1064                    self.episodic_memory.remove(0);
1065                }
1066            }
1067        }
1068
1069        // Update associative memory banks
1070        for bank in &mut self.associative_banks {
1071            let sample_hidden = hidden_states.slice(s![0, 0, ..]).to_owned();
1072            bank.store_pattern(&sample_hidden)?;
1073        }
1074
1075        Ok(())
1076    }
1077
1078    /// Get number of parameters
1079    pub fn num_parameters(&self) -> usize {
1080        let mut total = 0;
1081
1082        for bank in &self.associative_banks {
1083            total += bank.hopfield_weights.len();
1084            total += bank.patterns.len();
1085        }
1086
1087        for codebook in self.compression_codebooks.values() {
1088            total += codebook.len();
1089        }
1090
1091        total
1092    }
1093}
1094
1095impl QuantumAssociativeMemory {
1096    /// Create new quantum associative memory
1097    pub fn new(capacity: usize, pattern_size: usize) -> Result<Self> {
1098        let patterns = Array2::zeros((capacity, pattern_size));
1099        let hopfield_weights = Array2::zeros((pattern_size, pattern_size));
1100
1101        let num_qubits = 8;
1102        let mut memory_circuit_params = Vec::new();
1103
1104        // Create Hopfield-inspired quantum circuit parameters
1105        for _ in 0..num_qubits {
1106            memory_circuit_params.push(1.0); // H gate marker
1107        }
1108
1109        for i in 0..num_qubits {
1110            for j in i + 1..num_qubits {
1111                memory_circuit_params.push(2.0); // CNOT marker
1112            }
1113        }
1114
1115        Ok(Self {
1116            patterns,
1117            hopfield_weights,
1118            memory_circuit_params,
1119            amplitudes: Array1::zeros(capacity),
1120            threshold: 0.5,
1121        })
1122    }
1123
1124    /// Store pattern in memory
1125    pub fn store_pattern(&mut self, pattern: &Array1<f64>) -> Result<()> {
1126        // Find empty slot or replace oldest
1127        let store_idx = self
1128            .amplitudes
1129            .iter()
1130            .enumerate()
1131            .min_by(|a, b| a.1.partial_cmp(b.1).unwrap())
1132            .map(|(i, _)| i)
1133            .unwrap_or(0);
1134
1135        // Store pattern
1136        self.patterns
1137            .slice_mut(s![store_idx, ..pattern.len()])
1138            .assign(pattern);
1139
1140        // Update Hopfield weights (simplified Hebbian learning)
1141        for i in 0..pattern.len() {
1142            for j in 0..pattern.len() {
1143                if i != j {
1144                    self.hopfield_weights[[i, j]] += pattern[i] * pattern[j] * 0.1;
1145                }
1146            }
1147        }
1148
1149        self.amplitudes[store_idx] = 1.0;
1150
1151        Ok(())
1152    }
1153
1154    /// Retrieve pattern from memory
1155    pub fn retrieve(&self, query: &Array1<f64>) -> Result<Array1<f64>> {
1156        let mut best_match = query.clone();
1157        let mut best_similarity = 0.0;
1158
1159        // Find best matching pattern
1160        for i in 0..self.patterns.nrows() {
1161            if self.amplitudes[i] > 0.1 {
1162                let pattern = self.patterns.row(i).to_owned();
1163                let similarity = self.compute_similarity(query, &pattern)?;
1164
1165                if similarity > best_similarity {
1166                    best_similarity = similarity;
1167                    best_match = pattern;
1168                }
1169            }
1170        }
1171
1172        // Apply Hopfield dynamics for retrieval
1173        if best_similarity > self.threshold {
1174            let retrieved = self.apply_hopfield_dynamics(&best_match)?;
1175            Ok(retrieved)
1176        } else {
1177            Ok(query.clone())
1178        }
1179    }
1180
1181    /// Compute similarity between patterns
1182    fn compute_similarity(&self, pattern1: &Array1<f64>, pattern2: &Array1<f64>) -> Result<f64> {
1183        let norm1 = pattern1.mapv(|x| x * x).sum().sqrt();
1184        let norm2 = pattern2.mapv(|x| x * x).sum().sqrt();
1185
1186        if norm1 < 1e-10 || norm2 < 1e-10 {
1187            return Ok(0.0);
1188        }
1189
1190        let dot_product = pattern1.dot(pattern2);
1191        Ok(dot_product / (norm1 * norm2))
1192    }
1193
1194    /// Apply Hopfield dynamics for pattern completion
1195    fn apply_hopfield_dynamics(&self, initial: &Array1<f64>) -> Result<Array1<f64>> {
1196        let mut state = initial.clone();
1197
1198        // Simplified Hopfield update
1199        for _ in 0..5 {
1200            let new_state = self.hopfield_weights.dot(&state);
1201            state = new_state.mapv(|x| x.tanh()); // Apply activation
1202        }
1203
1204        Ok(state)
1205    }
1206}
1207
1208impl QuantumReasoningModule {
1209    /// Create new quantum reasoning module
1210    pub fn new(config: QuantumReasoningConfig) -> Result<Self> {
1211        let mut logical_circuits = Vec::new();
1212        let mut causal_networks = Vec::new();
1213
1214        // Create logical reasoning circuits
1215        if config.logical_reasoning {
1216            for _ in 0..config.reasoning_steps {
1217                let mut circuit = Circuit::<16>::new();
1218
1219                // Create quantum logic gates for reasoning
1220                for i in 0..8 {
1221                    circuit.h(i);
1222                    circuit.ry(i, 0.0); // Will be parameterized
1223                }
1224
1225                // Entanglement for logical connections
1226                for i in 0..7 {
1227                    circuit.cnot(i, i + 1);
1228                }
1229
1230                logical_circuits.push(circuit);
1231            }
1232        }
1233
1234        // Create causal reasoning networks
1235        if config.causal_reasoning {
1236            for _ in 0..config.reasoning_steps {
1237                let layers = vec![
1238                    QNNLayerType::EncodingLayer { num_features: 256 },
1239                    QNNLayerType::VariationalLayer { num_params: 128 },
1240                    QNNLayerType::EntanglementLayer {
1241                        connectivity: "circular".to_string(),
1242                    },
1243                    QNNLayerType::VariationalLayer { num_params: 256 },
1244                    QNNLayerType::MeasurementLayer {
1245                        measurement_basis: "computational".to_string(),
1246                    },
1247                ];
1248
1249                let network = QuantumNeuralNetwork::new(layers, 12, 256, 256)?;
1250                causal_networks.push(network);
1251            }
1252        }
1253
1254        // Create analogical reasoning system
1255        let analogical_system = QuantumAnalogyEngine::new()?;
1256
1257        Ok(Self {
1258            config,
1259            logical_circuits,
1260            causal_networks,
1261            analogical_system,
1262            reasoning_memory: Array2::zeros((100, 256)),
1263            cot_states: Vec::new(),
1264        })
1265    }
1266
1267    /// Apply quantum reasoning to transformer output
1268    pub fn apply_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1269        let mut reasoned_output = hidden_states.clone();
1270
1271        // Apply logical reasoning
1272        if self.config.logical_reasoning {
1273            reasoned_output = self.apply_logical_reasoning(&reasoned_output)?;
1274        }
1275
1276        // Apply causal reasoning
1277        if self.config.causal_reasoning {
1278            reasoned_output = self.apply_causal_reasoning(&reasoned_output)?;
1279        }
1280
1281        // Apply analogical reasoning
1282        if self.config.analogical_reasoning {
1283            reasoned_output = self.apply_analogical_reasoning(&reasoned_output)?;
1284        }
1285
1286        Ok(reasoned_output)
1287    }
1288
1289    /// Apply logical reasoning using quantum circuits
1290    fn apply_logical_reasoning(&mut self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1291        let mut output = hidden_states.clone();
1292        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1293
1294        for step in 0..self.config.reasoning_steps.min(self.logical_circuits.len()) {
1295            // Apply quantum logical reasoning circuit
1296            let simulator = StateVectorSimulator::new();
1297            let register = simulator.run(&self.logical_circuits[step])?;
1298            let quantum_state = register.probabilities();
1299
1300            // Extract reasoning features from quantum state
1301            let reasoning_features = self.extract_logical_features(&quantum_state)?;
1302
1303            // Apply reasoning to hidden states
1304            for batch_idx in 0..batch_size {
1305                for seq_idx in 0..seq_len {
1306                    let mut hidden = output.slice_mut(s![batch_idx, seq_idx, ..]);
1307
1308                    // Combine with reasoning features
1309                    let reasoning_weight = 0.1;
1310                    for (i, &feature) in reasoning_features.iter().enumerate() {
1311                        if i < hidden.len() {
1312                            hidden[i] =
1313                                hidden[i] * (1.0 - reasoning_weight) + feature * reasoning_weight;
1314                        }
1315                    }
1316                }
1317            }
1318
1319            // Store reasoning state for chain-of-thought
1320            let reasoning_state = Array1::from_vec(reasoning_features);
1321            self.cot_states.push(reasoning_state);
1322        }
1323
1324        Ok(output)
1325    }
1326
1327    /// Apply causal reasoning using quantum networks
1328    fn apply_causal_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1329        if self.causal_networks.is_empty() {
1330            return Ok(hidden_states.clone());
1331        }
1332
1333        let mut output = hidden_states.clone();
1334        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1335
1336        // Apply causal reasoning network
1337        for batch_idx in 0..batch_size {
1338            for seq_idx in 1..seq_len {
1339                // Start from 1 for causal dependency
1340                let current_hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]).to_owned();
1341                let prev_hidden = hidden_states
1342                    .slice(s![batch_idx, seq_idx - 1, ..])
1343                    .to_owned();
1344
1345                // Combine current and previous for causal reasoning
1346                let causal_input = Array1::from_iter(
1347                    current_hidden
1348                        .iter()
1349                        .chain(prev_hidden.iter())
1350                        .take(256)
1351                        .cloned(),
1352                );
1353
1354                // Apply causal reasoning network
1355                let causal_output = self.causal_networks[0].forward(&causal_input)?;
1356
1357                // Update hidden state with causal reasoning
1358                let causal_weight = 0.2;
1359                output.slice_mut(s![batch_idx, seq_idx, ..]).zip_mut_with(
1360                    &causal_output,
1361                    |orig, causal| {
1362                        *orig = *orig * (1.0 - causal_weight) + causal * causal_weight;
1363                    },
1364                );
1365            }
1366        }
1367
1368        Ok(output)
1369    }
1370
1371    /// Apply analogical reasoning
1372    fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1373        // Use analogical reasoning engine
1374        self.analogical_system
1375            .apply_analogical_reasoning(hidden_states)
1376    }
1377
1378    /// Enhance token selection with quantum reasoning
1379    pub fn enhance_token_selection(&self, logits: &Array1<f64>) -> Result<Array1<f64>> {
1380        let mut enhanced_logits = logits.clone();
1381
1382        // Apply reasoning-based enhancement
1383        if !self.cot_states.is_empty() {
1384            let latest_reasoning = &self.cot_states[self.cot_states.len() - 1];
1385
1386            // Combine logits with reasoning state
1387            let reasoning_weight = 0.1;
1388            for (i, &reasoning_val) in latest_reasoning.iter().enumerate() {
1389                if i < enhanced_logits.len() {
1390                    enhanced_logits[i] += reasoning_val * reasoning_weight;
1391                }
1392            }
1393        }
1394
1395        Ok(enhanced_logits)
1396    }
1397
1398    /// Measure quantum coherence in reasoning
1399    pub fn measure_coherence(&self) -> Result<f64> {
1400        if self.cot_states.is_empty() {
1401            return Ok(0.0);
1402        }
1403
1404        // Compute coherence across reasoning states
1405        let latest_state = &self.cot_states[self.cot_states.len() - 1];
1406        let coherence = 1.0
1407            - latest_state
1408                .mapv(|x| (x * PI).sin().abs())
1409                .mean()
1410                .unwrap_or(0.0);
1411
1412        Ok(coherence)
1413    }
1414
1415    /// Extract logical features from quantum state
1416    fn extract_logical_features(&self, quantum_state: &[f64]) -> Result<Vec<f64>> {
1417        // Extract features representing logical operations
1418        let mut features = Vec::new();
1419
1420        // Amplitude-based features
1421        for (i, &amplitude) in quantum_state.iter().enumerate() {
1422            let logical_feature = amplitude * amplitude; // Probability
1423            features.push(logical_feature);
1424
1425            if features.len() >= 256 {
1426                // Limit feature count
1427                break;
1428            }
1429        }
1430
1431        // Pad with zeros if needed
1432        while features.len() < 256 {
1433            features.push(0.0);
1434        }
1435
1436        Ok(features)
1437    }
1438
1439    /// Get number of parameters
1440    pub fn num_parameters(&self) -> usize {
1441        let mut total = 0;
1442
1443        for network in &self.causal_networks {
1444            total += network.parameters.len();
1445        }
1446
1447        total += self.analogical_system.num_parameters();
1448        total += self.reasoning_memory.len();
1449
1450        total
1451    }
1452}
1453
1454impl QuantumAnalogyEngine {
1455    /// Create new quantum analogy engine
1456    pub fn new() -> Result<Self> {
1457        let mut mapping_circuit_params = Vec::new();
1458
1459        // Create analogy mapping circuit parameters
1460        for _ in 0..5 {
1461            let mut params = Vec::new();
1462
1463            for _ in 0..10 {
1464                params.push(1.0); // H gate marker
1465                params.push(0.0); // RY angle
1466            }
1467
1468            // Create analogical connections
1469            for _ in 0..5 {
1470                params.push(2.0); // CNOT marker
1471            }
1472
1473            mapping_circuit_params.push(params);
1474        }
1475
1476        Ok(Self {
1477            mapping_circuit_params,
1478            similarity_measures: Array2::zeros((100, 100)),
1479            transformations: Vec::new(),
1480            interference_patterns: Array3::zeros((10, 10, 10)),
1481        })
1482    }
1483
1484    /// Apply analogical reasoning
1485    pub fn apply_analogical_reasoning(&self, hidden_states: &Array3<f64>) -> Result<Array3<f64>> {
1486        // Simplified analogical reasoning
1487        let mut output = hidden_states.clone();
1488
1489        // Apply quantum interference patterns for analogical mapping
1490        let (batch_size, seq_len, hidden_dim) = hidden_states.dim();
1491
1492        for batch_idx in 0..batch_size {
1493            for seq_idx in 0..seq_len {
1494                let hidden = hidden_states.slice(s![batch_idx, seq_idx, ..]);
1495
1496                // Find analogical mappings (simplified)
1497                let analogy_weight = 0.05;
1498                let analogy_factor = (seq_idx as f64 * 0.1).sin() * analogy_weight;
1499
1500                output
1501                    .slice_mut(s![batch_idx, seq_idx, ..])
1502                    .zip_mut_with(&hidden, |orig, h| {
1503                        *orig = *orig + h * analogy_factor;
1504                    });
1505            }
1506        }
1507
1508        Ok(output)
1509    }
1510
1511    /// Get number of parameters
1512    pub fn num_parameters(&self) -> usize {
1513        self.similarity_measures.len()
1514            + self.transformations.iter().map(|t| t.len()).sum::<usize>()
1515            + self.interference_patterns.len()
1516    }
1517}
1518
1519impl Vocabulary {
1520    /// Create new vocabulary
1521    pub fn new(vocab_size: usize) -> Result<Self> {
1522        let mut token_to_id = HashMap::new();
1523        let mut id_to_token = HashMap::new();
1524        let mut special_tokens = HashMap::new();
1525
1526        // Add special tokens
1527        special_tokens.insert("<pad>".to_string(), 0);
1528        special_tokens.insert("<unk>".to_string(), 1);
1529        special_tokens.insert("<sos>".to_string(), 2);
1530        special_tokens.insert("<eos>".to_string(), 3);
1531
1532        token_to_id.insert("<pad>".to_string(), 0);
1533        token_to_id.insert("<unk>".to_string(), 1);
1534        token_to_id.insert("<sos>".to_string(), 2);
1535        token_to_id.insert("<eos>".to_string(), 3);
1536
1537        id_to_token.insert(0, "<pad>".to_string());
1538        id_to_token.insert(1, "<unk>".to_string());
1539        id_to_token.insert(2, "<sos>".to_string());
1540        id_to_token.insert(3, "<eos>".to_string());
1541
1542        // Create quantum embeddings
1543        let quantum_embeddings = Array2::from_shape_fn((vocab_size, 768), |(i, j)| {
1544            0.02 * (i as f64 * 0.1 + j as f64 * 0.01).sin()
1545        });
1546
1547        let tokenizer = SubwordTokenizer::new();
1548
1549        Ok(Self {
1550            token_to_id,
1551            id_to_token,
1552            special_tokens,
1553            tokenizer,
1554            quantum_embeddings,
1555        })
1556    }
1557
1558    /// Tokenize text
1559    pub fn tokenize(&self, text: &str) -> Result<Vec<usize>> {
1560        // Simplified tokenization
1561        let tokens: Vec<usize> = text
1562            .split_whitespace()
1563            .map(|word| {
1564                self.token_to_id.get(word).copied().unwrap_or(1) // UNK token
1565            })
1566            .collect();
1567
1568        Ok(tokens)
1569    }
1570
1571    /// Get token embedding
1572    pub fn get_embedding(&self, token_id: usize) -> Result<Array1<f64>> {
1573        if token_id < self.quantum_embeddings.nrows() {
1574            Ok(self.quantum_embeddings.row(token_id).to_owned())
1575        } else {
1576            Ok(self.quantum_embeddings.row(1).to_owned()) // UNK embedding
1577        }
1578    }
1579
1580    /// Decode token
1581    pub fn decode_token(&self, token_id: usize) -> Result<String> {
1582        Ok(self
1583            .id_to_token
1584            .get(&token_id)
1585            .cloned()
1586            .unwrap_or_else(|| "<unk>".to_string()))
1587    }
1588
1589    /// Check if token is end-of-sequence
1590    pub fn is_eos_token(&self, token_id: usize) -> bool {
1591        token_id == 3 // EOS token ID
1592    }
1593}
1594
1595impl SubwordTokenizer {
1596    /// Create new subword tokenizer
1597    pub fn new() -> Self {
1598        Self {
1599            merges: Vec::new(),
1600            frequencies: HashMap::new(),
1601            quantum_encodings: HashMap::new(),
1602        }
1603    }
1604}
1605
1606impl GenerationStatistics {
1607    /// Create new generation statistics
1608    pub fn new() -> Self {
1609        Self {
1610            total_tokens: 0,
1611            avg_speed: 0.0,
1612            quantum_coherence: 0.0,
1613            reasoning_steps: 0,
1614            memory_retrievals: 0,
1615            quality_metrics: QualityMetrics {
1616                perplexity: 0.0,
1617                coherence: 0.0,
1618                factual_accuracy: 0.0,
1619                logical_consistency: 0.0,
1620                quantum_advantage: 0.0,
1621            },
1622        }
1623    }
1624}
1625
1626impl GenerationConfig {
1627    /// Default generation configuration
1628    pub fn default() -> Self {
1629        Self {
1630            max_length: 100,
1631            temperature: 1.0,
1632            top_k: Some(50),
1633            top_p: Some(0.9),
1634            repetition_penalty: 1.1,
1635            use_quantum_reasoning: true,
1636            use_memory: true,
1637            chain_of_thought: false,
1638        }
1639    }
1640
1641    /// Creative generation configuration
1642    pub fn creative() -> Self {
1643        Self {
1644            max_length: 200,
1645            temperature: 1.2,
1646            top_k: Some(100),
1647            top_p: Some(0.95),
1648            repetition_penalty: 1.05,
1649            use_quantum_reasoning: true,
1650            use_memory: true,
1651            chain_of_thought: true,
1652        }
1653    }
1654
1655    /// Precise generation configuration
1656    pub fn precise() -> Self {
1657        Self {
1658            max_length: 50,
1659            temperature: 0.7,
1660            top_k: Some(20),
1661            top_p: Some(0.8),
1662            repetition_penalty: 1.2,
1663            use_quantum_reasoning: true,
1664            use_memory: true,
1665            chain_of_thought: true,
1666        }
1667    }
1668}
1669
1670#[cfg(test)]
1671mod tests {
1672    use super::*;
1673
1674    #[test]
1675    fn test_qllm_config_creation() {
1676        let config = QuantumLLMConfig::small(10000);
1677        assert_eq!(config.vocab_size, 10000);
1678        assert_eq!(config.transformer_config.model_dim, 768);
1679
1680        let large_config = QuantumLLMConfig::large(50000);
1681        assert_eq!(large_config.vocab_size, 50000);
1682        assert_eq!(large_config.transformer_config.model_dim, 1536);
1683    }
1684
1685    #[test]
1686    fn test_vocabulary_creation() {
1687        let vocab = Vocabulary::new(1000).unwrap();
1688        assert_eq!(vocab.quantum_embeddings.nrows(), 1000);
1689        assert!(vocab.special_tokens.contains_key("<eos>"));
1690    }
1691
1692    #[test]
1693    fn test_generation_config() {
1694        let config = GenerationConfig::default();
1695        assert_eq!(config.max_length, 100);
1696        assert_eq!(config.temperature, 1.0);
1697
1698        let creative_config = GenerationConfig::creative();
1699        assert!(creative_config.temperature > 1.0);
1700        assert!(creative_config.chain_of_thought);
1701    }
1702
1703    #[test]
1704    fn test_quantum_memory_system() {
1705        let config = QuantumMemoryConfig::default();
1706        let memory_system = QuantumMemorySystem::new(config);
1707        assert!(memory_system.is_ok());
1708
1709        let memory = memory_system.unwrap();
1710        assert!(!memory.associative_banks.is_empty());
1711    }
1712
1713    #[test]
1714    fn test_quantum_reasoning_module() {
1715        let config = QuantumReasoningConfig::default();
1716        let reasoning_module = QuantumReasoningModule::new(config);
1717        assert!(reasoning_module.is_ok());
1718
1719        let reasoning = reasoning_module.unwrap();
1720        assert!(!reasoning.logical_circuits.is_empty());
1721    }
1722}